Antimalarial Activity of Aqueous Extracts of Nasturtium (Tropaeolum majus L.) and Benzyl Isothiocyanate
Abstract
:1. Introduction
2. Results
2.1. Antimalarial Screening Assessment
2.2. Dose–Response Evaluation
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Tropaeolum majus L. Extraction
4.3. Antimalarial Assays
4.3.1. Plasmodium Falciparum In Vitro Culture
4.3.2. Sample Preparation
4.3.3. Extracts and Compounds Screening Assessment
- T. majus seed extract: 132 µg/mL (in 1% of distilled water) and 13.2 µg/mL (in 0.1% of distilled water);
- T. majus leaf extract: 2510 µg/mL (in 1% of distilled water) and 251 µg/mL (in 0.1% of distilled water);
- T. majus stem extract: 1320 µg/mL (in 1% of distilled water) and 132 µg/mL (in 0.1% of distilled water);
- BITC: 3.32 µM: (in 0.4% of DMSO) and 0.332 µM (in 0.04% of DMSO).
4.3.4. Dose–Response Evaluation
4.3.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senerovic, L.; Opsenica, D.; Moric, I.; Aleksic, I.; Spasić, M.; Vasiljevic, B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-Virulence, Antiviral and Anti-Parasitic Agents. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1282, pp. 37–69. [Google Scholar]
- Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The Birth of Artemisinin. Pharmacol. Ther. 2020, 216, 107658. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report on Antimalarial Drug Efficacy, Resistance and Response: 10 Years of Surveillance (2010–2019); WHO Global Malaria Programme, Ed.; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001281-3. [Google Scholar]
- Ippolito, M.M.; Moser, K.A.; Kabuya, J.-B.B.; Cunningham, C.; Juliano, J.J. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. Curr. Epidemiol. Rep. 2021, 8, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.; Alonso, P.; Ringwald, P. Current and Emerging Strategies to Combat Antimalarial Resistance. Expert Rev. Anti-Infect. Ther. 2021, 20, 353–372. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.E.; Fidock, D.A.; Bridgford, J.L. Plasmodium Falciparum Resistance to Artemisinin-Based Combination Therapies. Curr. Opin. Microbiol. 2022, 69, 102193. [Google Scholar] [CrossRef] [PubMed]
- De Joarder, D.; Mukhopadhyay, C.; Sarkar, R. Sustainable Green Technologies for Synthesis of Potential Drugs Targeted toward Tropical Diseases. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Krishna Banik, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 75–93. ISBN 9780128175927. [Google Scholar]
- Burton, A.; Falkenberg, T.; Smith, M.; Zhang, Q.; Zhang, X.; Boerma, T.; Lerberghe, W. WHO Traditional Medicine Strategy 2014–2023; Zhang, Q., Ed.; World Health Organization: Geneve, Switzerland, 2013; ISBN 9789241506090. [Google Scholar]
- Kew Royal Botanical Gardens Tropaeolum majus L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:310974-2 (accessed on 22 November 2023).
- Duenas-Lopez, M.A. Tropaeolum majus (Nasturtium). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.54181 (accessed on 22 November 2023).
- Jakubczyk, K.P.; Janda-Milczarek, K.; Watychowicz, K.; Łukasiak, J.; Wolska, J. Garden Nasturtium (Tropaeolum majus L.)-a Source of Mineral Elements and Bioactive Compounds. Rocz. Panstw. Zakl. Hig. 2018, 69, 119–126. [Google Scholar] [PubMed]
- Goos, K.-H.; Albrecht, U.; Schneider, B. Efficacy and Safety Profile of a Herbal Drug Containing Nasturtium Herb and Horseradish Root in Acute Sinusitis, Acute Bronchitis and Acute Urinary Tract Infection in Comparison with Other Treatments in the Daily Practice/Results of a Prospective Cohort Study. Arzneim.-Forsch./Drug Res. 2006, 56, 249–257. [Google Scholar] [CrossRef]
- Vrca, I.; Jug, B.; Fredotović, Ž.; Vuko, E.; Brkan, V.; Šestić, L.; Juretić, L.; Dunkić, V.; Nazlić, M.; Ramić, D.; et al. Significant Benefits of Environmentally Friendly Hydrosols from Tropaeolum majus L. Seeds with Multiple Biological Activities. Plants 2023, 12, 3897. [Google Scholar] [CrossRef] [PubMed]
- Valsalam, S.; Agastian, P.; Arasu, M.V.; Al-Dhabi, N.A.; Ghilan, A.K.M.; Kaviyarasu, K.; Ravindran, B.; Chang, S.W.; Arokiyaraj, S. Rapid Biosynthesis and Characterization of Silver Nanoparticles from the Leaf Extract of Tropaeolum majus L. and Its Enhanced in-Vitro Antibacterial, Antifungal, Antioxidant and Anticancer Properties. J. Photochem. Photobiol. B 2019, 191, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Česlová, L.; Klikarová, J.; Šalomounová, T. The Content and Profile of Biologically Active Compounds Present in Individual Parts of Nasturtium (Tropaeolum majus L.): Comprehensive Study. Eur. Food Res. Technol. 2023, 249, 413–428. [Google Scholar] [CrossRef]
- Kleinwächter, M.; Schnug, E.; Selmar, D. The Glucosinolate-Myrosinase System in Nasturtium (Tropaeolum majus L.): Variability of Biochemical Parameters and Screening for Clones Feasible for Pharmaceutical Utilization. J. Agric. Food Chem. 2008, 56, 11165–11170. [Google Scholar] [CrossRef]
- Bartnik, M.; Facey, P.C. Glycosides. In Pharmacognosy: Fundamentals, Applications and Strategy; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 101–161. ISBN 9780128020999. [Google Scholar]
- Vrca, I.; Ramić, D.; Fredotović, Ž.; Možina, S.S.; Blažević, I.; Bilušić, T. Chemical Composition and Biological Activity of Essential Oil and Extract from the Seeds of Tropaeolum majus L. Var. Altum. Food Technol. Biotechnol. 2022, 60, 533–542. [Google Scholar] [CrossRef]
- Huang, Y.J.; Peng, X.R.; Qiu, M.H. Progress on the Chemical Constituents Derived from Glucosinolates in Maca (Lepidium Meyenii). Nat. Prod. Bioprospect. 2018, 8, 405–412. [Google Scholar] [CrossRef]
- Traka, M.; Mithen, R. Glucosinolates, Isothiocyanates and Human Health. Phytochem. Rev. 2009, 8, 269–282. [Google Scholar] [CrossRef]
- Dinh, T.N.; Parat, M.-O.; Ong, Y.S.; Khaw, K.Y. Anticancer Activities of Dietary Benzyl Isothiocyanate: A Comprehensive Review. Pharmacol. Res. 2021, 169, 105666. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, K.; Song, J.; Wu, H.; Hao, H.; Bi, J.; Hou, H.; Zhang, G. Bacteriostatic Effects of Benzyl Isothiocyanate on Vibrio Parahaemolyticus: Transcriptomic Analysis and Morphological Verification. BMC Biotechnol. 2021, 21, 56. [Google Scholar] [CrossRef]
- Dufour, V.; Stahl, M.; Rosenfeld, E.; Stintzi, A.; Baysse, C. Insights into the Mode of Action of Benzyl Isothiocyanate on Campylobacter Jejuni. Appl. Environ. Microbiol. 2013, 79, 6958–6968. [Google Scholar] [CrossRef]
- Li, P.; Zhao, Y.M.; Wang, C.; Zhu, H. ping Antibacterial Activity and Main Action Pathway of Benzyl Isothiocyanate Extracted from Papaya Seeds. J. Food Sci. 2021, 86, 169–176. [Google Scholar] [CrossRef]
- Pereira, C.; Calado, A.M.; Sampaio, A.C. The Effect of Benzyl Isothiocyanate on Candida Albicans Growth, Cell Size, Morphogenesis, and Ultrastructure. World J. Microbiol. Biotechnol. 2020, 36, 153. [Google Scholar] [CrossRef]
- Yan, S.; Wei, J.; Chen, R. Evaluation of the Biological Activity of Glucosinolates and Their Enzymolysis Products Obtained from Lepidium Meyenii Walp. (Maca). Int. J. Mol. Sci. 2022, 23, 14756. [Google Scholar] [CrossRef]
- Kermanshai, R.; Mccarry, B.E.; Rosenfeld, J.; Summers, P.S.; Weretilnyk, E.A.; Sorger, G.J. Benzyl Isothiocyanate Is the Chief or Sole Anthelmintic in Papaya Seed Extracts. Phytochemistry 2001, 57, 427–435. [Google Scholar] [CrossRef]
- Pintão, A.M.; Pais, M.S.; Coley, H.; Kelland, L.R.; Judson, I.R. In Vitro and In Vivo Antitumor Activity of Benzyl Isothiocyanate: A Natural Product from Tropaeolum Majus. Planta Med. 1995, 61, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Yoshioka, S.; Iwanaga, S.; Kanazawa, K. Anti-Malarial Activity of Allyl Isothiocyanate and N-Acetyl-S-(N-Allylthiocarbamoyl)-l-Cysteine. Mol. Nutr. Food Res. 2023, 67, e2300185. [Google Scholar] [CrossRef]
- Arianie, L.; Widodo; Iftitah, E.D. Warsito Natural Isothiocyanate Anti-Malaria: Molecular Docking, Physicochemical, Adme, Toxicity and Synthetic Accessibility Study of Eugenol and Cinnamaldehyde. Int. J. Appl. Pharm. 2021, 13, 82–88. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa Oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef] [PubMed]
- Flor-Weiler, L.B.; Behle, R.W.; Berhow, M.A.; McCormick, S.P.; Vaughn, S.F.; Muturi, E.J.; Hay, W.T. Bioactivity of Brassica Seed Meals and Its Compounds as Ecofriendly Larvicides against Mosquitoes. Sci. Rep. 2023, 13, 3936. [Google Scholar] [CrossRef]
- BEI Reagent Search MRA-1029 Plasmodium Falciparum, 3D7HT − GFP (Parasitic Protozoa). Available online: https://www.beiresources.org/Catalog/BEIParasiticProtozoa/MRA-1029.aspx (accessed on 15 October 2021).
- Kulkeaw, K. Progress and Challenges in the Use of Fluorescence-based Flow Cytometric Assays for Anti-malarial Drug Susceptibility Tests. Malar. J. 2021, 20, 57. [Google Scholar] [CrossRef]
- Teixeira de Moraes Gomes, P.A.; Veríssimo de Oliveira Cardoso, M.; dos Santos, I.R.; Amaro de Sousa, F.; da Conceição, J.M.; Gouveia de Melo Silva, V.; Duarte, D.; Pereira, R.; Oliveira, R.; Nogueira, F.; et al. Dual Parasiticidal Activities of Phthalimides: Synthesis and Biological Profile against Trypanosoma Cruzi and Plasmodium Falciparum. ChemMedChem 2020, 15, 2164–2175. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.M.F.; da Cruz Filho, I.J.; Santos, T.; Pereira, D.T.M.; Marques, D.S.C.; da Conceição Alves de Lima, A.; de Aquino, T.M.; de Moraes Rocha, G.J.; do Carmo Alves de Lima, M.; Nogueira, F. Biological Activities and Physicochemical Characterization of Alkaline Lignins Obtained from Branches and Leaves of Buchenavia Viridiflora with Potential Pharmaceutical and Biomedical Applications. Int. J. Biol. Macromol. 2022, 219, 224–245. [Google Scholar] [CrossRef]
- Naidu, R.; Subramanian, G.; Lim, Y.B.; Lim, C.T.; Chandramohanadas, R. A Reference Document on Permissible Limits for Solvents and Buffers during in Vitro Antimalarial Screening. Sci. Rep. 2018, 8, 14974. [Google Scholar] [CrossRef]
- Abdou, A.M.; Seddek, A.L.S.; Abdelmageed, N.; Badry, M.O.; Nishikawa, Y. Wild Egyptian Medicinal Plants Show in Vitro and in Vivo Cytotoxicity and Antimalarial Activities. BMC Complement. Med. Ther. 2022, 22, 130. [Google Scholar] [CrossRef]
- Camara, A.; Haddad, M.; Traore, M.S.; Chapeland-Leclerc, F.; Ruprich-Robert, G.; Fourasté, I.; Balde, M.A.; Royo, J.; Parny, M.; Batigne, P.; et al. Variation in Chemical Composition and Antimalarial Activities of Two Samples of Terminalia Albida Collected from Separate Sites in Guinea. BMC Complement. Med. Ther. 2021, 21, 64. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.T.; Lobo, L.; Oliveira, I.S.; Gomes, J.; Teixeira, C.; Nogueira, F.; Marques, E.F.; Ferraz, R.; Gomes, P. Building on Surface-Active Ionic Liquids for the Rescuing of the Antimalarial Drug Chloroquine. Int. J. Mol. Sci. 2020, 21, 5334. [Google Scholar] [CrossRef]
- Nzila, A.; Mwai, L. In Vitro Selection of Plasmodium Falciparum Drug-Resistant Parasite Lines. J. Antimicrob. Chemother. 2009, 65, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Shamsuddin, M.A.; Ali, A.H.; Zakaria, N.H.; Mohammat, M.F.; Hamzah, A.S.; Shaameri, Z.; Lam, K.W.; Mark-Lee, W.F.; Agustar, H.K.; Abd Razak, M.R.M.; et al. Synthesis, Molecular Docking, and Antimalarial Activity of Hybrid 4-Aminoquinoline-Pyrano[2,3-c]Pyrazole Derivatives. Pharmaceuticals 2021, 14, 1174. [Google Scholar] [CrossRef]
- Sousa Carvalho, M.S.; Graças Cardoso, M.d.; Resende, L.V.; Souza Gomes, M.d.; Marques Albuquerque, L.R.; Silvestri Gomes, A.C.; Sales, T.A.; Camargo, K.C.; Nelson, D.L.; Costa, G.M.; et al. Phytochemical Screening, Extraction of Essential Oils and Antioxidant Activity of Five Species of Unconventional Vegetables. Am. J. Plant Sci. 2015, 6, 2632–2639. [Google Scholar] [CrossRef]
- Barba, F.J.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Geary, T.G.; Jensen, J.B.; Ginsburg, H. Uptake of [3H]Chloroquine by Drug-Sensitive and -Resistant Strains of the Human Malaria Parasite Plasmodium Falciparum. Biochem. Pharmacol. 1986, 35, 3805–3812. [Google Scholar] [CrossRef] [PubMed]
- Wicht, K.J.; Mok, S.; Fidock, D.A. Molecular Mechanisms of Drug Resistance in Plasmodium Falciparum Malaria. Annu. Rev. Microbiol. 2020, 74, 431–454. [Google Scholar] [CrossRef]
- Shafik, S.H.; Cobbold, S.A.; Barkat, K.; Richards, S.N.; Lancaster, N.S.; Llinás, M.; Hogg, S.J.; Summers, R.L.; McConville, M.J.; Martin, R.E. The Natural Function of the Malaria Parasite’s Chloroquine Resistance Transporter. Nat. Commun. 2020, 11, 3922. [Google Scholar] [CrossRef]
- Sanchez, C.P.; Manson, E.D.T.; Moliner Cubel, S.; Mandel, L.; Weidt, S.K.; Barrett, M.P.; Lanzer, M. The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium Falciparum. Microbiol. Spectr. 2022, 10, e0110122. [Google Scholar] [CrossRef]
- Brown, K.K.; Hampton, M.B. Biological Targets of Isothiocyanates. Biochim. Biophys. Acta Gen. Subj. 2011, 1810, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Holst, B.; Williamson, G. A Critical Review of the Bioavailability of Glucosinolates and Related Compounds. Nat. Prod. Rep. 2004, 21, 425–447. [Google Scholar] [CrossRef] [PubMed]
- Juge, N.; Mithen, R.F.; Traka, M. Molecular Basis for Chemoprevention by Sulforaphane: A Comprehensive Review. Cell. Mol. Life Sci. 2007, 64, 1105–1127. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Sharma, N.; Sharma, G.P.; Mishra, N. Redox Interactome in Malaria Parasite Plasmodium Falciparum. Parasitol. Res. 2021, 120, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Müller, S. Role and Regulation of Glutathione Metabolism in Plasmodium Falciparum. Molecules 2015, 20, 10511–10534. [Google Scholar] [CrossRef] [PubMed]
- Egwu, C.O.; Augereau, J.M.; Reybier, K.; Benoit-Vical, F. Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants 2021, 10, 1872. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ni, M.; Xu, X.; Chen, W. Characterisation of Naturally Occurring Isothiocyanates as Glutathione Reductase Inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Dolejal Zanetti, G.; Palermo Manfron, M.; Cristina Da Silva Martins Hoelzel, S.; Pereira Pagliarin, V.; Farias Morel, A. Toxicidade Aguda e Atividade Antibacteriana Dos Extratos de Tropaeolum majus L. Acta Farm. Bonaer. 2003, 22, 159–162. [Google Scholar]
- Yeh, Y.T.; Hsu, Y.N.; Huang, S.Y.; Lin, J.S.; Chen, Z.F.; Chow, N.H.; Su, S.H.; Shyu, H.W.; Lin, C.C.; Huang, W.T.; et al. Benzyl Isothiocyanate Promotes Apoptosis of Oral Cancer Cells via an Acute Redox Stress-Mediated DNA Damage Response. Food Chem. Toxicol. 2016, 97, 336–345. [Google Scholar] [CrossRef]
- Sehrawat, A.; Croix, C.S.; Baty, C.J.; Watkins, S.; Tailor, D.; Singh, R.P.; Singh, S.V. Inhibition of Mitochondrial Fusion Is an Early and Critical Event in Breast Cancer Cell Apoptosis by Dietary Chemopreventative Benzyl Isothiocyanate. Mitochondrion 2016, 30, 67–77. [Google Scholar] [CrossRef]
- Po, W.W.; Choi, W.S.; Khing, T.M.; Lee, J.Y.; Lee, J.H.; Bang, J.S.; Min, Y.S.; Jeong, J.H.; Sohn, U.D. Benzyl Isothiocyanate-Induced Cytotoxicity via the Inhibition of Autophagy and Lysosomal Function in AGS Cells. Biomol. Ther. 2022, 30, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, X.; Yang, Q.; Zhang, N.; Du, Y.; Zhu, H. Preparation and Characterization of Inclusion Complex of Benzyl Isothiocyanate Extracted from Papaya Seed with β-Cyclodextrin. Food Chem. 2015, 184, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Trager, W.; Jensen, J.B. Human Malaria Parasites in Continuous Culture. Science (1979) 1976, 193, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, F.; Diez, A.; Radfar, A.; Pérez-Benavente, S.; Rosario, V.E.d.; Puyet, A.; Bautista, J.M. Early Transcriptional Response to Chloroquine of the Plasmodium Falciparum Antioxidant Defence in Sensitive and Resistant Clones. Acta Trop. 2010, 114, 109–115. [Google Scholar] [CrossRef] [PubMed]
Extracts, Compounds, and Growth Controls | Concentrations | P. falciparum Inhibition % ± SD |
---|---|---|
T. majus seed extract | 132 µg/mL | 38.62 ± 22.89 * |
13.2 µg/mL | 30.18 ± 13.47 # | |
T. majus leaf extract | 2510 µg/mL | 6.54 ± 5.32 * |
251 µg/mL | 3.44 ± 2.67 ## | |
T. majus stem extract | 1320 µg/mL | 7.68 ± 3.15 * |
132 µg/mL | NI 4 | |
Water (extracts solvent) | 1% 0.1% | NI 4 NI 4 |
BITC 1 | 3.32 µM 0.332 µM | 97.13 ± 0.62 14.26 ± 3.31 # |
DMSO 2 (BITC solvent) | 0.4% 0.04% | NI 4 NI 4 |
CQ 3 (reference drug) | 10 µM | 96.57 ± 0.57 |
1 µM | 94.71 ± 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintão, A.M.; Santos, T.; Nogueira, F. Antimalarial Activity of Aqueous Extracts of Nasturtium (Tropaeolum majus L.) and Benzyl Isothiocyanate. Molecules 2024, 29, 2316. https://doi.org/10.3390/molecules29102316
Pintão AM, Santos T, Nogueira F. Antimalarial Activity of Aqueous Extracts of Nasturtium (Tropaeolum majus L.) and Benzyl Isothiocyanate. Molecules. 2024; 29(10):2316. https://doi.org/10.3390/molecules29102316
Chicago/Turabian StylePintão, Ana Maria, Tiago Santos, and Fátima Nogueira. 2024. "Antimalarial Activity of Aqueous Extracts of Nasturtium (Tropaeolum majus L.) and Benzyl Isothiocyanate" Molecules 29, no. 10: 2316. https://doi.org/10.3390/molecules29102316
APA StylePintão, A. M., Santos, T., & Nogueira, F. (2024). Antimalarial Activity of Aqueous Extracts of Nasturtium (Tropaeolum majus L.) and Benzyl Isothiocyanate. Molecules, 29(10), 2316. https://doi.org/10.3390/molecules29102316