Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of CoO/MnO/NC
2.2. Electrocatalytic Performance
2.3. Theoretical Calculations
3. Materials and Methods
3.1. Synthesis of CoO/MnO/NC
3.2. Theoretical Calculations
3.3. Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Item parameters | Units |
Capacity | mA h g−1 |
Current density | A g−1 |
Voltage | V |
Electron volt | eV |
Scan rate | mV s−1 |
Diffusion coefficient | cm2 s−1 |
Resistance | Ω |
Mass | g |
Concentration | mol L−1 |
Temperature | °C |
Time | h |
Volume | mL |
Per cent | % |
Current | mA |
Atomic forces | eV Å−1 |
References
- Wu, F.X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.L.; Zhang, T.; Li, X.J.; Wu, N.T.; Cao, A.G.; Yuan, W.W.; Pan, K.M.; Guo, D.L.; Liu, X.M. MoS2@C with S vacancies vertically anchored on V2C-MXene for efficient lithium and sodium storage. Inorg. Chem. Front. 2023, 10, 1587–1602. [Google Scholar] [CrossRef]
- Xiong, P.X.; Zhang, Y.; Zhang, J.R.; Baek, S.H.; Zeng, L.X.; Yao, Y.; Park, H.S. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 2022, 4, 100076. [Google Scholar] [CrossRef]
- Wu, H.H.; Zhuo, F.; Qiao, H.; Venkataraman, L.K.; Zheng, M.; Wang, S.; Huang, H.; Li, B.; Mao, X.; Zhang, Q. Polymer-/ceramic-based dielectric composites for energy storageand conversion. Energy Environ. Mater. 2022, 5, 486–514. [Google Scholar] [CrossRef]
- Yen, H.J.; Tsai, H.; Zhou, M.; Holby, E.F.; Choudhury, S.; Chen, A.; Adamska, L.; Tretiak, S.; Sanchez, T.; Iyer, S. Structurally defined 3D nanographene assemblies via bottom-up chemical synthesis for highly efficient lithium storage. Adv. Mater. 2016, 28, 10250–10256. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Chae, S.; Ma, J.Y.; Kim, N.; Lee, H.W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113. [Google Scholar] [CrossRef]
- Fang, S.; Bresser, D.; Passerini, S. Transition Metal Oxide Anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485. [Google Scholar] [CrossRef]
- Wang, P.X.; Zhang, Y.; Yin, Y.Y.; Fan, L.S.; Zhang, N.Q.; Sun, K.N. Anchoring hollow MoO2 spheres on graphene for superior lithium storage. Chem. Eng. J. 2018, 334, 257–263. [Google Scholar] [CrossRef]
- Qi, C.X.; Zhao, M.X.; Fang, T.; Zhu, Y.P.; Wang, P.S.; Xie, A.J.; Shen, Y.H. Multifunctional hollow porous Fe3O4@N-C nanocomposites as anodes of lithium-ion battery, adsorbents and surface-enhanced Raman scattering substrates. Molecules 2023, 28, 5183. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.N.; Liu, C.Y.; Shi, J.; Huang, M.H.; Liu, S.; Shi, Z.C.; Wang, H.L. One-pot synthesis of nanosized MnO incorporated into N-doped carbon nanosheets for high performance lithium storage. J. Alloys Compd. 2022, 902, 163827. [Google Scholar] [CrossRef]
- Chen, Z.Y.; He, B.; Yan, D.; Yu, X.F.; Li, W.C. Peapod-like MnO@Hollow carbon nanofibers film as self-standing electrode for Li-ion capacitors. J. Power Sources 2020, 472, 228501. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Wang, L.; Lin, H.N.; Ma, L.B.; Zhao, P.Y.; Hu, Y.; Chen, T.; Chen, R.P.; Wang, Y.R.; Tie, Z.X.; et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1800003. [Google Scholar] [CrossRef]
- Huang, H.W.; Fan, S.S.; Dong, W.D.; Zhou, W.; Yan, M.; Deng, Z.; Zheng, X.F.; Liu, J.; Wang, H.E.; Chen, L.H.; et al. Nitrogen-doped graphene in-situ modifying MnO nanoparticles for highly improved lithium storage. Appl. Surf. Sci. 2019, 473, 893–901. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Feng, J.B.; Qin, J.D.; Zhong, Y.L.; Zhang, S.Q.; Wang, H.; Bell, J.; Guo, Z.P.; Song, P.A. Pathways to next-generation fire-safe alkali-ion batteries. Adv. Sci. 2023, 10, 2301056. [Google Scholar] [CrossRef]
- Zhu, J.; Wierzbicki, T.; Li, W. Areview of safety-focused mechanical modeling of commercial lithium-ion batteries. J. Power Sources 2018, 378, 153–168. [Google Scholar] [CrossRef]
- Gong, Y.; Sun, L.; Si, H.C.; Zhang, Y.X.; Shi, Y.; Wu, L.; Gu, J.L.; Zhang, Y.H. MnO nanorods coated by Co-decorated N-doped carbon as anodes for high performance lithium ion batteries. Appl. Surf. Sci. 2020, 504, 144479. [Google Scholar] [CrossRef]
- Zhang, L.L.; Ge, D.H.; Qu, G.L.; Zheng, J.W.; Cao, X.Q.; Gu, H.W. Formation of porous nitrogen-doped carbon-coating MnO nanospheres for advanced reversible lithium storage. Nanoscale 2017, 9, 5451–5457. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Luo, J.D.; Qi, X.T.; Yu, J.; Cai, J.X.; Yang, Z.Y. Molten-salt-assisted synthesis of hierarchical porous MnO@Biocarbon composites as promising electrode materials for supercapacitors and lithium-ion batteries. ChemSusChem 2019, 12, 283–290. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.H.; Zhou, C.; Li, A.G.; Gong, Y.; Muhammad, N.; Song, H.H. Controlled synthesis of porous 3D interconnected MnO/C composite aerogel and their excellent lithium-storage properties. Electrochim. Acta 2019, 306, 143–150. [Google Scholar] [CrossRef]
- Feng, T.T.; Li, H.L.; Tan, J.; Liang, Y.F.; Zhu, W.Q.; Zhang, S.; Wu, M.Q. Synthesis, characterization and electrochemical behavior of Zn-doped MnO/C submicrospheres for lithium ion batteries. J. Alloys Compd. 2022, 897, 163153. [Google Scholar] [CrossRef]
- Kong, X.Z.; Pan, A.Q.; Wang, Y.P.; Selvakumaran, D.; Lin, J.D.; Cao, X.X.; Liang, S.Q.; Cao, G.Z. In situ formation of porous graphitic carbon wrapped MnO/Ni microsphere networks as binder-free anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 2018, 6, 12316–12322. [Google Scholar] [CrossRef]
- Kong, X.Z.; Wang, Y.P.; Lin, J.D.; Liang, S.Q.; Pan, A.Q.; Cao, G.Z. Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries. Electrochim. Acta 2018, 259, 419–426. [Google Scholar] [CrossRef]
- Zhang, X.D.; He, X.; Yin, S.; Cai, W.L.; Wang, Q.; Wu, H.; Wu, K.P.; Zhang, Y. Rational design of space-confined Mn-based heterostructures with synergistic interfacial charge transport and structural integrity for lithium storage. Inorg. Chem. 2022, 61, 8366–8378. [Google Scholar] [CrossRef]
- Fang, L.B.; Lan, Z.Y.; Guan, W.H.; Zhou, P.; Bahlawane, N.; Sun, W.P.; Lu, Y.H.; Liang, C.; Yan, M.; Jiang, Y.Z. Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 2019, 18, 107–113. [Google Scholar] [CrossRef]
- Shen, Y.H.; Jiang, Y.L.; Yang, Z.Z.; Dong, J.; Yang, W.; An, Q.Y.; Mai, L.Q. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage. Adv. Sci. 2022, 9, 2104504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.P.; Fang, S.F.; Guo, M.Y.; Fang, Z.; Qi, L.Y.; Guo, L.P.; Qin, Y.M.; Bao, H.F. Heterostructure MnO/MnSe nanoparticles encapsulated in a nitrogen-doped carbon shell for high-performance lithium/sodium-ion batteries. J. Energy Storage 2024, 82, 110584. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhao, Y.M.; Jin, Y.; Fan, Q.H.; Dong, Y.Z.; Kuang, Q. Bimetallic phosphide Ni2P/CoP@rGO heterostructure for high-performance lithium/sodium-ion batteries. J. Power Sources 2023, 560, 232715. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.B.; Wang, W.L.; Han, G.F.; Zhang, J.D.; Zhang, S.W.; Wang, J.C.; Du, Y. Design and construction of carbon-coated Fe3O4/Cr2O3 heterostructures nanoparticles as high-performance anodes for lithium storage. Small 2023, 19, 2304264. [Google Scholar] [CrossRef]
- Chen, C.; Xie, X.Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.Q.; Urbankowski, P.; Miao, L.; Jiang, J.J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 2018, 57, 1846–1850. [Google Scholar] [CrossRef]
- Zhu, J.K.; Tu, W.M.; Pan, H.F.; Zhang, H.; Liu, B.; Cheng, Y.P.; Deng, Z.; Zhang, H.N. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano 2020, 14, 5780–5787. [Google Scholar] [CrossRef]
- Wang, J.Y.; Tang, H.J.; Wang, H.; Yu, R.B.; Wang, D. Multi-shelled hollow micro-/nanostructures: Promising platforms for lithium-ion batteries. Mater. Chem. Front. 2017, 1, 414–430. [Google Scholar] [CrossRef]
- Ren, W.H.; Zheng, Z.P.; Xu, C.; Niu, C.J.; Wei, Q.L.; An, Q.Y.; Zhao, K.G.; Yan, M.Y.; Qin, M.S.; Mai, L.Q. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145–153. [Google Scholar] [CrossRef]
- Yang, B.J.; Chen, J.T.; Liu, B.; Ding, Y.X.; Tang, Y.; Yan, X.B. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors. J. Mater. Chem. A 2021, 9, 6352–6360. [Google Scholar] [CrossRef]
- Gao, L.L.; Ren, H.B.; Lu, X.J.; Joo, S.W.; Liu, T.X.; Huang, J.R. Heterostructure of NiSe2/MnSe nanoparticles distributed on cross-linked carbon nanosheets for high-performance sodium-ion battery. Appl. Surf. Sci. 2022, 599, 154067. [Google Scholar] [CrossRef]
- Li, H.S.; Hu, Z.Q.; Xia, Q.T.; Zhang, H.; Li, Z.H.; Wang, H.Z.; Li, X.K.; Zuo, F.K.; Zhang, F.L.; Wang, X.X.; et al. Operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries. Adv. Mater. 2021, 33, 2006629. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.H.; Wang, M.; Kou, Z.K.; Amiinu, I.S.; Mu, S.C. Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chem. Comm. 2016, 52, 12753–12756. [Google Scholar] [CrossRef] [PubMed]
- Si, L.Q.; Yan, K.; Li, C.L.; Huang, Y.F.; Pang, X.C.; Yang, X.M.; Sui, D.; Zhang, Y.S.; Wang, J.S.; Xu, C.C. Binder-free SiO2 nanotubes/carbon nanofibers mat as superior anode for lithium-ion batteries. Electrochim. Acta 2022, 404, 139747. [Google Scholar] [CrossRef]
- Lu, Y.; Ang, H.X.; Yan, Q.Y.; Fong, E. Bioinspired synthesis of hierarchically porous MoO2/Mo2C nanocrystal decorated N-doped carbon foam for lithium-oxygen batteries. Chem. Mater. 2016, 28, 5743–5752. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wu, H.; Huang, L.; Zhao, H.; Liu, Z.F.; Chen, X.C.; Liu, H.; Zhang, Y. Hierarchically porous N,S-codoped carbon-embedded dual phase MnO/MnS nanoparticles for efficient lithium ion storage. Inorg. Chem. 2018, 57, 7993–8001. [Google Scholar] [CrossRef]
- Shao, M.H. In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials. J. Power Sources 2014, 270, 475–486. [Google Scholar] [CrossRef]
- Cui, J.; Zheng, H.K.; He, K. In situ TEM study on conversion-type electrodes for rechargeable ion batteries. Adv. Mater. 2021, 33, 2000699. [Google Scholar] [CrossRef]
- Yuan, T.Z.; Jiang, Y.Z.; Sun, W.P.; Xiang, B.; Li, Y.; Yan, M.; Xu, B.; Dou, S.X. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv. Funct. Mater. 2016, 26, 2198–2206. [Google Scholar] [CrossRef]
- Linares, N.; Silvestre-Albero, A.M.; Serrano, E.; Silvestre-Albero, J.; García-Martínez, J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 2014, 43, 7681–7717. [Google Scholar] [CrossRef]
- Xiong, P.X.; Kang, Y.B.; Yao, N.; Chen, X.; Mao, H.Y.; Jang, W.S.; Halat, D.M.; Fu, Z.H.; Jung, M.H.; Jeong, H.W.; et al. Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 2023, 8, 1613–1625. [Google Scholar] [CrossRef]
- Zheng, F.C.; Yin, Z.C.; Xia, H.Y.; Bai, G.L.; Zhang, Y.G. Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chem. Eng. J. 2017, 327, 474–480. [Google Scholar] [CrossRef]
- Xiong, P.X.; Lin, C.Y.; Wei, Y.; Kim, J.H.; Jang, G.; Dai, K.; Zeng, L.X.; Huang, S.P.; Kwon, S.J.; Lee, S.Y.; et al. Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 2023, 8, 2718–2727. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Zhang, H.P.; Fu, L.J.; Wu, Y.P.; Wu, H.Q. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sources 2006, 159, 717–720. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.Z.; Zheng, S.; Hu, G.B.; Zhang, K.Y.; Luo, Y.; Qin, A.M. Hybrid structures of sisal fiber derived interconnected carbon nanosheets/MoS2/polyaniline as advanced electrode materials in lithium-ion batteries. Molecules 2021, 26, 3710. [Google Scholar] [CrossRef] [PubMed]
- Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Xiao, S.H.; Li, X.Y.; Li, Z.Z.; Li, X.R.; Zhang, W.S.; Xiang, Y.; Niu, X.B.; Chen, J.S. Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem. Eng. J. 2021, 417, 129279. [Google Scholar] [CrossRef]
- Zhang, K.; Park, M.H.; Zhou, L.M.; Lee, G.H.; Shin, J.Y.; Hu, Z.; Chou, S.L.; Chen, J.; Kang, Y.M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 2016, 55, 12822–12826. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Yang, S.; Wang, F.X.; Zhuang, X.D.; Müllen, K.; Feng, X.L. Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 2018, 8, 1702254. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Park, M.S.; Woo, H.S.; Sun, Y.K.; Kim, D.W. Closely coupled binary metal sulfide nanosheets shielded molybdenum sulfide nanorod hierarchical structure via eco-benign surface exfoliation strategy towards efficient lithium and sodium-ion batteries. Energy Storage Mater. 2021, 38, 344–353. [Google Scholar] [CrossRef]
- Wu, C.P.; Xie, K.X.; He, J.P.; Wang, Q.P.; Ma, J.M.; Yang, S.; Wang, Q.H. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021, 40, 48–58. [Google Scholar] [CrossRef]
- Liu, W.F.; Pang, Y.D.; Shi, Z.P.; Yue, H.Y.; Dong, H.Y.; Cao, Z.X.; Yang, Z.X.; Yang, S.T.; Yin, Y.H. Ultrafast kinetics in a PAN/MgFe2O4 flexible free-standing anode induced by heterojunction and oxygen vacancies. ACS Appl. Mater. Interfaces 2022, 14, 11575–11586. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Chen, P.; Wang, Q.Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.L.; Cao, D.X.; Yan, J.; Zhang, Q. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Adv. Energy Mater. 2021, 11, 2101712. [Google Scholar] [CrossRef]
- Jin, J.; Xiao, T.; Zhang, Y.F.; Zheng, H.; Wang, H.W.; Wang, R.; Gong, Y.S.; He, B.B.; Liu, X.H.; Zhou, K. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale 2021, 13, 19740–19770. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.B.; Sun, G.; Zhang, Y.M.; Hua, R.; Wang, X.T.; Wu, N.T.; Li, J.; Liu, G.L.; Guo, D.L.; Cao, A.G.; et al. Introduction of SnS2 to regulate the ferrous disulfide phase evolution for the construction of triphasic heterostructures enabling kinetically accelerated and durable sodium storage. Adv. Funct. Mater. 2024, 34, 2314679. [Google Scholar] [CrossRef]
- Hao, J.N.; Zhang, J.; Xia, G.L.; Liu, Y.J.; Zheng, Y.; Zhang, W.C.; Tang, Y.B.; Pang, W.K.; Guo, Z.P. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018, 12, 10430–10438. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.H.; Liu, H.D.; Xu, P.D.; Yang, L.T.; Pei, K.; Zeng, Q.W.; Feng, Y.Z.; Wang, P.; Che, R.C. Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 2019, 13, 11921–11934. [Google Scholar] [CrossRef]
- Ding, X.B.; Meng, F.B.; Zhou, Q.F.; Li, X.D.; Kuai, H.X.; Xiong, X.H. Complementary niobium-based heterostructure for ultrafast and durable lithium storage. Nano Energy 2024, 121, 109188. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Xu, Y.; Xu, J.; Guo, K.; Wu, N.; Cao, A.; Liu, G.; Liu, X. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules 2024, 29, 2228. https://doi.org/10.3390/molecules29102228
Guo D, Xu Y, Xu J, Guo K, Wu N, Cao A, Liu G, Liu X. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules. 2024; 29(10):2228. https://doi.org/10.3390/molecules29102228
Chicago/Turabian StyleGuo, Donglei, Yaya Xu, Jiaqi Xu, Kailong Guo, Naiteng Wu, Ang Cao, Guilong Liu, and Xianming Liu. 2024. "Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries" Molecules 29, no. 10: 2228. https://doi.org/10.3390/molecules29102228
APA StyleGuo, D., Xu, Y., Xu, J., Guo, K., Wu, N., Cao, A., Liu, G., & Liu, X. (2024). Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules, 29(10), 2228. https://doi.org/10.3390/molecules29102228