Quantum Magnetism of the Iron Core in Ferritin Proteins—A Re-Evaluation of the Giant-Spin Model
Abstract
:1. Introduction
2. Zero-Field Interaction in Mononuclear Complexes
3. Zero-Field Interaction in Polynuclear Complexes
4. Variants of the Giant-Spin Model for Truly Giant Spins
5. Structure and Crystallinity of the Core
6. Biochemical Problems Related to Core Formation
7. The EPR Spectral-Feature Space of Giant Spins
8. Conclusions
Funding
Conflicts of Interest
References
- Plays, M.; Müller, S.; Rodriguez, R. Chemistry and biology of ferritin. Metallomics 2021, 13, mfab021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yu, X.; Xie, J.; Xu, H. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Mol. Neurobiol. 2021, 58, 2812–2823. [Google Scholar] [CrossRef] [PubMed]
- Kotla, N.K.; Dutta, P.; Parimi, S.; Das, N.K. The role of ferritin in health and disease: Recent advances and understandings. Metabolites 2022, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Yanatori, I.; Nishina, S.; Kishi, F.; Hino, K. Newly uncovered biochemical and functional aspects of ferritin. FASEB J. 2023, 37, e23095. [Google Scholar] [CrossRef] [PubMed]
- Arosio, P.; Elia, L.; Poli, M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017, 69, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.M.; Moore, G.R.; Le Brun, N.E. Diversity of Fe2+ entry and oxidation in ferritins. Curr. Opin. Chem. Biol. 2017, 37, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Hagen, W.R.; Hagedoorn, P.-L.; Honarmand Ebrahimi, K. The workings of ferritin: A crossroad of opinions. Metallomics 2017, 9, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Honarmand Ebrahimi, K.; Hagedoorn, P.L.; Hagen, W.R. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin. Chem. Rev. 2015, 115, 295–326. [Google Scholar] [CrossRef] [PubMed]
- Laufberger, V. Sur la cristallisation de la ferritine. Bull. Soc. Chim. Biol. 1937, 19, 1575–1582. [Google Scholar]
- Michel, F.M.; Ehm, L.; Antao, S.M.; Lee, P.L.; Chupas, P.J.; Liu, G.; Strongin, D.R.; Schoonen, M.A.A.; Philips, B.L.; Parise, J.B. The structure of ferrihydrite, a nanocrystalline material. Science 2007, 316, 1726–1729. [Google Scholar] [CrossRef]
- Tatur, J.; Hagen, W.R.; Matias, P.M. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. J. Biol. Inorg. Chem. 2007, 12, 615–630. [Google Scholar] [CrossRef]
- Michaelis, L.; Coryell, C.; Granick, S. Ferritin. III. The magnetic propserties of ferritin and some other colloidal ferric compounds. J. Biol. Chem. 1943, 148, 463–480. [Google Scholar] [CrossRef]
- Bossoni, L.; Labra Muñoz, J.; van der Zant, J.; Čaluković, V.; Lefering, A.J.E.; Egli, R.; Huber, M. In-dept magnetometry and EPR analysis of the spin structure of human-liver ferritin: From DC to 9 GHz. Phys. Chem. Chem. Phys. 2023, 25, 27694–27717. [Google Scholar] [CrossRef]
- Boas, J.F.; Troup, G.J. Electron spin resonance and Mössbauer effect studies of ferritin. Biochim. Biophys. Acta 1971, 229, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.P.; Peters, T.J.; Gibson, J.F. Electron spin resonance studies of splenic ferritin and haemosiderin. Biochim. Biophys. Acta 1985, 828, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Wajnberg, E.; El-jaick, L.; Linhares, M.; Esquivel, D.M.S. Ferromagnetic resonance of horse spleen ferritin: Core blocking and surface ordering temperatures. J. Magn. Reson. 2001, 153, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Nandwana, V.; Ryoo, S.-R.; Kanthala, S.; Kumar, A.; Sharma, A.; Castro, F.C.; Li, Y.; Hoffman, B.; Lim, S.; Dravid, V.P. Engineering ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSV Adv. 2017, 7, 34892. [Google Scholar] [CrossRef]
- Fittipaldi, M.; Innocenti, C.; Ceci, P.; Sangregorio, C.; Castelli, L.; Sorace, L.; Gatteschi, D. Looking for quantum effects in magnetic nanoparticles using the molecular nanomagnet approach. Phys. Rev. 2011, 83, 104409. [Google Scholar] [CrossRef]
- Fittipaldi, M.; Mercatelli, R.; Sottini, S.; Ceci, P.; Falvo, E.; Gatteschi, D. Sensing the quantum behaviour of magnetic nanoparticles by electron magnetic resonance. Phys. Chem. Chem. Phys. 2016, 18, 3591–3597. [Google Scholar] [CrossRef]
- van Hemmen, J.L.; Sütő, A. Tunneling of quantum spins. Europhys. Lett. 1986, 1, 481–490. [Google Scholar] [CrossRef]
- Prokof’ev, N.V.; Stamp, P.C.E. Giant spins and topological decoherence: A Hamiltonian approach. J. Phys. Condens. Matter 1993, 5, L663–L670. [Google Scholar] [CrossRef]
- Lis, T. Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Cryst. 1980, 36, 2042–2046. [Google Scholar] [CrossRef]
- Caneschi, A.; Gatteschi, D.; Sessoli, R.; Barra, A.L.; Brunel, L.C.; Guillot, M. Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(CH3COO)16(H2O)4]⋅2CH3COOH⋅4H2O. J. Am. Chem. Soc. 1991, 113, 5873–5874. [Google Scholar] [CrossRef]
- Wilson, A.; Lawrence, J.; Yang, E.-C.; Nakano, M.; Hendrickson, D.N.; Hill, S. Magnetization tunnelling in high-symmetry single-molecule magnets: Limitations of the giant spin approximation. Phys. Rev. 2006, 74, 140403. [Google Scholar] [CrossRef]
- Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Clarendon Press: Oxford, UK, 1970. [Google Scholar]
- Hagen, W.R. EPR spectroscopy of iron-sulfur proteins. Adv. Inorg. Chem. 1992, 38, 165–222. [Google Scholar]
- Hagen, W.R. Wide zero field interaction distributions in the high-spin EPR of metalloproteins. Mol. Phys. 2007, 105, 2031–2039. [Google Scholar] [CrossRef]
- Taylor, C.P.S. The EPR of low spin heme complexes. Relation of the t2g hole model to the directional properties of the g tensor, and a new method for calculating the ligand field parameters. Biochim. Biophys. Acta 1977, 491, 137–149. [Google Scholar] [CrossRef]
- Hagen, W.R.; Hearshen, D.O.; Harding, L.J.; Dunham, W.R. Quantitative numerical analysis of g strain in the EPR of distributed systems and its importance for multicenter metalloproteins. J. Magn. Reson. 1985, 61, 233–244. [Google Scholar] [CrossRef]
- Pierik, A.J.; Wolbert, R.B.G.; Portier, G.L.; Verhagen, M.F.J.M.; Hagen, W.R. Nigerythrin and rurberythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur. J. Biochem. 1993, 212, 237–245. [Google Scholar] [CrossRef]
- Orbach, R. Spin-lattice relaxation in rare-earth salts. Proc. Roy. Soc. 1961, 264, 458–484. [Google Scholar]
- Pilbrow, J.R.; Lowrey, M.R. Low-symmetry effects in electron paramagnetic resonance. Rep. Prog. Phys. 1980, 43, 433–495. [Google Scholar] [CrossRef]
- Hagen, W.R. EPR spectroscopy as a probe of metal centers in biological systems. Dalton Trans. 2006, 2006, 4415–4434. [Google Scholar] [CrossRef]
- Pake, G.E.; Estle, T.L. The Physical Principles of Electron Paramagnetic Resonance, 2nd ed.; W.A. Benjamin Inc.: Reading, MA, USA, 1973. [Google Scholar]
- Eisenberger, P.; Pershan, P.S. Electron spin resonance of met-myoglobin: Field dependence of g⊥eff. J. Chem. Phys. 1966, 45, 2832–2835. [Google Scholar] [CrossRef]
- Malmström, B.G.; Vänngård, T.; Larsson, M. An electron-spin-resonance study of the interaction of manganous ions with enolase and its substrate. Biochim. Biophys. Acta 1958, 30, 1–5. [Google Scholar] [CrossRef]
- Oosterhuis, W.T.; Spartalian, K. Mössbauer and ESR studies in low symmetry iron complexes. J. Phys. 1974, 35, C6-347–C6-350. [Google Scholar] [CrossRef]
- Hagen, W.R.; Dunham, W.R.; Sands, R.H.; Shaw, R.W.; Beinert, H. Dual-mode EPR spectroscopy of O2-pulsed cytochrome c oxidase. Biochim. Biophys. Acta 1984, 765, 399–402. [Google Scholar] [CrossRef]
- Wilson, A.; Yang, E.-C.; Hendrickson, D.N.; Hill, S. On the validity of the giant spin approximation and its application to single-molecule magnets. Polyhedron 2007, 26, 2065–2068. [Google Scholar] [CrossRef]
- Sharma, S.; Sivalingam, K.; Neese, F.; Chan, G.K.-L. Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics. Nature Chem. 2014, 6, 927–933. [Google Scholar] [CrossRef]
- Surerus, K.K.; Hendrich, M.P.; Christie, P.D.; Rottgardt, D.; Orme-Johnson, W.H.; Münck, E. Mössbauer and integer-spin EPR of the oxidized P-clusters of nitrogenase: POX is a non-kramers system with a nearly degenerate ground doublet. J. Am. Chem. Soc. 1992, 114, 8579–8590. [Google Scholar] [CrossRef]
- Pierik, A.J.; Wassink, H.; Haaker, H.; Hagen, W.R. Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. Eur. J. Biochem. 1993, 212, 51–61. [Google Scholar] [CrossRef]
- Gaillard, J.; Moulis, J.-M.; Auric, P.; Meyer, J. High-multiplicity spin states of 2[4Fe-4Se]+ clostridial ferredoxins. Biochemistry 1986, 25, 464–468. [Google Scholar] [CrossRef]
- Hagen, W.R.; Wassink, H.; Eady, R.R.; Smith, B.E.; Haaker, H. Quantitative EPR of an S = 7/2 system in thionine-oxidized MoFe proteins of nitrogenase. Eur. J. Biochem. 1987, 169, 457–465. [Google Scholar] [CrossRef]
- Angove, H.C.; Yoo, S.J.; Burgess, B.K.; Münck, E. Mössbauer and EPR evidence for an all-ferrous Fe4S4 cluster with S = 4 in the Fe protein of nitrogenase. J. Am. Chem. Soc. 1997, 119, 8730–8731. [Google Scholar] [CrossRef]
- Pierik, A.J.; Hagen, W.R. S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase. Eur. J. Biochem. 1991, 195, 505–516. [Google Scholar] [CrossRef]
- Jetten, M.S.M.; Pierik, A.J.; Hagen, W.R. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 1991, 202, 1291–1297. [Google Scholar] [CrossRef]
- Pierik, A.J.; Hagen, W.R.; Dunham, W.R.; Sands, R.H. Multi-frequency EPR and high-resolution Mössbauer spectroscopy of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 1992, 206, 705–719. [Google Scholar] [CrossRef]
- Netz, D.J.A.; Pierik, A.J.; Stümpfig, M.; Bill, E.; Sharma, A.K.; Pallesen, L.J.; Walden, W.E.; Lill, R. A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J. Biol. Chem. 2012, 287, 12365–12378. [Google Scholar] [CrossRef]
- Guigliarelli, B.; Bertrand, P. Application of EPR spectroscopy to the structural and functional study of iron-sulfur proteins. Adv. Inorg. Chem. 1999, 47, 421–497. [Google Scholar]
- Yang, E.-C.; Wernsdorfer, W.; Hill, S.; Edwards, R.S.; Nakano, M.; Maccagnano, S.; Zakharov, L.N.; Rheingold, A.L.; Christou, G.; Hendrickson, D.N. Exchange bias in Ni4 single-molecule magnets. Polyhedron 2003, 22, 1727–1733. [Google Scholar] [CrossRef]
- Yang, E.-C.; Wernsdorfer, W.; Zakharov, L.N.; Karaki, Y.; Yamaguchi, A.; Isidro, R.M.; Lu, G.-D.; Wilson, S.A.; Rheingold, A.L.; Ishimoto, H.; et al. Fast magnetization tunnelling in tetranickel(II) single-molecule magnets. Inorg. Chem. 2006, 45, 529–546. [Google Scholar] [CrossRef]
- Cadiou, C.; Murrie, M.; Paulson, C.; Villar, V.; Wernsdorfer, W.; Winpenny, R.E.P. Studies of a nickel-based single molecule magnet: Resonant quantum tunnelling in an S = 12 molecule. Chem. Commun. 2001, 2001, 2666–2667. [Google Scholar] [CrossRef]
- Sessoli, R.; Tsai, H.-L.; Schake, A.R.; Wang, S.; Vincent, J.B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D.N. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816. [Google Scholar] [CrossRef]
- Barra, A.L.; Gatteschi, D.; Sessoli, R. High-frequency EPR spectra of a molecular nanomagnet: Understanding quantum tunnelling of the magnetization. Phys. Rev. 1997, 56, 8192–8198. [Google Scholar] [CrossRef]
- Barra, A.L.; Debrunner, P.; Gatteschi, D.; Schulz, C.E.; Sessoli, R. Superparamagnetic-like behaviour in an octanuclear iron cluster. Europhys. Lett. 1996, 35, 133–138. [Google Scholar] [CrossRef]
- Caciuffo, R.; Amorettin, G.; Murani, A.; Sessoli, R.; Caneschi, A.; Gatteschi, D. Neutron spectroscopy for the magnetic anisotropy of molecular clusters. Phys. Rev. 1998, 81, 4744–4747. [Google Scholar] [CrossRef]
- Aubin, S.M.J.; Dilley, N.R.; Pardi, L.; Krzystek, J.; Wempl, M.W.; Brunel, L.-C.; Maple, M.B.; Christou, G.; Hendrickson, D.N. Resonant magnetization tunnelling in the trigonal pyramidal MnIVMnIII3 complex [Mn4O3Cl(O2CCH3)3(dbm)3]. J. Am. Chem. Soc. 1998, 120, 4991–5004. [Google Scholar] [CrossRef]
- Aliaga, N.; Folting, K.; Hendrickson, D.N.; Christou, G. Preparation and magnetic properties of low symmetry [Mn4O3] complexes with S = 9/2. Polyhedron 2001, 20, 1273–1277. [Google Scholar] [CrossRef]
- Castro, S.L.; Sun, Z.; Grant, C.M.; Bollinger, J.C.; Hendrickson, D.N.; Christou, G. Single-molecule magnets: Tetranuclear vanadium(III) complexes with a butterfly structure and an S = 3 ground state. J. Am. Chem. Soc. 1998, 120, 2365–2375. [Google Scholar] [CrossRef]
- Soler, M.; Rumberger, E.; Folting, K.; Hendrickson, D.N.; Christou, G. Synthesis, characterization and magnetic properties of [Mn30O24(OH)8(O2CCH2C(CH3)3)32(H2O)2(CH3NO2)4]: The largest manganese carboxylate cluster. Polyhedron 2001, 20, 1365–1369. [Google Scholar] [CrossRef]
- Brechin, E.K.; Boskovic, C.; Wernsdorfer, W.; Yoo, J.; Yamaguchi, A.; Sañudo, E.C.; Concolino, T.R.; Rheingold, A.L.; Ishimoto, H.; Hendrickson, D.N.; et al. Quantum tunnelling of magnetization in a new [Mn18]2+ single-molecule magnet with S = 13. J. Am. Chem. Soc. 2002, 124, 9710–9711. [Google Scholar] [CrossRef]
- Murugesu, M.; Takahashi, S.; Wilson, A.; Abboud, K.A.; Wernsdorfer, W.; Hill, S.; Christou, G. Large Mn25 single-molecule magnet with spin S = 51/2: Magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin. Inorg. Chem. 2008, 47, 9459–9470. [Google Scholar] [CrossRef]
- Sánchez, R.H.; Betley, T.A. Meta-atom behaviour in clusters revealing large spin ground states. J. Am. Chem. Soc. 2015, 137, 13949–13956. [Google Scholar] [CrossRef]
- Nehrkorn, J.; Greer, S.M.; Malbrecht, B.J.; Anderton, K.J.; Aliabadi, A.; Krzystek, J.; Schnegg, A.; Holldack, K.; Herrmann, C.; Betley, T.A.; et al. Spectroscopic investigation of a metal-metal-bonded Fe6 single-molecule magnet with an isolated S = 19/2 giant-spin ground state. Inorg. Chem. 2021, 60, 4610–4622. [Google Scholar] [CrossRef]
- Marbey, J.; Gan, P.-R.; Yang, E.-C.; Hill, S. Magic-angle effects in a trigonal MnIII3 cluster: Deconstruction of a single-molecule magnet. Phys. Rev. 2018, 98, 144433. [Google Scholar] [CrossRef]
- Aubin, S.M.J.; Wemple, M.W.; Adams, D.M.; Tsai, H.-L.; Christou, G.; Hendrickson, D.N. Distorted MnIVMnIII3 cubane complexes as single-molecule magnets. J. Am. Chem. Soc. 1996, 118, 7746–7754. [Google Scholar] [CrossRef]
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef]
- Delfs, C.; Gatteschi, D.; Pardi, L.; Sessoli, R.; Wieghardt, K.; Hanke, D. Magnetic properties of an octanuclear iron(III) cation. Inorg. Chem. 1993, 32, 3099–3103. [Google Scholar] [CrossRef]
- Florez, J.M.; Vargas, P.; Núñez, A.S. Instantons and magnetization tunnelling: Beyond the giant-spin approximation. Physica B 2009, 404, 2790–2794. [Google Scholar] [CrossRef]
- Maurice, R.; de Graaf, C.; Guihéry, N. Magnetic anisotropy in binuclear complexes in the weak-exchange limit: From the multispin to the giant-spin Hamiltonian. Phys. Rev. 2010, 81, 214427. [Google Scholar] [CrossRef]
- Tabrizi, S.G.; Arbuznkov, A.V.; Kaupp, M. Understanding thermodynamic and spectroscopic properties of tetragonal Mn12 single-molecule magnets from combined density functional theory/spin-Hamiltonian calculations. J. Phys. Chem. 2016, 120, 6864–6879. [Google Scholar] [CrossRef]
- Nunes, W.C.; Folly, W.S.D.; Sinnecker, J.P.; Novak, M.A. Temperature dependence of the coercive field in single-domain particle systems. Phys. Rev. 2004, 70, 014419. [Google Scholar] [CrossRef]
- Farrant, J.L. An electron microscopic study of ferritin. Biochim. Biophys. Acta 1954, 13, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Massover, W.H. Ultrastructure of ferritin and apoferritin: A review. Micron 1993, 24, 389–437. [Google Scholar] [CrossRef]
- Cowley, J.M.; Janney, D.E.; Gerkin, R.C.; Buseck, P.R. The structure of ferritin cores determined by electron nanodiffraction. J. Struct. Biol. 2000, 131, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Brem, F.; Stamm, G.; Hirt, A.M. Modeling the magnetic behavious of horse spleen ferritin with a two-phase core structure. J. Appl. Phys. 2006, 99, 123906. [Google Scholar] [CrossRef]
- Bou-Abdallah, F.; Carney, E.; Chasteen, N.D.; Arosio, P.; Viescas, A.J.; Papaefthymiou, G.C. A comparative Mössbauer study of the mineral cores of human H-chain ferritin employing dioxygen and hydrogen peroxide as iron oxidants. Biophys. Chem. 2007, 130, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, N.; Femández, B.; Sánchez, P.; Cuesta, R.; Ceolin, M.; Clemente-León, M.; Trasobares, S.; López-Haro, M.; Calvino, J.J.; Stéphan, O.; et al. Comparative structural and chemical studies of ferrtin cores with gradual removal of their iron contents. J. Am. Chem. Soc. 2008, 130, 8062–8068. [Google Scholar] [CrossRef]
- Pan, Y.-H.; Sader, K.; Powell, J.J.; Bleloch, A.; Gass, M.; Trinick, J.; Warley, A.; Li, A.; Brydson, R.; Brown, A. 3D morphology of the human hepatic ferritin mineral core: New evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J. Struct. Biol. 2009, 166, 22–31. [Google Scholar] [CrossRef]
- Jung, J.H.; Eom, T.W.; Lee, Y.P.; Rhee, J.Y.; Choi, E.H. Magnetic model for a horse-spleen ferritin with a three-phase core structure. J. Magn. Magn. Mater. 2011, 323, 3077–3080. [Google Scholar] [CrossRef]
- Garcia-Prieto, A.; Alonso, J.; Muñoz, D.; Marcano, L.; Abad Díaz de Cerio, A.; Fernández de Luis, R.; Orue, I.; Mathon, O.; Muela, A.; Fdez-Gubieda, M.L. On the mineral core of ferritin-like proteins: Structural and magnetic characterization. Nanoscale 2016, 8, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Koralewski, M.; Balejčíková, L.; Mitróová, Z.; Pochylski, M.; Baranowski, M.; Kopčanský, P. Morphology and magnetic structure of the ferritin core during iron loading and release by magnetooptical and NMR methods. Appl. Mater. Interfaces 2018, 10, 7777–7787. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, D.H.; Hwang, J.; Lee, K.; Yoon, S.; Suh, B.J.; Kim, K.H.; Kim, J.-Y.; Jang, Z.H.; Kim, B.; et al. Size-dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins. Appl. Phys. Lett. 2013, 102, 133703. [Google Scholar] [CrossRef]
- Reutovich, A.A.; Srivastava, A.K.; Smith, G.L.; Foucher, A.; Yates, D.M.; Stach, E.A.; Papaefthymiou, G.C.; Arosio, P.; Bou-Abdalaah, F. Effect of phosphate and ferritin subunit composition on the kinetics, structure, and reactivity of the iron core in human homo- and heteropolymer ferritins. Biochemistry 2022, 61, 2106–2117. [Google Scholar] [CrossRef] [PubMed]
- Hagen, W.R. Maximum iron loading of ferritin: Half a century of sustained citation distortion. Metallomics 2022, 14, mfac063. [Google Scholar] [CrossRef] [PubMed]
- Tatur, J.; Hagedoorn, P.-L.; Overeijnder, M.L.; Hagen, W.R. A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 2006, 10, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Sevcenco, A.-M.; Paravidino, M.; Vrouwenvelder, J.S.; Wolterbeek, H.T.; van Loosdrecht, M.C.M.; Hagen, W.R. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes. Water Res. 2015, 76, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Fischbach, F.A.; Anderegg, J.W. An X-ray scattering study of ferritin and apoferritin. J. Mol. Biol. 1965, 14, 458–473. [Google Scholar] [CrossRef]
- Honarmand Ebrahimi, K.; Hagedoorn, P.-L.; Jongejan, J.A.; Hagen, W.R. Catalysis of iron core formation in Pyrococcus furiosus ferritin. J. Biol. Inorg. Chem. 2009, 14, 1265–1274. [Google Scholar] [CrossRef]
- Honarmand Ebrahimi, K.; Hagedoorn, P.-L.; Hagen, W.R. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP) does not catalytically oxidize iron. PLoS ONE 2012, 7, e40287. [Google Scholar]
- Santana-Casiano, J.M.; González-Dávila, M.; Millero, F.J. Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters. Environ. Sci. Technol. 2005, 39, 2073–2079. [Google Scholar] [CrossRef]
- Morgan, B.; Lahav, O. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 2007, 68, 2080–2084. [Google Scholar] [CrossRef]
- Braughler, J.M.; Chase, R.L.; Pregenzer, J.F. Oxidation of ferrous ion during peroxidation of lipid substrates. Biochim. Biophys. Acta 1987, 921, 457–464. [Google Scholar] [CrossRef]
- Millero, F.J.; Sotolongo, S. The oxidation of Fe(II) with H2O2 in seawater. Geochim. Cosmochim. Acta 1989, 53, 1867–1873. [Google Scholar] [CrossRef]
- González-Dávila, M.; Santana-Casiano, J.M.; Millero, F.J. Competition between O2 and H2O2 in the oxidation of Fe(II) in natural waters. J. Sol. Chem. 2006, 35, 95–111. [Google Scholar] [CrossRef]
- Aime, S.; Bergamasco, B.; Biglino, D.; Digilio, G.; Fasano, M.; Giamello, E.; Lopiano, L. EPR investigations of the iron domain in neuromelanin. Biochim. Biophys. Acta 1997, 1361, 49–58. [Google Scholar] [CrossRef]
- Li, H.; Klem, M.T.; Sebby, K.B.; Singel, D.J.; Young, M.; Douglas, T.; Idzerda, Y.U. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance. J. Magn. Magn. Mater. 2009, 321, 175–180. [Google Scholar] [CrossRef]
- Troup, G.J.; Hutton, D.R. Paramagnetic resonance of Fe3+ in kyanite. Brit. J. Appl. Phys. 1964, 15, 1493–1499. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagen, W.R. Quantum Magnetism of the Iron Core in Ferritin Proteins—A Re-Evaluation of the Giant-Spin Model. Molecules 2024, 29, 2254. https://doi.org/10.3390/molecules29102254
Hagen WR. Quantum Magnetism of the Iron Core in Ferritin Proteins—A Re-Evaluation of the Giant-Spin Model. Molecules. 2024; 29(10):2254. https://doi.org/10.3390/molecules29102254
Chicago/Turabian StyleHagen, Wilfred R. 2024. "Quantum Magnetism of the Iron Core in Ferritin Proteins—A Re-Evaluation of the Giant-Spin Model" Molecules 29, no. 10: 2254. https://doi.org/10.3390/molecules29102254
APA StyleHagen, W. R. (2024). Quantum Magnetism of the Iron Core in Ferritin Proteins—A Re-Evaluation of the Giant-Spin Model. Molecules, 29(10), 2254. https://doi.org/10.3390/molecules29102254