Effects of Graphene Oxide on Endophytic Bacteria Population Characteristics in Plants from Soils Contaminated by Polycyclic Aromatic Hydrocarbons
Abstract
:1. Introduction
2. Results and Discussion
2.1. GO Promoted PAHs’ Degradation and Absorption
2.2. GO Increased Endophytic Bacterial Diversity
2.3. GO Changed the Endophytic Microbial Community Structure
2.4. Community LEfSe Analysis
2.5. PICRUSt2 Functional Prediction Analysis
2.6. Correlation Analysis
3. Materials and Methods
3.1. Plant and Soil
3.2. Graphene Oxide
3.3. Experimental Design
3.4. PAHs Extraction and Analysis
3.5. Community Structure and Diversity Analysis of Endophytic Bacteria
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.J.; Sheng, G.Y.; Bi, X.H.; Feng, Y.L.; Mai, B.X.; Fu, J.M. Emission Factors for Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons from Residential Coal Combustion in China. Environ. Sci. Technol. 2005, 39, 1861–1867. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, C.; Duraipandiyan, V.; Balakrishna, K.; Ignacimuthu, S. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour. Technol. 2012, 112, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Shen, Y.Y.; Luo, Y.M.; Sun, X.H.; Sun, M.M.; Fu, D.Q.; Li, Z.G.; Christie, P. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J. Hazard. Mater. 2011, 186, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- WHO. Selected Nitro-and Nitro-Oxy-Polycyclic Aromatic Hydrocarbons; EHC (Environmental Health Criteria) 229; WHO Library; World Health Organization: Geneva, Switzerland, 2003; ISBN 9241572299. [Google Scholar]
- IARC (International Agency for Research on Cancer). Polynuclear Aromatic Compounds. Part 1. Chemical, Environmental and Experimental Data. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1983; Volume 32, ISBN 978-92-832-1232-4. [Google Scholar]
- IARC (International Agency for Research on Cancer). Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-Water; IARC: Lyon, France, 2012; Volume 101, ISBN 978-92-832-1324-6. [Google Scholar]
- Roy, S.; Labelle, S.; Mehta, P.; Mihoc, A.; Fortin, N.; Masson, C.; Leblanc, R.; Châteauneuf, G.; Sura, C.; Gallipeau, C.; et al. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil. 2005, 272, 277–290. [Google Scholar] [CrossRef]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Kumar, A.; Bisht, B.S.; Joshi, V.D.; Dhewa, T. Review on Bioremediation of Polluted Environment: A Management Tool. J. Environ. Sci. 2011, 1, 2011. [Google Scholar]
- Da Silva, M.L.B.D.; Ruiz-Aguilar, G.M.L.; Alvarez, P.J.J. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation 2005, 16, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, P.; Vieira, G.A.L.; Otero, I.V.R.; Pellizzer, E.P.; Fontes, B.D.; Sette, L.D. Metal and organic pollutants bioremediation by extremophile microorganisms. J. Hazard. Mater. 2020, 382, 121024. [Google Scholar] [CrossRef]
- Su, J.Q.; Ouyang, W.Y.; Hong, Y.W.; Liao, D.; Khan, S.; Li, H. Responses of endophytic and rhizospheric bacterial communities of salt marsh plant (Spartina alterniflora) to polycyclic aromatic hydrocarbons contamination. J. Soil. Sediment. 2016, 16, 707–715. [Google Scholar] [CrossRef]
- Germaine, K.J.; Keogh, E.; Ryan, D.; Dowling, D.N. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. Fems Microbiol. Lett. 2009, 296, 226–234. [Google Scholar] [CrossRef]
- Wang, W.C.; Wu, S.Q.; Sui, X.Q.; Cheng, S.P. Phytoremediation of contaminated sediment combined with biochar: Feasibility, challenges and perspectives. J. Hazard. Mater. 2024, 465, 133135. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Wang, Y.; Zheng, H.Y.; Xiang, X.B.; Wang, H.; Xie, M.H.; Liu, H.J.; Fang, Z.G.; Liu, L.J.; Du, S.T. N fertilizers promote abscisic acid-catabolizing bacteria to enhance heavy metal phytoremediation from metalliferous soils. Sci. Total Environ. 2023, 894, 164964. [Google Scholar] [CrossRef] [PubMed]
- Sarma, H.; Narayan, M.; Peralta-Videa, J.R.; Lam, S.S. Exploring the significance of nanomaterials and organic amendments Prospect for phytoremediation of contaminated agroecosystem. Environ. Pollut. 2022, 308, 119601. [Google Scholar] [CrossRef] [PubMed]
- Shahi, M.P.; Kumari, P.; Mahobiya, D.; Shahi, S.K. Nano-bioremediation of environmental contaminants: Applications, challenges, and future prospects. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 83–98. [Google Scholar]
- Gonçalves, S.P.C.; Delite, F.D.; Côa, F.; Neto, L.L.R.; Da Silva, G.H.; Bortolozzo, L.D.; Ferreira, A.G.; De Medeiros, A.M.Z.; Strauss, M.; Martinez, D.S.T. Biotransformation of Nanomaterials in the Soil Environment: Nanoecotoxicology and Nanosafety Implications. In Nanomaterials Applications for Environmental Matrices: Water, Soil and Air; Elsevier: Amsterdam, The Netherlands, 2019; pp. 265–304. [Google Scholar]
- Boukhvalov, D.W.; Katsnelson, M.I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, Y.K.; Shi, L.Q.; Yu, J.; Yao, J.; Sun, J.G.; Zhao, L.; Sun, J.S. Enhanced Cd accumulation by Graphene oxide (GO) under Cd stress in duckweed. Aquat. Toxicol. 2020, 229, 105579. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.Q.; Zhang, L.; Yu, W.; Sun, Z.G.; Guan, J.; Zhang, J.X.; Lin, J.; Zhou, J.Y.; Fan, J.H.; Murugadoss, V.; et al. Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology 2020, 31, 225402. [Google Scholar] [CrossRef]
- Liu, L.; Ma, H.C.; Zhang, X.X.; Wang, G.W.; Ma, C.; Fu, Y.H.; Dong, X.L. Fabrication of graphene oxide wrapped Ti/Co3O4 nanowire photoanode and its superior photoelectrocatalytic performance. Nanotechnology 2020, 31, 225303. [Google Scholar] [CrossRef]
- Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013, 42, 5682–5689. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, X.G.; Ren, C.G.; Dai, C.C. Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour. Technol. 2013, 129, 568–574. [Google Scholar] [CrossRef]
- Oliveira, V.; Gomes, N.C.M.; Almeida, A.; Silva, A.M.S.; Simoes, M.M.Q.; Smalla, K.; Cunha, A. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol. Ecol. 2014, 23, 1392–1404. [Google Scholar] [CrossRef]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013, 4, 1317–1332. [Google Scholar] [CrossRef]
- Afzal, M.; Khan, Q.M.; Sessitsch, A. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere 2014, 117, 232–242. [Google Scholar] [CrossRef]
- Gutiérrez-Ginés, M.J.; Hernández, A.J.; Pérez-Leblic, M.I.; Pastor, J.; Vangronsveld, J. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria. J. Environ. Manag. 2014, 143, 197–207. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, C.C. Endophytes: A potential resource for biosynthesis, biotransformation, and biodegradation. Ann. Microbiol. 2011, 61, 207–215. [Google Scholar] [CrossRef]
- Gupta, V.K.; Saleh, T.A. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-An overview. Env. Sci. Pollut. R. 2013, 20, 2828–2843. [Google Scholar] [CrossRef]
- Reddy, A.V.B.; Madhavi, V.; Reddy, K.G.; Madhavi, G. Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts. J. Chem. 2013, 2013, 521045. [Google Scholar] [CrossRef]
- Chang, M.C.; Kang, H.Y. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J. Environ. Sci. Health A 2009, 44, 576–582. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wang, L.L.; Zhang, P.; Kan, A.T.; Chen, W.; Tomson, M.B. Facilitated transport of 2,2′,5,5′-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Environ. Sci. Technol. 2011, 45, 1341–1348. [Google Scholar] [CrossRef]
- Torre-Roche, D.; Hawthorne, J.; Deng, Y.Q.; Xing, B.S.; Cai, W.J.; Newman, L.A.; Wang, Q.; Ma, X.M.; Hamdi, H.; White, J.C. Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol. 2012, 47, 12539–12547. [Google Scholar] [CrossRef]
- Torre-Roche, R.; Hawthorne, J.; Deng, Y.; Xing, B.S.; Cai, W.J.; Newman, L.A.; Wang, C.; Ma, X.M.; White, J.C. Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environ. Sci. Technol. 2012, 46, 9315–9323. [Google Scholar] [CrossRef]
- Zhan, X.H.; Zhu, M.D.; Shen, Y.; Yue, L.; Li, J.F.; Gardea-Torresdey, J.L.; Xu, G.H. Apoplastic and symplastic uptake of phenanthrene in wheat roots. Environ. Pollut. 2017, 233, 331–339. [Google Scholar] [CrossRef]
- Wild, E.; Dent, J.; Thomas, G.O.; Jones, K.C. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ. Sci. Technol. 2005, 39, 3695–3702. [Google Scholar] [CrossRef]
- Fang, J.; Shan, X.Q.; Wen, B.; Huang, R.X. Mobility of TX100 suspended multiwalled carbon nanotubes (MWCNTs) and the facilitated transport of phenanthrene in real soil columns—ScienceDirect. Geoderma 2013, 207–208, 1–7. [Google Scholar] [CrossRef]
- Song, M.K.; Yang, Y.; Jiang, L.F.; Hong, Q.; Zhang, D.Y.; Shen, Z.G.; Yin, H.; Luo, C.L. Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium. Environ. Pollut. 2017, 220, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Li, L.M.; Liu, R.; Chen, J.J.; Tai, P.D.; Bi, X.Y.; Zou, P.; Wang, Y.J.; Xiao, Y. Biotrophic interactions between plant and endophytic bacteria in removal of PAHs and Cd from contaminated soils enhanced by graphene oxide. J. Clean. Prod. 2023, 417, 137996. [Google Scholar] [CrossRef]
- Pan, C.R.; Bao, Y.Y.; Guo, A.Y.; Ma, J.Y. Environmentally Relevant-Level CeO2 NP with Ferrous Amendment Alters Soil Bacterial Community Compositions and Metabolite Profiles in Rice-Planted Soils. J. Agric. Food Chem. 2020, 63, 8172–8184. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, M.Y.; Zhou, X.X.; Li, S.P.; Zhao, Y.; Li, L.; Hu, X.M. Effect of the mineral-microbial complexes on the quality, soil nutrients, and microbial community of tailing substrates for growing potted Rorippa. Microbiol. Res. 2022, 262, 127084. [Google Scholar] [CrossRef]
- Lu, C.; Hong, Y.; Liu, J.; Gao, Y.Z.; Ma, Z.; Yang, B.; Ling, W.T.; Waigi, M.G. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ. Pollut. 2019, 251, 773–782. [Google Scholar] [CrossRef]
- Guo, M.X.; Shang, X.T.; Ma, Y.L.; Zhang, K.K.; Zhang, L.; Zhou, Y.M.; Gong, Z.Q.; Miao, R.H. Biochars assisted phytoremediation of polycyclic aromatic hydrocarbons contaminated agricultural soil: Dynamic responses of functional genes and microbial community. Environ. Pollut. 2024, 345, 123476. [Google Scholar] [CrossRef]
- Mafiana, M.O.; Kang, X.H.; Leng, Y.; He, L.F.; Li, S.W. Petroleum contamination significantly changes soil microbial communities in three oilfield locations in Delta State, Nigeria. Environ. Sci. Pollut. Res. 2021, 28, 31447–31461. [Google Scholar] [CrossRef]
- Hennessee, C.T.; Li, Q.X. Effects of Polycyclic Aromatic Hydrocarbon Mixtures on Degradation, Gene Expression, and Metabolite Production in Four Mycobacterium Species. Appl. Environ. Microbiol. 2016, 82, 3357–3369. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, B.; Pakshirajan, K.; Dasu, V.V. Batch biodegradation of PAHs in mixture by Mycobacterium frederiksbergense: Analysis of main and interaction effects. Clean. Technol. Environ. 2009, 12, 441–447. [Google Scholar] [CrossRef]
- Li, Z.; Gu, G.; Zhao, C.C.; Zhao, D.F. Degradation Characteristics and Community Structure of a Hydrocarbon Degrading Bacterial Consortium. China Pet. Process Pet. Technol. 2015, 17, 15–24. [Google Scholar]
- Li, C.H.; Ye, C.; Hou, X.P.; Chen, M.H.; Zheng, X.Y.; Cai, X.Y. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria with tolerance to hypoxic environments. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2017, 52, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Albergaria, J.T.; Alvim-Ferraz, M.D.M.; Delerue-Matos, C. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction. J. Environ. Manag. 2012, 104, 195–201. [Google Scholar] [CrossRef]
- Laurent, F.; Cebron, A.; Schwartz, C.; Leyval, C. Oxidation of a PAH polluted soil using modified Fenton re-action in unsaturated condition affects biological and physico-chemical properties. Chemosphere 2012, 86, 659–664. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Garrido-Oter, R.; Muench, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef]
Time | Sample | Sequences | OTU | Shannon | Simpson | Ace | Chao |
---|---|---|---|---|---|---|---|
60 d | CK | 42,386 | 1015 | 3.9599 | 0.0304 | 294.86 | 305.86 |
GO | 45,759 | 1119 | 4.8004 | 0.0259 | 397.66 | 398.03 | |
120 d | CK | 35,119 | 1326 | 2.9597 | 0.0838 | 422.79 | 444.08 |
GO | 39,999 | 1468 | 3.7685 | 0.0605 | 447.00 | 465.99 | |
150 d | CK | 33,227 | 1423 | 4.0175 | 0.0622 | 443.91 | 409.85 |
GO | 36,008 | 1542 | 4.2140 | 0.0504 | 464.77 | 463.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhang, B.; Meng, Q.; Li, L. Effects of Graphene Oxide on Endophytic Bacteria Population Characteristics in Plants from Soils Contaminated by Polycyclic Aromatic Hydrocarbons. Molecules 2024, 29, 2342. https://doi.org/10.3390/molecules29102342
Zhou X, Zhang B, Meng Q, Li L. Effects of Graphene Oxide on Endophytic Bacteria Population Characteristics in Plants from Soils Contaminated by Polycyclic Aromatic Hydrocarbons. Molecules. 2024; 29(10):2342. https://doi.org/10.3390/molecules29102342
Chicago/Turabian StyleZhou, Xingxing, Bo Zhang, Qingzhu Meng, and Lingmei Li. 2024. "Effects of Graphene Oxide on Endophytic Bacteria Population Characteristics in Plants from Soils Contaminated by Polycyclic Aromatic Hydrocarbons" Molecules 29, no. 10: 2342. https://doi.org/10.3390/molecules29102342
APA StyleZhou, X., Zhang, B., Meng, Q., & Li, L. (2024). Effects of Graphene Oxide on Endophytic Bacteria Population Characteristics in Plants from Soils Contaminated by Polycyclic Aromatic Hydrocarbons. Molecules, 29(10), 2342. https://doi.org/10.3390/molecules29102342