The Effect of Methyl-Derivatives of Flavanone on MCP-1, MIP-1β, RANTES, and Eotaxin Release by Activated RAW264.7 Macrophages
Abstract
:1. Introduction
2. Results
2.1. The Effect of the Flavanone, 2′-Methylflavanone (5B), 3′-Methylflavanone (6B), 4′-Methylflavanone (7B), and 6-Methylflavanone (8B) on the Release of MCP-1 by Macrophages
2.2. The Effect of the Flavanone, 2′-Methylflavanone (5B), 3′-Methylflavanone (6B), 4′-Methylflavanone (7B), and 6-Methylflavanone (8B) on the Release of MIP-1β by Macrophages
2.3. The Effect of the Flavanone, 2′-Methylflavanone (5B), 3′-Methylflavanone (6B), 4′-Methylflavanone (7B), and 6-Methylflavanone (8B) on the Release of RANTES by Macrophages
2.4. The Effect of the Flavanone, 2′-Methylflavanone (5B), 3′-Methylflavanone (6B), 4′-Methylflavanone (7B), and 6-Methylflavanone (8B) on the Release of Eotaxin by Macrophages
2.5. HCA of All Obtained Data Based on the Average Content of the Effect of Methyl-Derivatives of Flavanone Regarding the Behavior of Cytokines
2.6. HCA of All Obtained Data Based on the Influence on Chemokines by the Average Content of the Methyl-Derivatives of Flavanone
2.7. PCA Score Plot of All Obtained Data Based on the Average Content of the Effect of the Methyl-Derivatives of Flavanone
3. Discussion
4. Materials and Methods
4.1. General Procedure for the Synthesis of Methyl-Flavanones
4.2. Cell Culture
4.3. Quantification of MCP-1, MIP-1β, RANTES, and Eotaxin Concentrations
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghafouri-Fard, S.; Honarmand, K.; Taheri, M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab. Brain Dis. 2021, 36, 375–406. [Google Scholar] [CrossRef]
- Poeta, V.M.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and chemokine receptors: New targets for cancer immunotherapy. Front. Immunol. 2019, 10, 438073. [Google Scholar] [CrossRef]
- Korbecki, J.; Kojder, K.; Simińska, D.; Bohatyrewicz, R.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Molecular Sciences CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci. 2020, 21, 8412. [Google Scholar] [CrossRef]
- Carolina, D.; Palomino, T.; Marti, L.C. Chemokines and immunity Quimiocinas e imunidade. Einstein 2015, 13, 469–473. [Google Scholar] [CrossRef]
- Rollins, B.J. Chemokines. Blood 1997, 90, 909–928. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Aminil, S.; Sawaya, B.E. Review Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Furie, M.B.; Randolph, G.J. Chemokines and Tissue Injury. Am. J. Pathol. 1995, 146, 1287–1301. [Google Scholar]
- Spoettl, T.; Hausmann, M.; Herlyn, M.; Gunckel, M.; Dirmeier, A.; Falk, W.; Herfarth, H.; Schoelmerich, J.; Rogler, G. Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes. Clin. Exp. Immunol. 2006, 145, 190–199. [Google Scholar] [CrossRef]
- Menten, P.; Wuyts, A.; Van Damme, J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 2002, 13, 455–481. [Google Scholar] [CrossRef]
- Aff, S.; Bataller, R. RANTES antagonism: A promising approach to treat chronic liver diseases. J. Hepatol. 2011, 55, 936–938. [Google Scholar] [CrossRef]
- Appay, V.; Rowland-Jones, S.L. RANTES: A versatile and controversial chemokine. Trends Immunol. 2001, 22, 83–87. [Google Scholar] [CrossRef]
- Levy, J.A. The unexpected pleiotropic activities of RANTES. J. Immunol. 2009, 182, 3945–3946. [Google Scholar] [CrossRef]
- Sulfiana, S.; Iswanti, F.C. Chemokines in allergic asthma inflammation. Universa Med. 2022, 41, 289–301. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Isozaki, T.; Tsubokura, Y.; Fukuse, S.; Kasama, T. Eotaxin-1/CCL11 is involved in cell migration in rheumatoid arthritis. Sci. Rep. 2021, 11, 7937. [Google Scholar] [CrossRef]
- Kopydlowski, K.M.; Salkowski, C.A.; Cody, M.J.; van Rooijen, N.; Major, J.; Hamilton, T.A.; Vogel, S.N. Regulation of Macrophage Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo. J. Immunol. 1999, 163, 1537–1544. [Google Scholar] [CrossRef]
- Kłósek, M.; Krawczyk-Łebek, A.; Kostrzewa-Susłow, E.; Szliszka, E.; Bronikowska, J.; Jaworska, D.; Pietsz, G.; Czuba, Z.P. In Vitro Anti-Inflammatory Activity of Methyl Derivatives of Flavanone. Molecules 2023, 28, 7837. [Google Scholar] [CrossRef]
- Bartmańska, A.; Tronina, T.; Popłoński, J.; Huszcza, E. Biotransformations of prenylated hop flavonoids for drug discovery and production. Curr. Drug Metab. 2013, 14, 1083–1097. [Google Scholar] [CrossRef]
- Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef]
- Cao, H.; Chen, X.; Jassbi, A.R.; Xiao, J. Microbial biotransformation of bioactive flavonoids. Biotechnol. Adv. 2015, 33, 214–223. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, B.; Wang, N.; Gu, J. Tumor immunomodulatory effects of polyphenols. Front. Immunol. 2022, 13, 1041138. [Google Scholar] [CrossRef]
- Gardana, C.; Guarnieri, S.; Riso, P.; Simonetti, P.; Porrini, M. Flavanone plasma pharmacokinetics from blood orange juice in humansubjects. Br. J. Nutr. 2007, 98, 165–172. [Google Scholar] [CrossRef]
- Bawazeer, M.A.; Theoharides, T.C. IL-33 stimulates human mast cell release of CCL5 and CCL2 via MAPK and NF-κB, inhibited by methoxyluteolin. Eur. J. Pharmacol. 2019, 15, 172760. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2014, 19, 78–101. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Dugas, A.J.; Castaneda-Acosta, J.; Bonin, G.C.; Price, K.L.; Fischer, N.H.; Winston, G.W. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: Structure-activity relationships. J. Nat. Prod. 2000, 63, 327–331. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chenet, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef]
- Sánchez, Y.; Amrán, D.; Fernández, C.; de Blas, E.; Aller, P. Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK). Int. J. Cancer 2008, 123, 1205–1214. [Google Scholar] [CrossRef]
- Qin, W.; Zhu, W.; Shi, H.; Hewett, J.E.; Ruhlen, R.L.; MacDonald, R.S.; Rottinghaus, G.E.; Chen, Y.C.; Sauter, E.R. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr. Cancer 2009, 61, 238–244. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Gencer, S.; Evans, B.R.; Van Der Vorst, E.P.C.; Döring, Y.; Weber, C. Inflammatory Chemokines in Atherosclerosis. Cells 2021, 10, 226. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef]
- Bianconi, V.; Sahebkar, A.; Atkin, S.L.; Pirro, M. The regulation and importance of monocyte chemoattractant protein-1. Curr. Opin. Hematol. 2018, 25, 44–51. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and septic shock. Nat. Rev. Dis. Prim. 2016, 2, 16045. [Google Scholar] [CrossRef]
- Machura, E.; Szczepanska, M.; Mazur, B.; Chrobak, E.; Ziora, K.; Ziora, D.; Kasperska-Zajac, A. Selected CC and CXC chemokines in children with atopic asthma. Adv. Dermatol. Allergol. 2016, 33, 96–101. [Google Scholar] [CrossRef]
- Grimm, M.C.; Doe, W.F. Chemokines in Inflammatory Bowel Disease Mucosa: Expression of RANTES, Macrophage Inflammatory Protein (MIP)-1α, MIP-1β, and γ-Interferon-Inducible Protein-10 by Macrophages, Lymphocytes, Endothelial Cells, and Granulomas. Inflamm. Bowel Dis. 1996, 2, 88–96. [Google Scholar] [CrossRef]
- Cai, J.; Wen, H.; Zhou, H.; Zhang, D.; Lan, D.; Liu, S.; Li, C.; Dai, X.; Song, T.; Wang, X.; et al. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed. Pharmacother. 2023, 164, 114990. [Google Scholar] [CrossRef]
- Hasan, S.; Khatri, N.; Rahman, Z.N.; Menezes, A.A.; Martini, J.; Shehjar, F.; Mujeeb, N.; Shah, Z.A. Neuroprotective Potential of Flavonoids in Brain Disorders. Brain Sci. 2023, 13, 1258. [Google Scholar] [CrossRef]
- Dongari-Bagtzoglou, A.I.; Warren, W.D.; Berton, M.T.; Ebersole, J.L. CD40 expression by gingival fibroblasts: Correlation of phenotype with function. Int. Immunol. 1997, 9, 1233–1241. [Google Scholar] [CrossRef]
- Rauf, A.; Shariati, M.A.; Imran, M.; Bashir, K.; Khan, S.A.; Mitra, S.; Bin Emran, T.; Badalova, K.; Uddin, S.; Mubarak, M.S.; et al. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environ. Sci. Pollut. Res. Int. 2022, 29, 31025–31041. [Google Scholar] [CrossRef]
- Mitra, S.; Lami, M.S.; Uddin, T.M.; Das, R.; Islam, F.; Anjum, J.; Hossain, J.; Bin Emran, T. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed. Pharmacother. 2022, 150, 112932. [Google Scholar] [CrossRef]
- Kowalski, J.; Samojedny, A.; Paul, M.; Pietsz, G.; Wilczok, T. Effect of kaempferol on the production and gene expression of monocyte chemoattractant protein-1 in J774.2 macrophages. Pharmacol. Rep. 2005, 57, 107–112. [Google Scholar]
- Hada, Y.; Uchida, H.A.; Wada, J. Fisetin Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Macrophage. BioMed Res. Int. 2021, 2021, 5570885. [Google Scholar] [CrossRef]
- Liu, Y.; Su, W.W.; Wang, S.; Li, P.B. Naringin inhibits chemokine production in an LPS-induced RAW 264.7 macrophage cell line. Mol. Med. Rep. 2012, 6, 1343–1350. [Google Scholar] [CrossRef]
- Hsueh, T.-P.; Sheen, J.-M.; Pang, J.-H.S.; Bi, K.-W.; Huang, C.-C.; Wu, H.-T.; Huang, S.-T. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway. Molecules 2016, 21, 195. [Google Scholar] [CrossRef]
- Ha, S.K.; Lee, P.; Park, J.A.; Oh, H.R.; Lee, S.Y.; Park, J.-H.; Lee, E.H.; Ryu, J.H.; Lee, K.R.; Kim, S.Y. Apigenin inhibits the production of NO and PGE 2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem. Int. 2008, 52, 878–886. [Google Scholar] [CrossRef]
- Kao, T.-K.; Ou, Y.-C.; Lin, S.-Y.; Pan, H.-C.; Song, P.-J.; Raung, S.-L.; Lai, C.-Y.; Liao, S.-L.; Lu, H.-C.; Chen, C.-J. Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. J. Nutr. Biochem. 2011, 22, 612–624. [Google Scholar] [CrossRef]
- Brüser, L.; Teichmann, E.; Hinz, B. Effect of Flavonoids on MCP-1 Expression in Human Coronary Artery Endothelial Cells and Impact on MCP-1-Dependent Migration of Human Monocytes. Int. J. Mol. Sci. 2023, 24, 16047. [Google Scholar] [CrossRef]
- Jeon, J.I.; Ko, S.H.; Kim, Y.; Choi, S.M.; Kang, K.K.; Kim, H.; Yoon, H.J.; Kim, J.M. The Flavone Eupatilin Inhibits Eotaxin Expression in an NF-κB-Dependent and STAT6-Independent Manner. Scand. J. Immunol. 2015, 81, 166–176. [Google Scholar] [CrossRef]
- Jayaprakasam, B.; Doddaga, S.; Wang, R.; Holmes, D.; Goldfarb, J.; Li, X.-M. Licorice Flavonoids Inhibit Eotaxin-1 Secretion by Human Fetal Lung Fibroblast in vitro. J. Agric. Food Chem. 2009, 57, 820–825. [Google Scholar] [CrossRef]
- An, H.-J.; Lee, J.-Y.; Park, W. Baicalin Modulates Inflammatory Response of Macrophages Activated by LPS via Calcium-CHOP Pathway. Cells 2022, 11, 3076. [Google Scholar] [CrossRef]
- Mendez-Callejas, G.; Torrenegra, R.; Muñoz, D.; Celis, C.; Roso, M.; Garzon, J.; Beltran, F.; Cardenas, A. A New Flavanone from Chromolaena tacotana (Klatt) R. M. King and H. Rob, Promotes Apoptosis in Human Breast Cancer Cells by Downregulating Antiapoptotic Proteins. Molecules 2023, 28, 58. [Google Scholar] [CrossRef]
- Yue, Y.; Qian, W.; Li, J.; Wu, S.; Zhang, M.; Wu, Z.; Ma, Q.; Wang, Z. 2′-Hydroxyflavanone inhibits the progression of pancreatic cancer cells and sensitizes the chemosensitivity of EGFR inhibitors via repressing STAT3 signaling. Cancer Lett. 2020, 471, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk-Łebek, A.; Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. Fungal biotransformation of 2′-methylflavanone and 2′-methylflavone as a method to obtain glycosylated derivatives. Int. J. Mol. Sci. 2021, 22, 9617. [Google Scholar] [CrossRef]
- Krawczyk-Łebek, A.; Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. Entomopathogenic Filamentous Fungi as Biocatalysts in Glycosylation of Methylflavonoids. Catalysts 2020, 10, 1148. [Google Scholar] [CrossRef]
- Krawczyk-Łebek, A.; Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. New glycosylated dihydrochalcones obtained bybiotransformation of 2′-hydroxy-2-methylchalcone in cultures of entomopathogenic filamentous fungi. Int. J. Mol. Sci. 2021, 22, 9619. [Google Scholar] [CrossRef] [PubMed]
- Włoch, A.; Strugała-Danak, P.; Pruchnik, H.; Krawczyk-Łebek, A.; Szczecka, K.; Janeczko, T.; Kostrzewa-Susłow, E. Interaction of 4′-methylflavonoids with biological membranes, liposomes, and human albumin. Sci. Rep. 2021, 11, 16003. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Kłósek, M.; Pietsz, G.; Czuba, Z.P.; Kolayli, S.; Can, Z.; Balwierz, R.; Olczyk, P. The Phenolic Profile and Anti-Inflammatory Effect of Ethanolic Extract of Polish Propolis on Activated Human Gingival Fibroblasts-1 Cell Line. Molecules 2023, 28, 7477. [Google Scholar] [CrossRef]
- Kłósek, M.; Sędek, L.; Lewandowska, H.; Czuba, Z.P. The effect of ethanolic extract of Brazilian green propolis and artepillin C on aFGF-1, Eselectin, and CD40L secreted by human gingival fibroblasts. Cent. Eur. J. Immunol. 2021, 46, 438. [Google Scholar] [CrossRef]
Sample | MCP-1 | MIP-1β | RANTES | eotaxin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AVG [%] | SD | p | AVG [%] | SD | p | AVG [%] | SD | p | AVG [%] | SD | p | |
Control | 100 | 35.69 | 100 | 2.33 | 100 | 11.69 | 100 | 13.8 | ||||
5B 1 μM | 4.890506 | 0.96 | 0.000009 | 90.46556 | 0.8 | 0.000497 | 87.65191 | 4.21 | 0.329811 | 65.70678 | 4.58 | 0.000505 |
5B 20 μM | 3.775331 | 0.58 | 0.000008 | 79.32471 | 1.82 | 0.000000 | 55.04602 | 2.42 | 0.001264 | 68.08773 | 4.69 | 0.001030 |
6B 1 μM | 14.8888 | 9.2 | 0.000043 | 94.25956 | 2.91 | 0.024173 | 67.5061 | 2.92 | 0.014710 | 76.85006 | 5.7 | 0.012593 |
6B 20 μM | 4.730866 | 0.86 | 0.000009 | 94.51437 | 2.7 | 0.30536 | 84.14098 | 7.56 | 0.213420 | 60.37109 | 4.26 | 0.000100 |
7B 1 μM | 49.2387 | 10.6 | 0.007050 | 106.2924 | 3.05 | 0.014348 | 131.1568 | 19.21 | 0.018808 | 93.02393 | 13.85 | 0.426578 |
7B 20 μM | 96.91125 | 18.03 | 0.860102 | 104.1507 | 2.93 | 0.095306 | 117.4937 | 9.02 | 0.171286 | 110.4894 | 5.85 | 0.235467 |
8B 1 μM | 68.51843 | 14.47 | 0.081197 | 103.4281 | 1.04 | 0.164727 | 110.2431 | 0.53 | 0.417540 | 94.2095 | 13.48 | 0.508481 |
8B 20 μM | 46.43181 | 1.31 | 0.004759 | 106.858 | 3.7 | 0.008244 | 137.0226 | 21.19 | 0.006214 | 114.4726 | 12.62 | 0.105781 |
Flavanone 1 μM | 122.7477 | 8.91 | 0.201345 | 97.53397 | 5.67 | 0.313226 | 103.3669 | 35.97 | 0.788692 | 100.7151 | 4.66 | 0.934649 |
Flavanone 20 μM | 100.3554 | 8.19 | 0.983816 | 102.8635 | 2.4 | 0.243199 | 120.4037 | 13.61 | 0.112843 | 105.2264 | 3.19 | 0.550337 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kłósek, M.; Kurek-Górecka, A.; Balwierz, R.; Krawczyk-Łebek, A.; Kostrzewa-Susłow, E.; Bronikowska, J.; Jaworska, D.; Czuba, Z.P. The Effect of Methyl-Derivatives of Flavanone on MCP-1, MIP-1β, RANTES, and Eotaxin Release by Activated RAW264.7 Macrophages. Molecules 2024, 29, 2239. https://doi.org/10.3390/molecules29102239
Kłósek M, Kurek-Górecka A, Balwierz R, Krawczyk-Łebek A, Kostrzewa-Susłow E, Bronikowska J, Jaworska D, Czuba ZP. The Effect of Methyl-Derivatives of Flavanone on MCP-1, MIP-1β, RANTES, and Eotaxin Release by Activated RAW264.7 Macrophages. Molecules. 2024; 29(10):2239. https://doi.org/10.3390/molecules29102239
Chicago/Turabian StyleKłósek, Małgorzata, Anna Kurek-Górecka, Radosław Balwierz, Agnieszka Krawczyk-Łebek, Edyta Kostrzewa-Susłow, Joanna Bronikowska, Dagmara Jaworska, and Zenon P. Czuba. 2024. "The Effect of Methyl-Derivatives of Flavanone on MCP-1, MIP-1β, RANTES, and Eotaxin Release by Activated RAW264.7 Macrophages" Molecules 29, no. 10: 2239. https://doi.org/10.3390/molecules29102239
APA StyleKłósek, M., Kurek-Górecka, A., Balwierz, R., Krawczyk-Łebek, A., Kostrzewa-Susłow, E., Bronikowska, J., Jaworska, D., & Czuba, Z. P. (2024). The Effect of Methyl-Derivatives of Flavanone on MCP-1, MIP-1β, RANTES, and Eotaxin Release by Activated RAW264.7 Macrophages. Molecules, 29(10), 2239. https://doi.org/10.3390/molecules29102239