New Levan-Based Chiral Stationary Phases: Synthesis and Comparative HPLC Enantioseparation of (±)-trans-β-Lactam Ureas in the Polar Organic Mode
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Chiral Selectors and Chiral Stationary Phases
2.2. Enantioseparation of trans-β-Lactam Ureas 1a–h
3. Materials and Methods
3.1. Materials
3.2. Preparation of Cellulose tris(4-Methylcarbamate) CSP
3.3. Preparation of Levan Carbamate Derivatives
3.3.1. Levan tris(3,5-Dimethylphenylcarbamate)
3.3.2. Levan tris(4-Methylphenylcarbamate)
3.3.3. Levan tris(1-Naphthylcarbamate)
3.3.4. MALDI-TOF MS Measurement
3.3.5. SEM Characterization of Levan-Based CSPs
3.4. Preparation of Levan Chiral Stationary Phases
3.5. HPLC Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tano, C.; Son, S.-H.; Furukawa, J.; Furuike, T.; Sakairi, N. Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: Importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids. Electrophoresis 2009, 30, 2743–2746. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tang, J.; Tang, W. Recent development of cationic cyclodextrins for chiral separation. TrAC Trends Anal. Chem. 2015, 65, 22–29. [Google Scholar] [CrossRef]
- Aboul-Enein, H.Y.; Ali, I. Comparative study of the enantiomeric resolution of chiral antifungal drugs econazole, miconazole and sulconazole by HPLC on various cellulose chiral columns in normal phase mode. J. Pharm. Biomed. Anal. 2002, 27, 441–446. [Google Scholar] [CrossRef]
- Elbashir, A.A.; Aboul-Enein, H.Y. Multidimensional Gas Chromatography for 964 Chiral Analysis. Crit. Rev. Anal. Chem. 2018, 48, 416–427. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Xie, S.-M.; Chen, L.; Wang, B.-J.; He, P.-G.; Yuan, L.-M. Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography. Anal. Chem. 2015, 87, 7817–7824. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-M.; Yuan, L.-M. Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography. J. Sep. Sci. 2019, 42, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Aboul-Enein, H.Y. Impact of immobilized polysaccharide chiral stationary phases on enantiomeric separations. J. Sep. Sci. 2006, 29, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Breitbach, A.S.; Lim, Y.; Xu, Q.-L.; Kürti, L.; Armstrong, D.W.; Breitbach, Z.S. Enantiomeric separations of α-aryl ketones with cyclofructan chiral stationary phases via high performance liquid chromatography and supercritical fluid chromatography. J. Chromatogr. A 2016, 1427, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Pilarova, V.; Plachka, K.; Khalikova, M.A.; Svec, F.; Novakova, L. Recent developments in supercritical fluid chromatography—Mass spectrometry: Is it a viable option for analysis of complex samples? Trends Anal. Chem. 2019, 112, 212–225. [Google Scholar] [CrossRef]
- West, C. Current trends in supercritical fluid chromatography. Anal. Bioanal. Chem. 2018, 410, 6441–6457. [Google Scholar] [CrossRef]
- Ali, I.; Sanagi, M.M.; Aboul-Enein, H.Y. Advances in chiral separations by nonaqueous capillary electrophoresis in pharmaceutical and biomedical analysis. Electrophoresis 2014, 35, 926–936. [Google Scholar] [CrossRef]
- Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Asnin, L.; Chudinov, A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J. Sep. Sci. 2014, 37, 2447–2466. [Google Scholar] [CrossRef]
- Alvarez, G.; Montero, L.; Llorens, L.; Castro-Puyana, M.; Cifuentes, A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2018, 39, 136–159. [Google Scholar] [CrossRef]
- Fanali, S. An overview to nano-scale analytical techniques: Nano-liquid 981 chromatography and capillary electrochromatography. Electrophoresis 2017, 38, 1822–1829. [Google Scholar] [CrossRef]
- Albals, D.; Heyden, Y.V.; Schmid, M.G.; Chankvetadze, B.; Mangelings, D. Chiral separations of cathinone and amphetamine-derivatives: Comparative study between capillary electrochromatography, supercritical fluid chromatography and three liquid chromatographic modes. J. Pharm. Biomed. Anal. 2016, 121, 232–243. [Google Scholar] [CrossRef]
- Lv, C.; Liu, Y.; Mangelings, D.; Vander Heyden, Y. Enantioselectivity of monolithic silica stationary phases immobilized with different concentrations cellulose tris(3,5-dimethylphenylcarbamate), analyzed with different mobile phases in capillary electrochromatography. Electrophoresis 2011, 32, 2708–2717. [Google Scholar] [CrossRef]
- Ghanem, A.; Ahmed, M.; Ishii, H.; Ikegami, T. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates. Talanta 2015, 132, 301–314. [Google Scholar] [CrossRef]
- López-Ram-de-Víu, P.; Gálvez, J.A.; Díaz-de-Villegas, M.D. High-performance liquid chromatographic enantioseparation of unusual amino acid derivatives with axial chirality on polysaccharide-based chiral stationary phases. J. Chromatogr. A 2015, 1390, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, K.; Ohnishi, A. Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases. J. Chromatogr. A 2015, 906, 127–154. [Google Scholar] [CrossRef]
- Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F. Recent applications in chiral high performance liquid chromatography: A review. Anal. Chim. Acta 2011, 706, 205–222. [Google Scholar] [CrossRef]
- Fernandes, C.; Phyo, Y.; Silva, A.S.; Tiritan, M.E.; Kijjoa, A.; Pinto, M.M.M. Chiral stationary phases based on small molecules: An update of the last seventeen years. Sep. Purif. Rev. 2017, 47, 89–123. [Google Scholar] [CrossRef]
- Fernandes, C.; Tiritan, M.E.; Pinto, M. Small molecules as chromatographic tools for HPLC enantiomeric resolution: Pirkle-type chiral stationary phases evolution. Chromatographia 2013, 76, 871–897. [Google Scholar] [CrossRef]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 1998, 37, 1020–1043. [Google Scholar] [CrossRef]
- Ikai, T.; Okamoto, Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem. Rev. 2009, 109, 6077–6101. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Noguchi, J.; Yashima, E. Enantioseparation on 3,5-dichloro- and 3,5-dimethylphenylcarbamates of polysaccharides as chiral stationary phases for high-performance liquid chromatography. React. Funct. Polym. 1998, 37, 183–188. [Google Scholar] [CrossRef]
- Bruni, G.O.; Qi, Y.; Terrell, E.; Dupre, R.A.; Mattison, C.P. Characterization of Levan Fructan Produced by a Gluconobacter japonicus Strain Isolated from a Sugarcane Processing Facility. Microorganisms 2024, 12, 107. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, S.; Zhang, T.; Jiang, B.; Mu, W. Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydr. Polym. 2017, 157, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.R.; Ramana, K.V. Optimization of Levan Production by Cold-Active Bacillus licheniformis ANT 179 and Fructooligosaccharide Synthesis by Its Levansucrase. Appl. Biochem. Biotechnol. 2017, 181, 986–1006. [Google Scholar] [CrossRef]
- Tomašić, J.; Jennings, H.J.; Glaudemans, C.P.J. Evidence for a single type of linkage in a fructofuranan from Lolium perenne. Carbohydr. Res. 1978, 62, 127–133. [Google Scholar] [CrossRef]
- Keith, J.; Wiley, B.; Ball, D.; Arcidiacono, S.; Zorfass, D.; Mayer, J.; Kaplan, D. Continuous culture system for production of biopolymer levan using erwinia herbicola. Biotechnol. Bioeng. 1991, 38, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Simms, P.J.; Boyko, W.J.; Edwards, J.R. The structural analysis of a levan produced by Streptococcus salivarius SS2. Carbohydr. Res. 1990, 208, 193–198. [Google Scholar] [CrossRef] [PubMed]
- French, A.D. Accessible conformations of the β-d-(2→1)- and -(2→6)-linked d-fructans inulin and levan. Carbohydr. Res. 1988, 176, 17–29. [Google Scholar] [CrossRef]
- Chankvetadze, B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J. Chromatogr. A 2012, 1269, 26–51. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.; Tiritan, M.E.; Pinto, M.M.M.; Fernandes, C. Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules 2019, 24, 865. [Google Scholar] [CrossRef] [PubMed]
- Yashima, E.; Yamamoto, C.; Okamoto, Y. Polysaccharide-Based Chiral LC Columns. Synlett 1998, 4, 344–360. [Google Scholar] [CrossRef]
- Okamoto, Y.; Aburatani, R.; Fukumoto, T.; Hatada, K. Useful Chiral Stationary Phases for HPLC. Amylose Tris(3,5-dimethylphenylcarbamate) and Tris(3,5-dichlorophenylcarbamate) Supported on Silica Gel. Chem. Lett. 1987, 16, 1857–1860. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. Trends Anal. Chem. 2019, 120, 115639. [Google Scholar] [CrossRef]
- Ates, H.; Younes, A.A.; Mangelings, D.; Vander Heyden, Y. Enantioselectivity of polysaccharide-based chiral selectors in polar organic solvents chromatography: Implementation of chlorinated selectors in a separation strategy. J. Pharm. Biomed. Anal. 2013, 74, 1–13. [Google Scholar] [CrossRef]
- Chankvetadze, B.; Kartozia, I.; Yamamoto, C.; Okamoto, Y. Comparative enantioseparation of selected chiral drugs on four different polysaccharide-type chiral stationary phases using polar organic mobile phases. J. Pharm. Biomed. Anal. 2002, 27, 467–478. [Google Scholar] [CrossRef]
- Matarashvili, I.; Shvangiradze, I.; Chankvetadze, L.; Sidamonidze, S.; Takaishvili, N.; Farkas, T.; Chankvetadze, B. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases. J. Sep. Sci. 2015, 38, 4173–4179. [Google Scholar] [CrossRef]
- Scatena, G.S.; Cassiano, N.M.; Netto, C.D.; Costa, P.R.; Cass, Q.B.; Batista, J.M. Preparative chiral separation and absolute configuration of the synthetic pterocarpanquinone LQB-118. Chirality 2017, 29, 167–171. [Google Scholar] [CrossRef]
- Deshmukh, A.R.A.S.; Bhawal, B.M.; Krishnaswamy, D.; Govande Vidyesh, V.; Shinkre Bidhan, A.; Jayanthi, A. Azetidin-2-ones, Synthon for Biologically Important Compounds. Curr. Med. Chem. 2004, 11, 1889–1920. [Google Scholar] [CrossRef]
- Dražić, T.; Roje, M. β-lactam rearrangements into five-membered heterocycles. Chem. Heterocycl. Compd. 2017, 53, 953–962. [Google Scholar] [CrossRef]
- Hosseyni, S.; Jarrahpour, A. Recent advances in β-lactam synthesis. Org. Biomol. Chem. 2018, 16, 6840–6852. [Google Scholar] [CrossRef]
- Mehta, P.D.; Sengar, N.P.S.; Pathak, A.K. 2-Azetidinone—A new profile of various pharmacological activities. Eur. J. Med. Chem. 2010, 45, 5541–5560. [Google Scholar] [CrossRef] [PubMed]
- Jarrahpour, A.; Shirvani, P.; Sinou, V.; Latour, C.; Brunel, J. Synthesis and biological evaluation of some new β-lactam-triazole hybrids. Med. Chem. Res. 2016, 25, 149–162. [Google Scholar] [CrossRef]
- Kamath, A.; Ojima, I. Advances in the chemistry of β-lactam and its medicinal applications. Tetrahedron 2012, 68, 10640–10664. [Google Scholar] [CrossRef] [PubMed]
- Pirkle, W.H.; Tsipouras, A.; Huyn, M.H.; Hart, D.J.; Lee, C.S. Use of chiral stationary phases for the chromatographic determination of enantiomeric purity and absolute configuration of some β-lactams. J. Chromatogr. 1986, 358, 377–384. [Google Scholar] [CrossRef]
- Lee, C.S.; Chen, H.H. Determination of enantiomeric purity and absolute configuration of b-lactams by high-performance liquid chromatography on chiral columns. J. Chin. Chem. Soc. 1994, 41, 187–190. [Google Scholar] [CrossRef]
- Cirilli, R.; Del Guidice, M.R.; Ferretti, R.; La Torre, F. Conformational and temperature effects on separation of stereoisomers of a C3,C4- substituted b-lactamic cholesterol absorption inhibitor on amylosebased chiral stationary phases. J. Chromatogr. A 2001, 923, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Senoh, T.; Nakane, H.; Hatada, K. Optical resolution of betalactams by chiral HPLC on tris(phenylcarbamate)s of cellulose and amylose. Chirality 1989, 1, 216–222. [Google Scholar] [CrossRef]
- Pataj, Z.; Ilisz, I.; Berkecz, R.; Forró, E.; Fülöp, F.; Péter, A. Comparison of separation performances of amylose- and cellulose-based stationary phases in the high-performance liquid chromatographic enantioseparation of stereoisomers of β-lactams. Chirality 2010, 22, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Péter, A.; Arki, A.; Forró, E.; Fülöp, F.; Armstrong, D.W. Direct high-performance liquid chromatographic enantioseparation of β-lactam stereoisomers. Chirality 2005, 17, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Jurin, M.; Kontrec, D.; Dražić, T.; Roje, M. Enantioseparation of (±)-trans-β-lactam Ureas by Supercritical Fluid Chromatography. Croat. Chem. Acta 2020, 93, 203–213. [Google Scholar] [CrossRef]
- Jurin, M.; Kontrec, D.; Roje, M. HPLC and SFC Enantioseparation of (±)-Trans-β-Lactam Ureas on Immobilized Polysaccharide-Based Chiral Stationary Phases—The Introduction of Dimethyl Carbonate as an Organic Modifier in SFC. Separations 2024, 11, 38. [Google Scholar] [CrossRef]
- Sun, P.; Wang, C.; Armstrong, D.W.; Péter, A.; Forró, E. Separation of Enantiomers of β-Lactams by HPLC Using Cyclodextrin-Based Chiral Stationary Phases. J. Liq. Chromatogr. Relat. 2006, 29, 1847–1860. [Google Scholar] [CrossRef]
- Berkecz, R.; Török, R.; Ilisz, I.; Forró, E.; Fülöp, F.; Armstrong, D.W.; Péter, A. LC Enantioseparation of β-Lactam and β-Amino acid Stereoisomers and Comparison of Macrocyclic Glycopeptide- and β-Cyclodextrin-Based columns. Chromatographia 2006, 63, 37–43. [Google Scholar] [CrossRef]
- Fodor, G.; Ilisz, I.; Szemán, J.; Iványi, R.; Szente, L.; Varga, G.; Forró, E.; Fülöp, F.; Péter, A. LC Enantioseparation of β-Lactam Stereoisomers through the Use of β-Cyclodextrin-Based Chiral Stationary Phases. Chromatographia 2010, 71, 29–34. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kawashima, M.; Hatada, K. Chromatographic resolution: XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J. Chromatogr. 1986, 363, 173–186. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Pochapsky, T.C. Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem. Rev. 1989, 89, 347–362. [Google Scholar] [CrossRef]
- Allenmark, S. Chromatographic Enantioseparation: Methods and Applications, 2nd ed.; Ellis Horwood: New York, NY, USA, 1991; pp. 49–53. [Google Scholar]
- Foroughbakhshfasaei, M.; Dobó, M.; Boda, F.; Szabó, Z.-I.; Tóth, G. Comparative Chiral Separation of Thalidomide Class of Drugs Using Polysaccharide-Type Stationary Phases with Emphasis on Elution Order and Hysteresis in Polar Organic Mode. Molecules 2022, 27, 111. [Google Scholar] [CrossRef] [PubMed]
- Horváth, S.; Németh, G. Hysteresis of retention and enantioselectivity on amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases in mixtures of 2-propanol and methanol. J. Chromatogr. A 2018, 1568, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Jurin, M.; Stepanić, V.; Bojanić, K.; Vadlja, D.; Kontrec, D.; Dražić, T.; Roje, M. Novel (±)-trans-β-lactam ureas: Synthesis, in silico and in vitro biological profiling. Acta Pharm. 2024, 74, 37–59. [Google Scholar] [CrossRef]
MeOH | EtOH | ACN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
β-Lactam Urea | Column | k1 | α | Rs | k1 | α | Rs | k1 | α | Rs |
1a | Chiralpak AD-3 | 1.28 | 2.59 | 1.53 | 2.86 | 1.18 | 1.24 | 3.97 | 1.43 | 2.00 |
Chiralcel OD-3 | 0.18 | 2.22 | 4.15 | 0.23 | 2.22 | 3.17 | 0.38 | 1.18 | 1.19 | |
Chirallica PST-10 | 0.35 | 3.29 | 8.61 | 0.41 | 3.32 | 8.80 | - | - | - | |
Chirallica PST-7 | 0.10 | 4.10 | 1.76 | 0.23 | 5.35 | 2.79 | 0.14 | 2.86 | 1.95 | |
Chirallica PST-8 | 0.29 | 1.62 | 0.47 | 0.28 | 2.07 | 1.46 | 0.35 | 1.91 | 2.22 | |
Chirallica PST-9 | 0.08 | 1.00 | 0 | 0.34 | 1.00 | 0 | 0.03 | 1.00 | 0 | |
1b | Chiralpak AD-3 | 0.95 | 1.95 | 2.54 | 1.04 | 2.77 | 6.57 | 1.05 | 1.72 | 1.80 |
Chiralcel OD-3 | 0.21 | 1.48 | 1.79 | 0.20 | 1.45 | 1.14 | 0.69 | 1.10 | 0.61 | |
Chirallica PST-10 | 0.27 | 2.63 | 5.88 | 0.28 | 2.36 | 4.62 | - | - | - | |
Chirallica PST-7 | 0.12 | 1.83 | 0.95 | 0.15 | 2.67 | 1.62 | 0.24 | 1.46 | 0.94 | |
Chirallica PST-8 | 0.23 | 1.57 | 0.45 | 0.17 | 1.88 | 1.02 | 0.18 | 1.58 | 0.99 | |
Chirallica PST-9 | 0.07 | 1.00 | 0 | 0.31 | 1.00 | 0 | 0.10 | 1.00 | 0 | |
1c | Chiralpak AD-3 | 1.6 | 2.47 | 1.44 | 1.81 | 1.79 | 3.94 | 2.42 | 1.31 | 0.93 |
Chiralcel OD-3 | 0.21 | 2.48 | 5.23 | 0.23 | 2.57 | 3.90 | 0.81 | 1.20 | 1.95 | |
Chirallica PST-10 | 0.45 | 3.51 | 9.65 | 0.42 | 4.24 | 10.89 | - | - | - | |
Chirallica PST-7 | 0.16 | 6.25 | 2.13 | 0.25 | 11.2 | 3.41 | 0.90 | 1.34 | 1.68 | |
Chirallica PST-8 | 0.43 | 1.02 | 0.93 | 0.35 | 2.91 | 2.17 | 0.38 | 1.61 | 1.71 | |
Chirallica PST-9 | 0.07 | 1.00 | 0 | 0.30 | 1.00 | 0 | 0.12 | 1.00 | 0 | |
1d | Chiralpak AD-3 | 2.13 | 2.77 | 2.14 | 3.71 | 1.30 | 2.00 | 1.76 | 1.71 | 1.48 |
Chiralcel OD-3 | 0.22 | 2.27 | 4.62 | 0.25 | 2.36 | 3.60 | 1.05 | 1.16 | 1.81 | |
Chirallica PST-10 | 0.39 | 3.56 | 9.33 | 0.43 | 3.42 | 9.08 | - | - | - | |
Chirallica PST-7 | 0.19 | 3.74 | 1.81 | 0.31 | 5.84 | 2.78 | 1.22 | 1.61 | 2.70 | |
Chirallica PST-8 | 0.45 | 1.51 | 0.20 | 0.39 | 1.87 | 1.34 | 0.47 | 2.09 | 2.73 | |
Chirallica PST-9 | 0.07 | 1.00 | 0 | 0.32 | 1.00 | 0 | 0.20 | 1.00 | 0 | |
1e | Chiralpak AD-3 | 1.98 | 2.55 | 2.19 | 3.87 | 1.69 | 4.04 | 1.02 | 2.25 | 1.81 |
Chiralcel OD-3 | 0.29 | 2.17 | 5.62 | 0.39 | 2.08 | 3.73 | 1.28 | 1.13 | 1.24 | |
Chirallica PST-10 | 0.53 | 3.08 | 9.19 | 0.68 | 2.63 | 8.47 | - | - | - | |
Chirallica PST-7 | 0.15 | 3.60 | 1.71 | 0.34 | 6.29 | 2.78 | 0.99 | 1.56 | 1.92 | |
Chirallica PST-8 | 0.45 | 1.76 | 0.66 | 0.40 | 2.03 | 1.58 | 0.44 | 1.89 | 1.83 | |
Chirallica PST-9 | 0.46 | 1.76 | 0.60 | 0.31 | 1.00 | 0 | 0.27 | 1.00 | 0 | |
1f | Chiralpak AD-3 | 4.35 | 1.00 | 0 | 2.84 | 2.92 | 6.06 | 1.34 | 2.37 | 1.46 |
Chiralcel OD-3 | 0.26 | 2.27 | 5.26 | 0.27 | 2.11 | 2.99 | 1.83 | 2.54 | 2.20 | |
Chirallica PST-10 | 0.40 | 3.33 | 8.54 | 0.44 | 2.84 | 6.95 | - | - | - | |
Chirallica PST-7 | 0.13 | 8.54 | 2.00 | 0.20 | 18.90 | 2.81 | 0.80 | 1.56 | 1.76 | |
Chirallica PST-8 | 0.37 | 3.16 | 1.27 | 0.27 | 3.96 | 2.41 | 0.24 | 1.00 | 0 | |
Chirallica PST-9 | 0.37 | 3.11 | 1.21 | 0.29 | 1.00 | 0 | 0.34 | 1.00 | 0 | |
1g | Chiralpak AD-3 | 1.00 | 1.24 | 0.30 | 1.79 | 1.00 | 0 | 1.21 | 2.40 | 1.66 |
Chiralcel OD-3 | 0.27 | 2.70 | 7.43 | 0.30 | 2.53 | 4.15 | 1.98 | 1.11 | 2.00 | |
Chirallica PST-10 | 0.42 | 4.52 | 11.62 | 0.48 | 3.73 | 9.91 | - | - | - | |
Chirallica PST-7 | 0.13 | 9.62 | 2.03 | 0.22 | 17.32 | 3.25 | 0.40 | 1.00 | 0 | |
Chirallica PST-8 | 0.36 | 4.72 | 1.79 | 0.26 | 7.00 | 3.40 | 0.24 | 1.00 | 0 | |
Chirallica PST-9 | 0.36 | 4.67 | 1.76 | 0.30 | 1.00 | 0 | 0.36 | 1.00 | 0 | |
1h | Chiralpak AD-3 | 2.02 | 1.00 | 0 | 1.78 | 1.00 | 0 | 1.35 | 2.21 | 1.71 |
Chiralcel OD-3 | 0.29 | 2.55 | 7.13 | 0.29 | 2.59 | 4.16 | 1.97 | 2.22 | 1.13 | |
Chirallica PST-10 | 0.50 | 4.04 | 11.32 | 0.50 | 3.62 | 9.88 | - | - | - | |
Chirallica PST-7 | 0.19 | 6.79 | 1.94 | 0.23 | 16.91 | 3.30 | 0.33 | 1.00 | 0 | |
Chirallica PST-8 | 0.58 | 2.57 | 1.25 | 0.26 | 7.04 | 3.39 | 0.28 | 1.00 | 0 | |
Chirallica PST-9 | 0.58 | 2.55 | 1.20 | 0.29 | 1.00 | 0 | 0.31 | 1.00 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontrec, D.; Jurin, M.; Jakas, A.; Roje, M. New Levan-Based Chiral Stationary Phases: Synthesis and Comparative HPLC Enantioseparation of (±)-trans-β-Lactam Ureas in the Polar Organic Mode. Molecules 2024, 29, 2213. https://doi.org/10.3390/molecules29102213
Kontrec D, Jurin M, Jakas A, Roje M. New Levan-Based Chiral Stationary Phases: Synthesis and Comparative HPLC Enantioseparation of (±)-trans-β-Lactam Ureas in the Polar Organic Mode. Molecules. 2024; 29(10):2213. https://doi.org/10.3390/molecules29102213
Chicago/Turabian StyleKontrec, Darko, Mladenka Jurin, Andreja Jakas, and Marin Roje. 2024. "New Levan-Based Chiral Stationary Phases: Synthesis and Comparative HPLC Enantioseparation of (±)-trans-β-Lactam Ureas in the Polar Organic Mode" Molecules 29, no. 10: 2213. https://doi.org/10.3390/molecules29102213
APA StyleKontrec, D., Jurin, M., Jakas, A., & Roje, M. (2024). New Levan-Based Chiral Stationary Phases: Synthesis and Comparative HPLC Enantioseparation of (±)-trans-β-Lactam Ureas in the Polar Organic Mode. Molecules, 29(10), 2213. https://doi.org/10.3390/molecules29102213