Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics
Abstract
:1. Introduction
2. Carvacrol and Thymol Synopsis
3. Carvacrol- and Thymol-Based Hybrid Compounds with Anticancer Activity
4. Carvacrol/Thymol Hybrid Compounds with Antibacterial Activity
5. Conclusions and Future Strategies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demirbolat, I.; Kulabas, N.; Gürboğa, M.; Özakpınar, Ö.B.; Çiftçi, G.; Yelekçi, K.; Jianyang, L.; Per-Johan, J.; Okzan, D.; Ayse, O.; et al. Synthesis and evaluation of antiproliferative and mPGES-1 inhibitory activities of novel carvacrol-triazole conjugates. Org. Commun. 2022, 15, 356–377. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Pietrusiak, P.; Feder-Kubis, J. Selected monocyclic monoterpenes and their derivatives as effective anticancer therapeutic agents. Int. J. Mol. Sci. 2021, 22, 4763. [Google Scholar] [CrossRef] [PubMed]
- Pilleron, S.; Soto-Perez-de-Celis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer. 2021, 148, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Saleh-E-In, M.M.; Kar, P.; Roy, A.; Sharma, N.R. Synthesis of Carvacrol Derivatives as Potential New Anticancer Agent against Lung Cancer. Molecules 2022, 27, 4597. [Google Scholar] [CrossRef]
- Shabani, H.; Karami, M.H.; Kolour, J.; Sayyahi, Z.; Parvin, M.A.; Soghala, S.; Baghini, S.S.; Mardasi, M.; Chopani, A.; Moulavi, P.; et al. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches. Biomed. Pharmacother. 2023, 165, 114972. [Google Scholar] [CrossRef] [PubMed]
- Thiruchenthooran, V.; Sánchez-López, E.; Gliszczyńska, A. Perspectives of the Application of Non-Steroidal Anti-Inflammatory Drugs in Cancer Therapy: Attempts to Overcome Their Unfavorable Side Effects. Cancers 2023, 15, 475. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Chen, H.-D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef]
- Laamari, Y.; Bimoussa, A.; Fawzi, M.; Oubella, A.; Rohand, T.; Van Meervelt, L.; Ait Itto, M.Y.; Morjani, H.; Auhmani, A. Synthesis, crystal structure and evaluation of anticancer activities of some novel heterocyclic compounds based on thymol. J. Mol. Struct. 2023, 1278, 134906. [Google Scholar] [CrossRef]
- da Silva, A.R.P.; do Socorro Costa, M.; Araújo, N.J.S.; de Freitas, T.S.; dos Santos, A.T.L.; Gonçalves, S.A.; da Silva, V.B.; Andrade-Pinheiro, J.C.; Tahim, C.M.; Lucetti, E.C.P.; et al. Antibacterial activity and antibiotic-modifying action of carvacrol against multidrug-resistant bacteria. Adv. Sample Prep. 2023, 7, 100072. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, L. The antibacterial activity of fluoroquinolone derivatives: An update (2018–2021). Eur. J. Med. Chem. 2021, 224, 113741. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, S.; Sharma, B.K.; Subedi, N.; Ranabhat, S.; Baral, M.P. Burden of Serious Bacterial Infections and Multidrug-Resistant Organisms in an Adult Population of Nepal: A Comparative Analysis of Minimally Invasive Tissue Sampling Informed Mortality Surveillance of Community and Hospital Deaths. Clin. Infect. Dis. 2021, 73, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Majeed, S.T.; Majeed, R.; Bashir, R.; Mir, S.A.; Jan, I.; Bader, G.N.; Andrabi, K.I. Recent Advances in the Pharmacological Properties and Molecular Mechanisms of Carvacrol. Rev. Bras. Farmacogn. 2023, 34, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [PubMed]
- Zieli, M.; Feder, K. Monoterpenes and Their Derivatives—Recent Development in Biological and Medical Applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Sharma, N.R. Emerging Anticancer Metabolite, Carvacrol, and its Action Mechanism. Proc. Natl. Acad. Sci. India Sect. B—Biol. Sci. 2024, 1–9. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A.; Sabzalian, M.R. Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chem. 2020, 307, 125521. [Google Scholar] [CrossRef] [PubMed]
- Laamari, Y.; Fawzi, M.; Hachim, M.E.; Bimoussa, A.; Oubella, A.; Ketatni, E.M.; Saadi, M.; Ammari, L.E.; Ait Itto, M.Y.; Morjani, H.; et al. Synthesis, characterization and cytotoxic activity of pyrazole derivatives based on thymol. J. Mol. Struct. 2024, 1297, 136864. [Google Scholar] [CrossRef]
- Fernández-Babiano, I.; Navarro-Pérez, M.L.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. Antibacterial and Antibiofilm Activity of Carvacrol against Oral Pathogenic Bacteria. Metabolites 2022, 12, 1255. [Google Scholar] [CrossRef]
- Szumilak, M.; Wiktorowska-owczarek, A. Hybrid Drugs—A Strategy for Overcoming Anticancer Drug Resistance? Molecules 2021, 26, 2601. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Jaremko, M.; Emwas, A.H.; Yadav, J.P. Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals 2022, 15, 1071. [Google Scholar] [CrossRef] [PubMed]
- da Silva Costa, J.R.; do Vale, T.L.; da Silva, G.F.; da Silva, N.C.S.; da Silva Lima, A.; Costa-Junior, L.M.; Luz, H.R. Encapsulation of carvacrol and thymol with yeast cell wall and its repellent activity against Amblyomma sculptum and Rhipicephalus sanguineus (Sensu Lato). Exp. Appl. Acarol. 2024, 92, 555–565. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.L.; Gabrielle, A.; Dantas, B.; Melo, C.D.O.; Felício, I.M.; Oliveira, E.E. Journal of Drug Delivery Science and Technology Nanotechnology as a tool to improve the biological activity of carvacrol: A review. J. Drug Deliv. Sci. Technol. 2022, 76, 103834. [Google Scholar] [CrossRef]
- Bhojraj, N.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Trends in Food Science & Technology Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Wang, P.; Wu, Y. Food Hydrocolloids A review on colloidal delivery vehicles using carvacrol as a model bioactive compound. Food Hydrocoll. 2021, 120, 106922. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Souza, E.J.D.; Radünz, M.; Gandra, E.A.; da Rosa Zavareze, E.; Dias, A.R.G. Suitability of starch/carvacrol nanofibers as biopreservatives for minimizing the fungal spoilage of bread. Carbohydr. Polym. 2021, 252, 117166. [Google Scholar] [CrossRef] [PubMed]
- Mozafari, M.R.; Alavi, M. Main distinction between tocomosome and nano-liposome as drug delivery system: A scientific and technical point of view. Micro Nano Bio Asp. 2023, 2, 26–29. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Kaur, K.; Sharma, A.; Mohana, P.; Prajapati, J.; Kaur, U.; Goswami, D.; Arora, S.; Chadha, R.; et al. Discovery of triazole tethered thymol/carvacrol-coumarin hybrids as new class of α-glucosidase inhibitors with potent in vivo antihyperglycemic activities. Eur. J. Med. Chem. 2024, 263, 115948. [Google Scholar] [CrossRef]
- Chroho, M.; Rouphael, Y.; Petropoulos, S.A.; Bouissane, L. Carvacrol and Thymol Content Affects the Antioxidant and Antibacterial Activity of Origanum compactum and Thymus zygis Essential Oils. Antibiotics 2024, 13, 139. [Google Scholar] [CrossRef]
- Hassan, Q.; Aljelehawy, A.; Maroufi, Y.; Javid, H.; Mohammadi, M.R.; Raji Mal Allah, O.; Taheri, S.V.; Mohammadzade, H. Anticancer, antineurodegenerative, antimicrobial, and antidiabetic activities of carvacrol: Recent advances and limitations for effective formulations. Nano Micro Biosyst. 2023, 2, 1–11. [Google Scholar] [CrossRef]
- Bagetta, D.; Maruca, A.; Lupia, A.; Mesiti, F.; Catalano, R.; Romeo, I.; Moraca, F.; Ambrosio, F.A.; Costa, G.; Artese, A.; et al. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. Eur. J. Med. Chem. 2020, 186, 111903. [Google Scholar] [CrossRef] [PubMed]
- Encapsulated, C.; Hydrogel, G.; Jaafar, A.M.; Hasnu, N.; Zainal, Z.; Masarudin, M.J. Preparation, Characterisation and Antibacterial Activity of essential oils of Salvia officinalis growing in Morocco. Rocz. Państwowego Zakładu Hig. 2021, 74, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Pandey, P.; Maqsood, R.; Upadhyay, T.K. Anticancer Effects of Carvacrol in In Vitro and In Vivo Models: A Comprehensive Review. Biointerface Res. Appl. Chem. 2023, 13, 290–303. [Google Scholar] [CrossRef]
- Sampaio, L.A.; Pina, L.T.S.; Serafini, M.R.; Tavares D-dos, S.; Guimarães, A.G. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front. Pharmacol. 2021, 12, 702487. [Google Scholar] [CrossRef] [PubMed]
- Deepa, K.V.; Venghateri, J.B.; Khajanchi, M.; Gadgil, A.; Roy, N. Cancer epidemiology literature from India: Does it reflect the reality? J. Public Health 2021, 42, E421–E427. [Google Scholar] [CrossRef]
- Ahmad, A.; Saeed, M.; Ansari, I.A. Molecular insights on chemopreventive and anticancer potential of carvacrol: Implications from solid carcinomas. J. Food Biochem. 2021, 45, 14010. [Google Scholar] [CrossRef] [PubMed]
- Churklam, W.; Chaturongakul, S.; Ngamwongsatit, B.; Aunpad, R. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control 2020, 108, 106864. [Google Scholar] [CrossRef]
- Tian, L.; Wang, X.; Liu, R.; Zhang, D.; Wang, X.; Sun, R.; Gong, G. Antibacterial mechanism of thymol against Enterobacter sakazakii. Food Control 2021, 123, 107716. [Google Scholar] [CrossRef]
- Imran, M.; Aslam, M.; Alsagaby, S.A.; Saeed, F.; Ahmad, I.; Afzaal, M.; Arshad, M.U.; Abdelgawad, M.A.; E-L Gorhab, A.H.; Khames, A.; et al. Therapeutic application of carvacrol: A comprehensive review. Food Sci. Nutr. 2022, 10, 3544–3561. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil—New insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Hajibonabi, A.; Yekani, M.; Sharifi, S.; Nahad, J.S.; Dizaj, S.M.; Memar, M.Y. Antimicrobial activity of nanoformulations of carvacrol and thymol: New trend and applications. OpenNano 2023, 13, 100170. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Li, R.; Peng, S.; Ruan, R.; Li, J.; Liu, W. Fabrication of caseinate stabilized thymol nanosuspensions via the ph-driven method: Enhancement in water solubility of thymol. Foods 2021, 10, 1074. [Google Scholar] [CrossRef] [PubMed]
- Jubeh, B.; Breijyeh, Z.; Karaman, R. Antibacterial prodrugs to overcome bacterial resistance. Molecules 2020, 25, 1643. [Google Scholar] [CrossRef]
- Azimi, S.; Esmaeil Lashgarian, H.; Ghorbanzadeh, V.; Moradipour, A.; Pirzeh, L.; Dariushnejad, H. 5-FU and the dietary flavonoid carvacrol: A synergistic combination that induces apoptosis in MCF-7 breast cancer cells. Med. Oncol. 2022, 39, 253. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer systematic review: Combination therapy in combating cancer background. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef] [PubMed]
- Yousef, E.H.; Abo El-Magd, N.F.; El Gayar, A.M. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sci. 2023, 324, 121735. [Google Scholar] [CrossRef]
- Kulabaş, N.; Tatar, E.; Bingöl Özakpınar, Ö.; Özsavcı, D.; Pannecouque, C.; De Clercq, E.; Kucukguzel, I. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur. J. Med. Chem. 2016, 121, 58–70. [Google Scholar] [CrossRef]
- Almalki, A.S.A.; Nazreen, S.; Malebari, A.M.; Ali, N.M.; Elhenawy, A.A.; Alghamdi, A.A.A.; Ahmad, A.; Alfaifi, S.Y.; Alsharif, M.A.; Alam, M.M. Synthesis, and biological evaluation of 1,2,3-triazole tethered thymol-1,3,4-oxadiazole derivatives as anticancer and antimicrobial agents. Pharmaceuticals 2021, 14, 866. [Google Scholar] [CrossRef]
- Sisto, F.; Carradori, S.; Guglielmi, P.; Traversi, C.B.; Spano, M.; Sobolev, A.P.; Secci, D.; Di Marcantonio, M.C.; Haloci, E.; Grande, R.; et al. Synthesis and Biological Evaluation of Carvacrol-Based Derivatives as Dual Inhibitors of H. pylori Strains and AGS Cell Proliferation. Pharmaceuticals 2020, 13, 405. [Google Scholar] [CrossRef]
- Szostek, T.; Szulczyk, D.; Szymańska-majchrzak, J.; Koliński, M.; Kmiecik, S.; Otto-ślusarczyk, D.; Zawodnik, A.; Rajkowska, E.; Chaniewicz, K.; Struga, M.; et al. Design and Synthesis of Menthol and Thymol Derived Ciprofloxacin: Influence of Structural Modifications on the Antibacterial Activity and Anticancer Properties. Int. J. Mol. Sci. 2022, 23, 6600. [Google Scholar] [CrossRef]
- Mbese, Z.; Nell, M.; Fonkui, Y.T.; Ndinteh, D.T.; Steenkamp, V.; Aderibigbe, B.A. Hybrid Compounds Containing Carvacrol Scaffold: In Vitro Antibacterial and Cytotoxicity Evaluation. Recent Adv. Anti-Infective Drug Discov. 2022, 17, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Valverde Sancho, J.; Carreño Amate, C.; Caparrós Pérez, M.-d.M.; Santana Méridas, O.; Julio, L.F. Biological Activity of Hybrid Molecules Based on Major Constituents of Cinnammomun verum and Thymus vulgaris Essential Oils. Life 2023, 13, 499. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, A.; Xavier, F.; Castro, A.; Lima, M.; Terceiro, L.; Silva, F.; Vasconcellos, M.L.; Dantas, B.B.; Barbosa, A.M.; Duarte, S.S.; et al. Synthesis and Analysis of Carvacrol-Derived Morita-Baylis-Hillman Adducts as Potential Anticancer Agents. J. Braz. Chem. Soc. 2024, 35, 20240022. [Google Scholar] [CrossRef]
- Zengin Kurt, B.; Celebi, G.; Ozturk Civelek, D.; Angeli, A.; Akdemir, A.; Sonmez, F.; Supuran, C.T. Tail-Approach-Based Design and Synthesis of Coumarin-Monoterpenes as Carbonic Anhydrase Inhibitors and Anticancer Agents. ACS Omega 2023, 8, 5787–5807. [Google Scholar] [CrossRef] [PubMed]
- Sahin, D.; Kepekci, R.A.; Türkmenoğlu, B.; Akkoc, S. Biological evaluations and computational studies of newly synthesized thymol-based Schiff bases as anticancer, antimicrobial and antioxidant agents. J. Biomol. Struct. Dyn. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Kaushik, V.; Sharma, N.R. Synthesis and in silico anti-metastatic evaluation of carvacrol derivative, 2-hydroxy-6-isopropyl-3-methylbenzalehyde. Mater. Today Proc. 2022, 57, 739–747. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Shi, R.; Zhang, D.; Li, C.; Shi, J. Bioorganic Chemistry New thymol and isothymol derivatives from Eupatorium fortune and their cytotoxic effects. Bioorg. Chem. 2020, 98, 103644. [Google Scholar] [CrossRef]
- Khwaza, V.; Oyedeji, O.O.; Oselusi, S.O.; Morifi, E.; Nwamadi, M.; Tantoh Ndinteh, D.; Ramushu, P.; Matsebatlela, T.; Aderibigbe, B.A. Synthesis of Ester-Linked Ursolic Acid-Based Hybrid Compounds: Potential Antibacterial and Anticancer Agents. Chem. Biodivers. 2023, 20, 202300034. [Google Scholar] [CrossRef] [PubMed]
- Najafloo, R.; Behyari, M.; Imani, R.; Nour, S. A mini-review of Thymol incorporated materials: Applications in antibacterial wound dressing. J. Drug Deliv. Sci. Technol. 2020, 60, 101904. [Google Scholar] [CrossRef]
- Rajput, J.D.; Bagul, S.D.; Pete, U.D.; Zade, C.M.; Padhye, S.B.; Bendre, R.S. Perspectives on medicinal properties of natural phenolic monoterpenoids and their hybrids. Mol. Divers. 2018, 22, 225–245. [Google Scholar] [CrossRef]
- Zhong, H.; Mu, B.; Yan, P.; Jing, Y.; Hui, A.; Wang, A. A comparative study on surface/interface mechanism and antibacterial properties of different hybrid materials prepared with essential oils active ingredients and palygorskite. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 618, 126455. [Google Scholar] [CrossRef]
- Shinde, P.; Agraval, H.; Srivastav, A.K.; Yadav, U.C.S.; Kumar, U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int. J. Pharm. 2020, 588, 119795. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar-Karimi Alireza, R.P.; Poorfreidoni, A. Incorporation of Fluorinated Pyridine in the Side Chain of 4-Aminoquinolines: Synthesis, Characterization and Antibacterial Activity. Drug Res. 2018, 68, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Ghod Elahi, M.; Hekmati, M.; Esmaeili, D.; Ziarati, P.; Yousefi, M. Antibacterial Activity of Modified Carvacrol against Staphylococcus epidermidis and Pseudomonas aeruginosa. Nov. Clin. Med. 2022, 1, 192–196. [Google Scholar] [CrossRef]
- Kumar, A.; Mahapatra, M.; Kumar, S.; Nath, R. Design, molecular docking, and antimicrobial assessment of newly synthesized phytochemical thymol Mannich base derivatives. J. Mol. Struct. 2021, 244, 130908. [Google Scholar] [CrossRef]
- Patil, J.U.; Patil, P.N.; Pawar, N.S. Synthesis and Antibacterial Activity of Thymyl Ethers. Chem. Proc. 2022, 8, 57. [Google Scholar] [CrossRef]
- Marinelli, L.; Di Stefano, A.; Cacciatore, I. Carvacrol and its derivatives as antibacterial agents. Phytochem. Rev. 2018, 17, 903–921. [Google Scholar] [CrossRef]
- Addo, J.K.; Owusu-Ansah, E.; Dayie, N.T.K.D.; Cheseto, X.; Torto, B. Synthesis of 1,2,3-triazole-thymol derivatives as potential antimicrobial agents. Heliyon 2022, 8, e10836. [Google Scholar] [CrossRef]
- Bhoi, R.T.; Rajput, J.D.; Bendre, R.S. An efficient synthesis of rearranged new biologically active benzimidazoles derived from 2-formyl carvacrol. Res. Chem. Intermed. 2022, 48, 401–422. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Boye, A.; Addo, J.K.; Acheampong, D.O.; Thomford, A.K.; Asante, E.; Amoaning, R.E.; Kuma, D.N. The hydroxyl moiety on carbon one (C1) in the monoterpene nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon 2020, 6, e03492. [Google Scholar] [CrossRef]
- Alkhzem, A.H.; Woodman, T.J.; Blagbrough, I.S. Design and synthesis of hybrid compounds as novel drugs and medicines. RSC Adv. 2022, 12, 19470–19484. [Google Scholar] [CrossRef] [PubMed]
Carvacrol and Thymol | Antibacterial | Anticancer |
---|---|---|
Mechanism of action | ||
Limitations |
|
Hybrid | Type of Cancer Cells Active Against | SAR | Mode of Action | Reference |
---|---|---|---|---|
3 | MCF-7 | The introduction of the benzene ring, sulfonamide group, and halogens influenced the anticancer activity. | Promote apoptosis | [1] |
4 | HT-1080 | Replaced the hydrogen with a methyl group improved the anticancer effect. | Induce early and late apoptosis | [9] |
5a–b | A-549/HT-1080 | The ether group on the thymol moiety was influential on the improved activity. | - | [18] |
6a–m | HCT-116/MCF-7/HepG2 | The number and position of substituents influenced the anticancer activity. | - | [48] |
7a–b | - | No noticeable SAR trend. | - | [50] |
8 | MCF-7/MCF-12A | The anticancer improvement was attributed to the use of the ester linker. | - | [51] |
10a–c | SH-SY5Y/HEK-293 | The type of halogen and the position of nitro group influenced the cytotoxic effect. | - | [53] |
11a–b | MCF-7/HT-29 | No significant trend. | Induce apoptosis | [54] |
12a–c | PC3/DLD-1 | SAR displayed no significant trend. However, the introduction of halogens compromised the activity. | - | [55] |
14a–c | Hep G2/A549/MCF-7/HeLa | Modification of isopropyl side of thymol via ester linkers promoted their anticancer activity. | - | [57] |
15a–c | MCF-7, MD/MBA-231/HeLa | Destruction of hydroxyl group compromised their anticancer activity. | - | [58] |
Hybrid | Bacterial Pathogens Active Against: | SAR | Reference |
---|---|---|---|
12a–c | E. coli | The introduction of halogens influenced the antibacterial activity of these compounds. | [55] |
15a–b | Proteus vulgaris/Proteus mirabilis | Hybridizing carvacrol and ursolic acid via an ester linker improved their antibacterial activity. | [58] |
16 | E.coli/S. aureus | Modification of the hydroxyl group of carvacrol moiety resulted in compromised antibacterial activity. | [51,63] |
17a–c | S. aureus/E.coli | The introduction of cyclic amine moiety with aminomethyl groups into thymol improved the antibacterial activity. | [65] |
18 | P. valgaries/S. aureus/B.subtilis | The introduction of thymol moiety was responsible for the improved activity. | [66,67] |
19 | K. pneumonia | Replacing hydrogen with halogen improved the antibacterial activity of the compounds. | [68] |
20 | E. coli/S. aureus/S. pyogenus/P. aeruginosa | The introduction of fluoroalkyl and alkyl groups on benzimidazole moiety influenced the antibacterial activity of the hybrids. | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, S.; Sotondoshe, N.; Aderibigbe, B.A. Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics. Molecules 2024, 29, 2277. https://doi.org/10.3390/molecules29102277
Peter S, Sotondoshe N, Aderibigbe BA. Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics. Molecules. 2024; 29(10):2277. https://doi.org/10.3390/molecules29102277
Chicago/Turabian StylePeter, Sijongesonke, Namhla Sotondoshe, and Blessing A. Aderibigbe. 2024. "Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics" Molecules 29, no. 10: 2277. https://doi.org/10.3390/molecules29102277
APA StylePeter, S., Sotondoshe, N., & Aderibigbe, B. A. (2024). Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics. Molecules, 29(10), 2277. https://doi.org/10.3390/molecules29102277