Recent Progress of Ion-Modified TiO2 for Enhanced Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Principle of Photocatalytic Water Splitting through Semiconductor
3. Methods of Ion Modification on TiO2 for Improved Photocatalytic Property
3.1. Metal Ion Doping
3.1.1. Transition Metal Cations
3.1.2. Main Group Metal Cations
3.1.3. Rare Earth (RE) Metal Cations
3.1.4. Noble Metal Cations
3.2. Metal NP Deposition
3.2.1. Au NPs
3.2.2. Ag NPs
3.2.3. Pt NPs
3.2.4. Pd NPs
3.2.5. Ru NPs
3.2.6. Cu NPs
3.2.7. Sn/Ni/Co NPs
3.2.8. Transition Metal Nitride/Carbide NPs
3.3. Nonmetal Ion Doping
3.3.1. Nitrogen Anion
3.3.2. Carbon Anion
3.3.3. S/F Anion
3.3.4. N-B/N-H/N-F/C-N/Br-N Codoping
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Li, C.W.; Kanan, M.W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972. [Google Scholar] [CrossRef]
- Ju, L.; Tan, X.; Mao, X.; Gu, Y.; Smith, S.; Du, A.; Chen, Z.; Chen, C.; Kou, L. Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 2021, 12, 5128. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, K.P.; Hatsukade, T.; Cave, E.R.; Abram, D.N.; Kibsgaard, J.; Jaramillo, T.F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675. [Google Scholar] [CrossRef]
- Ju, L.; Shang, J.; Tang, X.; Kou, L. Tunable Photocatalytic Water Splitting by the Ferroelectric Switch in a 2D AgBiP2Se6 Monolayer. J. Am. Chem. Soc. 2020, 142, 1492–1500. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Ma, S.; Zhang, Y.; Wang, L.; Zhu, G.; Huang, W.; Wang, S. Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution. Nat. Commun. 2024, 15, 2600. [Google Scholar] [CrossRef]
- Ju, L.; Ma, Y.; Tan, X.; Kou, L. Controllable Electrocatalytic to Photocatalytic Conversion in Ferroelectric Heterostructures. J. Am. Chem. Soc. 2023, 145, 26393–26402. [Google Scholar] [CrossRef]
- Gao, X.; Cao, L.; Chang, Y.; Yuan, Z.; Zhang, S.; Liu, S.; Zhang, M.; Fan, H.; Jiang, Z. Improving the CO2 Hydrogenation Activity of Photocatalysts via the Synergy between Surface Frustrated Lewis Pairs and the CuPt Alloy. ACS Sustain. Chem. Eng. 2023, 11, 5597–5607. [Google Scholar] [CrossRef]
- Zhu, X.; Zong, H.; Pérez, C.J.V.; Miao, H.; Sun, W.; Yuan, Z.; Wang, S.; Zeng, G.; Xu, H.; Jiang, Z. Supercharged CO2 photothermal catalytic methanation: High conversion, rate, and selectivity. Angew. Chem. 2023, 135, e202218694. [Google Scholar] [CrossRef]
- Tai, X.; Yan, X.; Wang, L. Synthesis, Structural Characterization, Hirschfeld Surface Analysis, Density Functional Theory, and Photocatalytic CO2 Reduction Activity of a New Ca(II) Complex with a Bis-Schiff Base Ligand. Molecules 2024, 29, 1047. [Google Scholar] [CrossRef]
- Maitlo, H.A.; Anand, B.; Kim, K.-H. TiO2-based photocatalytic generation of hydrogen from water and wastewater. Appl. Energy 2024, 361, 122932. [Google Scholar] [CrossRef]
- Mohsin, M.; Bhatti, I.A.; Zeshan, M.; Yousaf, M.; Iqbal, M. Prospects, challenges, and opportunities of the metals-modified TiO2 based photocatalysts for hydrogen generation under solar light irradiation: A review. FlatChem 2023, 42, 100547. [Google Scholar] [CrossRef]
- Ding, H.; Zha, D.; Han, S.; Jiang, N. Design strategy for photocatalytic hydrogen evolution reaction of TiO2: A review. J. Taiwan. Inst. Chem. Eng. 2023, 151, 105135. [Google Scholar] [CrossRef]
- AlSalka, Y.; Al-Madanat, O.; Hakki, A. TiO2-based photocatalytic hydrogen production: How to transfer it to an applicable approach? Appl. Catal. A Gen. 2023, 662, 119287. [Google Scholar] [CrossRef]
- Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Lett. 2022, 7, 1043–1065. [Google Scholar] [CrossRef]
- Ju, L.; Bie, M.; Shang, J.; Tang, X.; Kou, L. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J. Phys. Mater. 2020, 3, 022004. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.-W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24, 3659–3666. [Google Scholar] [CrossRef]
- Chen, J.; Yang, D.; Song, D.; Jiang, J.; Ma, A.; Hu, M.Z.; Ni, C. Recent progress in enhancing solar-to-hydrogen efficiency. J. Power Sources 2015, 280, 649–666. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhu, X.; Gao, X.; An, C.; Wang, Z.; Zuo, C.; Dionysiou, D.D.; He, H.; Jiang, Z. Enhancing photocatalytic CO2 reduction with TiO2-based materials: Strategies, mechanisms, challenges, and perspectives. Environ. Sci. Ecotechnol 2024, 20, 100368. [Google Scholar] [CrossRef]
- Sukhadeve, G.K.; Bandewar, H.; Janbandhu, S.Y.; Jayaramaiah, J.R.; Gedam, R.S. Photocatalytic hydrogen production, dye degradation, and antimicrobial activity by Ag-Fe co-doped TiO2 nanoparticles. J. Mol. Liq. 2023, 369, 120948. [Google Scholar] [CrossRef]
- Babu, S.J.; Muniyappa, M.; Navakoteswara, R.V.; Mudike, R.; Shastri, M.; Tathagata, S.; Shivaramu, P.D.; Shankar, M.V.; Kumar, C.S.A.; Rangappa, D. Enhanced photocatalytic hydrogen evolution from reduced graphene oxide-defect rich TiO2−x nanocomposites. Int. J. Hydrogen Energy 2022, 47, 40242–40253. [Google Scholar] [CrossRef]
- Ravi, P.; Kumar, K.D.; Rao, V.N.; Shankar, M.V.; Sathish, M. TiO2 encased TaN nanoparticles heterojunction for photocatalytic H2 evolution from aqueous glycerol solution. Mater. Chem. Phys. 2023, 305, 127851. [Google Scholar] [CrossRef]
- Valeeva, A.A.; Dorosheva, I.B.; Kozlova, E.A.; Sushnikova, A.A.; Kurenkova, A.Y.; Saraev, A.A.; Schroettner, H.; Rempel, A.A. Solar photocatalysts based on titanium dioxide nanotubes for hydrogen evolution from aqueous solutions of ethanol. Int. J. Hydrogen Energy 2021, 46, 16917–16924. [Google Scholar] [CrossRef]
- Pan, D.; Han, Z.; Miao, Y.; Zhang, D.; Li, G. Thermally stable TiO2 quantum dots embedded in SiO2 foams: Characterization and photocatalytic H2 evolution activity. Appl. Catal. B Environ. 2018, 229, 130–138. [Google Scholar] [CrossRef]
- Wu, J.; Qiao, P.; Li, H.; Xu, Y.; Yang, W.; Yang, F.; Lin, K.; Pan, K.; Zhou, W. Engineering surface defects on two-dimensional ultrathin mesoporous anatase TiO2 nanosheets for efficient charge separation and exceptional solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. C 2020, 8, 3476–3482. [Google Scholar] [CrossRef]
- Wu, Z.; Ambrožová, N.; Eftekhari, E.; Aravindakshan, N.; Wang, W.; Wang, Q.; Zhang, S.; Kočí, K.; Li, Q. Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light. Emergent Mater. 2019, 2, 303–311. [Google Scholar] [CrossRef]
- Xia, C.; Hong Chuong Nguyen, T.; Cuong Nguyen, X.; Young Kim, S.; Nguyen, D.L.T.; Raizada, P.; Singh, P.; Nguyen, V.-H.; Chien Nguyen, C.; Chinh Hoang, V.; et al. Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives. Fuel 2022, 307, 121745. [Google Scholar] [CrossRef]
- Fazil, M.; Ahmad, T. Pristine TiO2 and Sr-Doped TiO2 Nanostructures for Enhanced Photocatalytic and Electrocatalytic Water Splitting Applications. Catalysts 2023, 13, 93. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Isakoviča, I.; Gopejenko, A.; Ivanova, A.; Začinskis, A.; Eglitis, R.I.; D’yachkov, P.N.; Piskunov, S. Time-Dependent Density Functional Theory Calculations of N- and S-Doped TiO2 Nanotube for Water-Splitting Applications. Nanomaterials 2021, 11, 2900. [Google Scholar] [CrossRef]
- Wang, R.; Shen, J.; Sun, K.; Tang, H.; Liu, Q. Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction. Appl. Surf. Sci. 2019, 493, 1142–1149. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Yang, J. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys. Rev. Lett. 2014, 112, 018301. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Patil, S.B.; Basavarajappa, P.S.; Ganganagappa, N.; Jyothi, M.S.; Raghu, A.V.; Reddy, K.R. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 2019, 44, 13022–13039. [Google Scholar] [CrossRef]
- Li, J.-F.; Wang, J.; Wang, X.-T.; Wang, X.-G.; Li, Y.; Wang, C.-W. Bandgap engineering of TiO2 nanotube photonic crystals for enhancement of photocatalytic capability. CrystEngComm 2020, 22, 1929–1938. [Google Scholar] [CrossRef]
- Sołtys-Mróz, M.; Syrek, K.; Pierzchała, J.; Wiercigroch, E.; Malek, K.; Sulka, G.D. Band gap engineering of nanotubular Fe2O3-TiO2 photoanodes by wet impregnation. Appl. Surf. Sci. 2020, 517, 146195. [Google Scholar] [CrossRef]
- Reddy, N.L.; Rao, V.N.; Vijayakumar, M.; Santhosh, R.; Anandan, S.; Karthik, M.; Shankar, M.; Reddy, K.R.; Shetti, N.P.; Nadagouda, M. A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 10453–10472. [Google Scholar] [CrossRef]
- Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2−xNx Powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Zhang, M.; Chen, J.; Xie, L.; Shi, Q.; Zhu, X. Direct microwave–hydrothermal synthesis of Fe-doped titania with extended visible-light response and enhanced H2-production performance. Chem. Eng. J. 2016, 283, 105–113. [Google Scholar] [CrossRef]
- Wu, M.-C.; Wu, P.-Y.; Lin, T.-H.; Lin, T.-F. Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment. Appl. Surf. Sci. 2018, 430, 390–398. [Google Scholar] [CrossRef]
- Ao, B.; Zhang, Z.; Tang, T.; Zhao, Y. Roles of Cu concentration in the photocatalytic activities of Cu-doped TiO2 from GGA+U calculations. Solid. State Commun. 2015, 204, 23–27. [Google Scholar] [CrossRef]
- Mir, A.; Iqbal, K.; Rubab, S.; Shah, M.A. Effect of concentration of Fe-dopant on the photoelectrochemical properties of Titania nanotube arrays. Ceram. Int. 2023, 49, 677–682. [Google Scholar] [CrossRef]
- Valero-Romero, M.J.; Santaclara, J.G.; Oar-Arteta, L.; van Koppen, L.; Osadchii, D.Y.; Gascon, J.; Kapteijn, F. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chem. Eng. J. 2019, 360, 75–88. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Kang, Y.; Li, L.; Xu, X. Photoelectrochemical properties of Fe-doped TiO2 nanotube arrays fabricated by anodization. J. Appl. Electrochem. 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, J.; Li, G.; Jiang, Y.; Lan, H.; Guo, W.; Cao, Y. Origin of the improved photocatalytic activity of Cu incorporated TiO2 for hydrogen generation from water. Appl. Surf. Sci. 2016, 382, 170–177. [Google Scholar] [CrossRef]
- Montoya, A.T.; Gillan, E.G. Enhanced Photocatalytic Hydrogen Evolution from Transition-Metal Surface-Modified TiO2. ACS Omega 2018, 3, 2947–2955. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.K.; Lalitha, K.; Reddy, P.V.L.; Sadanandam, G.; Subrahmanyam, M.; Kumari, V.D. Fe/TiO2: A Visible Light Active Photocatalyst for the Continuous Production of Hydrogen from Water Splitting Under Solar Irradiation. Catal. Lett. 2014, 144, 340–346. [Google Scholar] [CrossRef]
- Ouyang, W.; Muñoz-Batista, M.J.; Kubacka, A.; Luque, R.; Fernández-García, M. Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Appl. Catal. B Environ. 2018, 238, 434–443. [Google Scholar] [CrossRef]
- Zhang, H.; Zuo, S.; Qiu, M.; Wang, S.; Zhang, Y.; Zhang, J.; Lou, X.W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823. [Google Scholar] [CrossRef]
- Su, C.-Y.; Wang, L.-C.; Liu, W.-S.; Wang, C.-C.; Perng, T.-P. Photocatalysis and Hydrogen Evolution of Al- and Zn-Doped TiO2 Nanotubes Fabricated by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2018, 10, 33287–33295. [Google Scholar] [CrossRef]
- Gogoi, D.; Namdeo, A.; Golder, A.K.; Peela, N.R. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. Int. J. Hydrogen Energy 2020, 45, 2729–2744. [Google Scholar] [CrossRef]
- Pulido Melián, E.; Nereida Suárez, M.; Jardiel, T.; Calatayud, D.G.; del Campo, A.; Doña-Rodríguez, J.M.; Araña, J.; González Díaz, O.M. Highly photoactive TiO2 microspheres for photocatalytic production of hydrogen. Int. J. Hydrogen Energy 2019, 44, 24653–24666. [Google Scholar] [CrossRef]
- Wang, H.; Song, L.; Yu, L.; Xia, X.; Bao, Y.; Lourenco, M.; Homewood, K.; Gao, Y. Charge transfer between Ti4+, Sn4+ and Pt in the tin doped TiO2 photocatalyst for elevating the hydrogen production efficiency. Appl. Surf. Sci. 2022, 581, 152202. [Google Scholar] [CrossRef]
- Guayaquil-Sosa, J.F.; Serrano-Rosales, B.; Valadés-Pelayo, P.J.; de Lasa, H. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Appl. Catal. B Environ. 2017, 211, 337–348. [Google Scholar] [CrossRef]
- Kwon, J.; Choi, K.; Schreck, M.; Liu, T.; Tervoort, E.; Niederberger, M. Gas-Phase Nitrogen Doping of Monolithic TiO2 Nanoparticle-Based Aerogels for Efficient Visible Light-Driven Photocatalytic H2 Production. ACS Appl. Mater. Interfaces 2021, 13, 53691–53701. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Cao, S.-W.; Wang, Z.; Shahjamali, M.M.; Loo, S.C.J.; Barber, J.; Xue, C. Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int. J. Hydrogen Energy 2012, 37, 17853–17861. [Google Scholar] [CrossRef]
- Varas-Concha, F.; Guzmán, D.; Isaacs, M.; Sáez-Navarrete, C. Hydrogen Productivity Analysis Using Low Concentration of TiO2–Au Nanoparticles on a Ultraviolet-LED-Based Photocatalytic Reactors. Energy Technol. 2022, 10, 2100469. [Google Scholar] [CrossRef]
- Luna, M.; Barawi, M.; Gómez-Moñivas, S.; Colchero, J.; Rodríguez-Peña, M.; Yang, S.; Zhao, X.; Lu, Y.-H.; Chintala, R.; Reñones, P.; et al. Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO2. ACS Appl. Mater. Interfaces 2021, 13, 50531–50538. [Google Scholar] [CrossRef]
- Kunthakudee, N.; Puangpetch, T.; Ramakul, P.; Serivalsatit, K.; Hunsom, M. Light-assisted synthesis of Au/TiO2 nanoparticles for H2 production by photocatalytic water splitting. Int. J. Hydrogen Energy 2022, 47, 23570–23582. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, D.; Liao, Y.; Li, F.; Zhang, H.; Xiang, Q. Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. J. Colloid. Interface Sci. 2019, 555, 94–103. [Google Scholar] [CrossRef]
- Méndez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Rau, S.; Colbeau-Justin, C.; Rodríguez-López, J.L.; Remita, H. Surface Modification of TiO2 with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light. J. Phys. Chem. C 2016, 120, 25010–25022. [Google Scholar] [CrossRef]
- He, Q.; Sun, H.; Shang, Y.; Tang, Y.; She, P.; Zeng, S.; Xu, K.; Lu, G.; Liang, S.; Yin, S.; et al. Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion. Appl. Surf. Sci. 2018, 441, 458–465. [Google Scholar] [CrossRef]
- Patra, K.K.; Gopinath, C.S. Bimetallic and Plasmonic Ag–Au on TiO2 for Solar Water Splitting: An Active Nanocomposite for Entire Visible-Light-Region Absorption. ChemCatChem 2016, 8, 3294–3311. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Y.; Li, J.; Wang, Y.; Jiang, G.; Zhao, Z.; Wang, D.; Duan, A.; Liu, J.; Wei, Y. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal. B Environ. 2014, 158–159, 20–29. [Google Scholar] [CrossRef]
- Lian, Z.; Wang, W.; Xiao, S.; Li, X.; Cui, Y.; Zhang, D.; Li, G.; Li, H. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Sci. Rep. 2015, 5, 10461. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Yu, Z.; Wang, C.; Zhao, Y. AgCu/TiO2 hot-electron device for solar water splitting: The mechanisms of LSPR and time-domain characterization. Int. J. Hydrogen Energy 2023, 48, 12215–12226. [Google Scholar] [CrossRef]
- Sun, T.; Liu, E.; Liang, X.; Hu, X.; Fan, J. Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Appl. Surf. Sci. 2015, 347, 696–705. [Google Scholar] [CrossRef]
- Wu, R.-J.; Hsieh, Y.-C.; Hung, H.-C.; Ie, C.; Chavali, M. Visible Light Photocatalytic Activity of Pt/N-TiO2 towards Enhanced H2 Production from Water Splitting. J. Chin. Chem. Soc. 2014, 61, 495–500. [Google Scholar] [CrossRef]
- Gao, L.; Li, Y.; Ren, J.; Wang, S.; Wang, R.; Fu, G.; Hu, Y. Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting. Appl. Catal. B Environ. 2017, 202, 127–133. [Google Scholar] [CrossRef]
- Hejazi, S.; Mohajernia, S.; Osuagwu, B.; Zoppellaro, G.; Andryskova, P.; Tomanec, O.; Kment, S.; Zbořil, R.; Schmuki, P. On the Controlled Loading of Single Platinum Atoms as a Co-Catalyst on TiO2 Anatase for Optimized Photocatalytic H2 Generation. Adv. Mater. 2020, 32, 1908505. [Google Scholar] [CrossRef]
- Hu, X.; Song, J.; Luo, J.; Zhang, H.; Sun, Z.; Li, C.; Zheng, S.; Liu, Q. Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. J. Energy Chem. 2021, 62, 1–10. [Google Scholar] [CrossRef]
- Wu, J.; Lu, S.; Ge, D.; Zhang, L.; Chen, W.; Gu, H. Photocatalytic properties of Pd/TiO2 nanosheets for hydrogen evolution from water splitting. RSC Adv. 2016, 6, 67502–67508. [Google Scholar] [CrossRef]
- Chen, D.; Gao, H.; Yao, Y.; Zhu, L.; Zhou, X.; Peng, X.; Zhang, M. Pd loading, Mn+ (n = 1, 2, 3) metal ions doped TiO2 nanosheets for enhanced photocatalytic H2 production and reaction mechanism. Int. J. Hydrogen Energy 2022, 47, 10250–10260. [Google Scholar] [CrossRef]
- Ni, D.; Shen, H.; Li, H.; Ma, Y.; Zhai, T. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production. Appl. Surf. Sci. 2017, 409, 241–249. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Liu, S.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W.; Jiang, Z. Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production. Appl. Surf. Sci. 2018, 445, 527–534. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, S.; Gao, Y. Investigation of plasmonic Cu with controlled diameter over TiO2 photoelectrode for solar-to-hydrogen conversion. Int. J. Hydrogen Energy 2019, 44, 25486–25494. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, M.; Han, C.; Liang, Y.; Zhao, K. Achieving solar-to-hydrogen evolution promotion using TiO2 nanoparticles and an unanchored Cu co-catalyst. Mater. Res. Bull. 2020, 129, 110891. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, S.; Zhang, J.; Yu, Z.; Bai, G.; Du, C. TiO2 nanotube arrays decorated with plasmonic Cu, CuO nanoparticles, and eosin Y dye as efficient photoanode for water splitting. Mater. Chem. Phys. 2019, 231, 27–32. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z.; Huang, H.; Wang, S.; Du, A.; Wang, L. Molten-Salt-Mediated Synthesis of an Atomic Nickel Co-catalyst on TiO2 for Improved Photocatalytic H2 Evolution. Angew. Chem. Int. Ed. Engl. 2020, 59, 7230–7234. [Google Scholar] [CrossRef]
- Rath, P.C.; Mishra, M.; Saikia, D.; Chang, J.K.; Perng, T.-P.; Kao, H.-M. Facile fabrication of titania-ordered cubic mesoporous carbon composite: Effect of Ni doping on photocatalytic hydrogen generation. Int. J. Hydrogen Energy 2019, 44, 19255–19266. [Google Scholar] [CrossRef]
- Spanu, D.; Minguzzi, A.; Recchia, S.; Shahvardanfard, F.; Tomanec, O.; Zboril, R.; Schmuki, P.; Ghigna, P.; Altomare, M. An Operando X-ray Absorption Spectroscopy Study of a NiCu−TiO2 Photocatalyst for H2 Evolution. ACS Catal. 2020, 10, 8293–8302. [Google Scholar] [CrossRef]
- Gao, D.; Wu, X.; Wang, P.; Xu, Y.; Yu, H.; Yu, J. Simultaneous Realization of Direct Photoinduced Deposition and Improved H2-Evolution Performance of Sn-Nanoparticle-Modified TiO2 Photocatalyst. ACS Sustain. Chem. Eng. 2019, 7, 10084–10094. [Google Scholar] [CrossRef]
- Liu, T.; Chen, W.; Liu, X.; Zhu, J.; Lu, L. Well-dispersed ultrafine nitrogen-doped TiO2 with polyvinylpyrrolidone (PVP) acted as N-source and stabilizer for water splitting. J. Energy Chem. 2016, 25, 1–9. [Google Scholar] [CrossRef]
- Sun, S.; Gao, P.; Yang, Y.; Yang, P.; Chen, Y.; Wang, Y. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2016, 8, 18126–18131. [Google Scholar] [CrossRef]
- Babu, V.J.; Kumar, M.K.; Nair, A.S.; Kheng, T.L.; Allakhverdiev, S.I.; Ramakrishna, S. Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int. J. Hydrogen Energy 2012, 37, 8897–8904. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Yang, J.; Ma, H.; Tade, M.O.; Wang, S.; Liu, J. Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. Camb. 2014, 50, 13971–13974. [Google Scholar] [CrossRef] [PubMed]
- Esmat, M.; El-Hosainy, H.; Tahawy, R.; Jevasuwan, W.; Tsunoji, N.; Fukata, N.; Ide, Y. Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Appl. Catal. B Environ. 2021, 285, 119755. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Z.; Wu, X.; Wang, G.; Zhou, W. In-situ S-doped porous anatase TiO2 nanopillars for high-efficient visible-light photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2016, 41, 1535–1541. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X.; Qin, J.; Shen, X.; Yu, R.; Ma, M.; Liu, R. Porous carbon-doped TiO2 on TiC nanostructures for enhanced photocatalytic hydrogen production under visible light. J. Catal. 2017, 347, 36–44. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, K.; Cao, D.; Gao, P.; Qiu, M.; Liu, L.; Yang, P. Efficient Charge Separation from F– Selective Etching and Doping of Anatase-TiO2{001} for Enhanced Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2018, 10, 19633–19638. [Google Scholar] [CrossRef]
- Lian, J.; Shibata, K.; Xiao, Y.; Du, S.; Tanaka, T.; Qi, Y.; Ishitani, O.; Maeda, K.; Feng, Z.; Zhang, F. A band-to-band transition visible-light-responsive anatase titania photocatalyst by N,F-codoping for water splitting and CO2 reduction. J. Mater. Chem. A 2023, 11, 141–148. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, X.; Zhang, H.; Liao, Y.; Xiang, Q. Enhanced photocatalytic hydrogen evolution activity of carbon and nitrogen self-doped TiO2 hollow sphere with the creation of oxygen vacancy and Ti3+. Mater. Today Energy 2018, 10, 132–140. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Bao, J.; Sheng, X.; Fang, J.; Zhao, S.; Zhang, Y.; Chen, W. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production. ACS Appl. Mater. Interfaces 2018, 10, 18796–18804. [Google Scholar] [CrossRef] [PubMed]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Ramana Reddy, M.V.; Sayanna, R. Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating. Surf. Interfaces 2019, 17, 100368. [Google Scholar] [CrossRef]
- Momeni, M.M.; Ghayeb, Y. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J. Alloys Compd. 2015, 637, 393–400. [Google Scholar] [CrossRef]
- Tian, B.; Li, C.; Zhang, J. One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem. Eng. J. 2012, 191, 402–409. [Google Scholar] [CrossRef]
- Mishra, T.; Wang, L.; Hahn, R.; Schmuki, P. In-situ Cr doped anodized TiO2 nanotubes with increased photocurrent response. Electrochim. Acta 2014, 132, 410–415. [Google Scholar] [CrossRef]
- Nong, S.; Dong, W.; Yin, J.; Dong, B.; Lu, Y.; Yuan, X.; Wang, X.; Bu, K.; Chen, M.; Jiang, S.; et al. Well-Dispersed Ruthenium in Mesoporous Crystal TiO2 as an Advanced Electrocatalyst for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 5719–5727. [Google Scholar] [CrossRef] [PubMed]
- Mazierski, P.; Mikolajczyk, A.; Bajorowicz, B.; Malankowska, A.; Zaleska-Medynska, A.; Nadolna, J. The role of lanthanides in TiO2-based photocatalysis: A review. Appl. Catal. B Environ. 2018, 233, 301–317. [Google Scholar] [CrossRef]
- Martins, P.M.; Gomez, V.; Lopes, A.C.; Tavares, C.J.; Botelho, G.; Irusta, S.; Lanceros-Mendez, S. Improving Photocatalytic Performance and Recyclability by Development of Er-Doped and Er/Pr-Codoped TiO2/Poly(vinylidene difluoride)–Trifluoroethylene Composite Membranes. J. Phys. Chem. C 2014, 118, 27944–27953. [Google Scholar] [CrossRef]
- Tian, M.; Wang, H.; Sun, D.; Peng, W.; Tao, W. Visible light driven nanocrystal anatase TiO2 doped by Ce from sol–gel method and its photoelectrochemical water splitting properties. Int. J. Hydrogen Energy 2014, 39, 13448–13453. [Google Scholar] [CrossRef]
- Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compd. 2011, 509, 1648–1660. [Google Scholar] [CrossRef]
- Pan, Y.; Wen, M. Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 22055–22063. [Google Scholar] [CrossRef]
- Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Sol. Energy 2020, 211, 522–546. [Google Scholar] [CrossRef]
- Reddy, N.L.; Karthik, M.; Shankar, M.V. Synthesis of Ag-TiO2 Nanoparticles for Improved Photocatalytic Hydrogen Production Under Solar Light Irradiation. Adv. Porous Mater. 2017, 5, 122–127. [Google Scholar] [CrossRef]
- Wang, D.; Pillai, S.C.; Ho, S.-H.; Zeng, J.; Li, Y.; Dionysiou, D.D. Plasmonic-based nanomaterials for environmental remediation. Appl. Catal. B Environ. 2018, 237, 721–741. [Google Scholar] [CrossRef]
- Panayotov, D.A.; Frenkel, A.I.; Morris, J.R. Catalysis and Photocatalysis by Nanoscale Au/TiO2: Perspectives for Renewable Energy. ACS Energy Lett. 2017, 2, 1223–1231. [Google Scholar] [CrossRef]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Wang, P.; Huang, B.; Dai, Y.; Whangbo, M.H. Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813–9825. [Google Scholar] [CrossRef]
- Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103. [Google Scholar] [CrossRef]
- Gosciniak, J.; Atar, F.B.; Corbett, B.; Rasras, M. Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride. Sci. Rep. 2019, 9, 6048. [Google Scholar] [CrossRef]
- Tan, T.H.; Scott, J.; Ng, Y.H.; Taylor, R.A.; Aguey-Zinsou, K.-F.; Amal, R. Understanding Plasmon and Band Gap Photoexcitation Effects on the Thermal-Catalytic Oxidation of Ethanol by TiO2-Supported Gold. ACS Catal. 2016, 6, 1870–1879. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P.H.C.; Krishnan, V. Recent Advances in Plasmonic Photocatalysis Based on TiO2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. Small 2022, 18, 2101638. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Sweeny, B.C.; Johnston-Peck, A.C.; Niu, W.; Graham, J.O.; DuChene, J.S.; Qiu, J.; Wang, Y.-C.; Engelhard, M.H.; Su, D.; et al. Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters. J. Am. Chem. Soc. 2014, 136, 9842–9845. [Google Scholar] [CrossRef]
- Nie, J.; Patrocinio, A.O.T.; Hamid, S.; Sieland, F.; Sann, J.; Xia, S.; Bahnemann, D.W.; Schneider, J. New insights into the plasmonic enhancement for photocatalytic H2 production by Cu–TiO2 upon visible light illumination. Phys. Chem. Chem. Phys. 2018, 20, 5264–5273. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Melvin, A.A.; Matthews, T.; Dash, S.; Tyagi, A.K. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renew. Sustain. Energy Rev. 2016, 58, 1366–1375. [Google Scholar] [CrossRef]
- Jia, H.; Zhu, X.M.; Jiang, R.; Wang, J. Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity. ACS Appl. Mater. Interfaces 2017, 9, 2560–2571. [Google Scholar] [CrossRef] [PubMed]
- Dosado, A.G.; Chen, W.-T.; Chan, A.; Sun-Waterhouse, D.; Waterhouse, G.I.N. Novel Au/TiO2 photocatalysts for hydrogen production in alcohol–water mixtures based on hydrogen titanate nanotube precursors. J. Catal. 2015, 330, 238–254. [Google Scholar] [CrossRef]
- Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef]
- Jiang, W.; Bai, S.; Wang, L.; Wang, X.; Yang, L.; Li, Y.; Liu, D.; Wang, X.; Li, Z.; Jiang, J.; et al. Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution. Small 2016, 12, 1640–1648. [Google Scholar] [CrossRef]
- Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface Plasmonic-Assisted Photocatalysis and Optoelectronic Devices with Noble Metal Nanocrystals: Design, Synthesis, and Applications. Adv. Funct. Mater. 2020, 30, 1906744. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S.B. Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination. Nano Lett. 2011, 11, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Priebe, J.B.; Radnik, J.; Lennox, A.J.J.; Pohl, M.-M.; Karnahl, M.; Hollmann, D.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M.; et al. Solar Hydrogen Production by Plasmonic Au–TiO2 Catalysts: Impact of Synthesis Protocol and TiO2 Phase on Charge Transfer Efficiency and H2 Evolution Rates. ACS Catal. 2015, 5, 2137–2148. [Google Scholar] [CrossRef]
- Liu, E.; Kang, L.; Yang, Y.; Sun, T.; Hu, X.; Zhu, C.; Liu, H.; Wang, Q.; Li, X.; Fan, J. Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting. Nanotechnology 2014, 25, 165401. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Qurashi, A. Sonochemical-Assisted In Situ Electrochemical Synthesis of Ag/α-Fe2O3/TiO2 Nanoarrays to Harness Energy from Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 11235–11245. [Google Scholar] [CrossRef]
- Zhao, T.; Xing, Z.; Xiu, Z.; Li, Z.; Chen, P.; Zhu, Q.; Zhou, W. Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2−x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation. J. Hazard. Mater. 2019, 364, 117–124. [Google Scholar] [CrossRef]
- Lang, Q.; Chen, Y.; Huang, T.; Yang, L.; Zhong, S.; Wu, L.; Chen, J.; Bai, S. Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 220, 182–190. [Google Scholar] [CrossRef]
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, Z.-P.; Yang, W.-M. Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic Hydrogen Evolution on TiO2 Support: A DFT Study. ACS Catal. 2018, 8, 7270–7278. [Google Scholar] [CrossRef]
- Al-Azri, Z.H.N.; Chen, W.-T.; Chan, A.; Jovic, V.; Ina, T.; Idriss, H.; Waterhouse, G.I.N. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. J. Catal. 2015, 329, 355–367. [Google Scholar] [CrossRef]
- Chen, Y.; Soler, L.; Armengol-Profitós, M.; Xie, C.; Crespo, D.; Llorca, J. Enhanced photoproduction of hydrogen on Pd/TiO2 prepared by mechanochemistry. Appl. Catal. B Environ. 2022, 309, 121275. [Google Scholar] [CrossRef]
- Caudillo-Flores, U.; Fuentes-Moyado, S.; Fernández-García, M.; Kubacka, A. Effect of niobium on the performance of Pd-TiO2 photocatalysts for hydrogen production. Catal. Today 2023, 419, 114147. [Google Scholar] [CrossRef]
- Gómez-Cerezo, N.; Sayago-Carro, R.; Cortés-Bazo, A.; Fernández-García, M.; Kubacka, A. PdCu deposited alloys on TiO2 for hydrogen photo-production. Catal. Today 2023, 423, 114280. [Google Scholar] [CrossRef]
- Obregón, S.; Muñoz-Batista, M.J.; Fernández-García, M.; Kubacka, A.; Colón, G. Cu–TiO2 systems for the photocatalytic H2 production: Influence of structural and surface support features. Appl. Catal. B Environ. 2015, 179, 468–478. [Google Scholar] [CrossRef]
- Ganesh, I.; Kumar, P.P.; Annapoorna, I.; Sumliner, J.M.; Ramakrishna, M.; Hebalkar, N.Y.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci. 2014, 293, 229–247. [Google Scholar] [CrossRef]
- Janczarek, M.; Wei, Z.; Endo, M.; Ohtani, B.; Kowalska, E. Silver- and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst. J. Photonics Energy 2016, 7, 012008. [Google Scholar] [CrossRef]
- Chen, M.; Hou, W.; Chen, C.; Wang, Y.; Xu, Y. Wavelength-dependent photoactivity of Zn Cd1−S and ZnCo2O4/Zn Cd1−S for H2 and H2O2 production. Int. J. Hydrogen Energy 2022, 47, 17241–17251. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R.; Cao, X.; Zhang, L.; Zhou, G.; et al. Synergetic Integration of Cu1.94S-ZnxCd1−xS Heteronanorods for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production. J. Am. Chem. Soc. 2016, 138, 4286–4289. [Google Scholar] [CrossRef]
- Wang, L.; Kou, M.; Tournet, J.; Karuturi, S.; Zan, L. Bandgap-energy-adjustable noble-metal-free MoS2-ZnxCd1−xS for highly efficient H2 production under visible-light. J. Taiwan. Inst. Chem. Eng. 2023, 153, 105199. [Google Scholar] [CrossRef]
- Zong, S.; Tian, L.; Guan, X.; Zhang, Y.; Cheng, C.; Geng, J.; Jiang, S.; Shi, J. Hierarchical LaTiO2N/Sn3O4 heterojunction with intimate interface contact for enhanced photocatalytic water splitting. Surf. Interfaces 2024, 48, 104285. [Google Scholar] [CrossRef]
- Li, K.; Xiong, H.; Wang, X.; Ma, Y.; Gao, T.N.; Liu, Z.; Liu, Y.; Fan, M.; Zhang, L.; Song, S.; et al. Ligand-Assisted Coordinative Self-Assembly Method to Synthesize Mesoporous ZnxCd1−xS Nanospheres with Nano-Twin-Induced Phase Junction for Enhanced Photocatalytic H2 Evolution. Inorg. Chem. 2020, 59, 5063–5071. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Batista, M.J.; Motta Meira, D.; Colón, G.; Kubacka, A.; Fernández-García, M. Phase-Contact Engineering in Mono- and Bimetallic Cu-Ni Co-catalysts for Hydrogen Photocatalytic Materials. Angew. Chem. Int. Ed. 2018, 57, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-D.; Yan, S.; Huang, Q.-D.; Fan, M.-T.; Yuan, Y.-Z.; Tan, T.T.-Y.; Liao, D.-W. TiO2 promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H2 evolution. Appl. Surf. Sci. 2014, 309, 188–193. [Google Scholar] [CrossRef]
- Amin, M.A.; Ahmed, E.M.; Mostafa, N.Y.; Alotibi, M.M.; Darabdhara, G.; Das, M.R.; Wysocka, J.; Ryl, J.; Abd El-Rehim, S.S. Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical Generation of H2. ACS Appl. Mater. Interfaces 2016, 8, 23655–23667. [Google Scholar] [CrossRef] [PubMed]
- Naldoni, A.; Guler, U.; Wang, Z.; Marelli, M.; Malara, F.; Meng, X.; Besteiro, L.V.; Govorov, A.O.; Kildishev, A.V.; Boltasseva, A.; et al. Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Adv. Opt. Mater. 2017, 5, 1601031. [Google Scholar] [CrossRef]
- Awin, E.W.; Lale, A.; Hari Kumar, K.C.; Demirci, U.B.; Bernard, S.; Kumar, R. Plasmon enhanced visible light photocatalytic activity in polymer-derived TiN/Si-O-C-N nanocomposites. Mater. Des. 2018, 157, 87–96. [Google Scholar] [CrossRef]
- Briggs, J.A.; Naik, G.V.; Petach, T.A.; Baum, B.K.; Goldhaber-Gordon, D.; Dionne, J.A. Fully CMOS-compatible titanium nitride nanoantennas. Appl. Phys. Lett. 2016, 108, 051110. [Google Scholar] [CrossRef]
- Gui, L.; Bagheri, S.; Strohfeldt, N.; Hentschel, M.; Zgrabik, C.M.; Metzger, B.; Linnenbank, H.; Hu, E.L.; Giessen, H. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Lett. 2016, 16, 5708–5713. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.; Qin, Z.; Wu, Z. Monolayer Ti3C2Tx as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO2. ACS Appl. Energy Mater. 2019, 2, 4640–4651. [Google Scholar] [CrossRef]
- Acevedo Peña, P.; Ramírez Ortega, D.; Guerrero Araque, D.; Hernández Gordillo, A.; Zanella, R.; Reguera, E. Boosting the photocatalytic hydrogen production of TiO2 by using copper hexacyanocobaltate as co-catalyst. Int. J. Hydrogen Energy 2021, 46, 10312–10323. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Mozhiarasi, V.; Tayade, R.J. Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications. Photochem 2021, 1, 371–410. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Hoang, S.; Guo, S.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires. Nano Lett. 2012, 12, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, J.; Guo, D.; Zhang, Y. Band gap engineering of compensated (N, H) and (C, 2H) codoped anatase TiO2: A first-principles calculation. Chem. Phys. Lett. 2012, 539–540, 175–179. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, J.; Lin, W.; Liu, Y.; Kong, Y. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 2015, 332, 573–580. [Google Scholar] [CrossRef]
- Jia, G.; Wang, Y.; Cui, X.; Zheng, W. Highly Carbon-Doped TiO2 Derived from MXene Boosting the Photocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2018, 6, 13480–13486. [Google Scholar] [CrossRef]
- Niu, J.; Lu, P.; Kang, M.; Deng, K.; Yao, B.; Yu, X.; Zhang, Q. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method. Appl. Surf. Sci. 2014, 319, 99–106. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, S.; Zhang, S.; Wang, R.; Wang, K. Preparation and visible-light photocatalytic activity of N-doped TiO2 by plasma-assisted sol-gel method. Catal. Today 2019, 337, 37–43. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.-L.; Guo, D.; Ma, L.-L.; Zhu, B.-L.; Wang, P.; Wang, G.-C.; Zhang, S.-M.; Huang, W.-P. Fabrication and photocatalytic performance of C, N, F-tridoped TiO2 nanotubes. Catal. Today 2019, 327, 182–189. [Google Scholar] [CrossRef]
- Khaselev, O.; Turner John, A. A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting. Science 1998, 280, 425–427. [Google Scholar] [CrossRef]
- Gai, Y.; Li, J.; Li, S.-S.; Xia, J.-B.; Wei, S.-H. Design of Narrow-Gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity. Phys. Rev. Lett. 2009, 102, 036402. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Huang, X.; Tian, B.; Zhou, S.; Li, Y.; Du, Z. The effect of electronegative difference on the electronic structure and visible light photocatalytic activity of N-doped anatase TiO2 by first-principles calculations. Appl. Phys. Lett. 2011, 98, 162107. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, A.H.; Nelson-Fitzpatrick, N.; Ibrahim, K.H.; Mistry, K.; Yavuz, M.; Musselman, K.P. Simple plasma assisted atomic layer deposition technique for high substitutional nitrogen doping of TiO2. J. Vac. Sci. Technol. A Vac. Surf. Film. 2018, 36, 031602. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, X.; Li, W.; Lin, Z.; Zhao, Z.; Chen, C.; Wang, C.; Li, Y.; Huang, X.; Miao, L.; et al. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO2 Nanowire Arrays by Nitrogen Implantation. Nano Lett. 2015, 15, 4692–4698. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Häublein, V.; Liu, N.; Nguyen, N.T.; Zolnhofer, E.M.; Tsuchiya, H.; Killian, M.S.; Meyer, K.; Frey, L.; Schmuki, P. TiO2 Nanotubes: Nitrogen-Ion Implantation at Low Dose Provides Noble-Metal-Free Photocatalytic H2-Evolution Activity. Angew. Chem. Int. Ed. 2016, 55, 3763–3767. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, Q.-Q.; Huang, J.-Q.; Deng, Z.-H.; Shi, H.-L.; Wu, L.; Liu, Z.-G.; Cao, Y.-G. Effective water splitting using N-doped TiO2 films: Role of preferred orientation on hydrogen production. Int. J. Hydrogen Energy 2014, 39, 1967–1971. [Google Scholar] [CrossRef]
- Wojtaszek, K.; Wach, A.; Czapla-Masztafiak, J.; Tyrala, K.; Sa, J.; Yildiz Ozer, L.; Garlisi, C.; Palmisano, G.; Szlachetko, J. The influence of nitrogen doping on the electronic structure of the valence and conduction band in TiO2. J. Synchrotron Radiat. 2019, 26, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Tang, X.; Qin, X.; Tang, Z.; Yuan, D.; Ju, L. Applying Hydrogenation to Stabilize N-TiO2 and Enhance Its Visible Light Photocatalytic Activity. Catalysts 2022, 12, 178. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, X.D.; Du, J. Electronic structure and enhanced visible-light absorption of N,B-codoped TiO2. Phys. Status Solidi RRL Rapid Res. Lett. 2012, 6, 172–174. [Google Scholar] [CrossRef]
- Shi, A.J.; Li, B.X.; Wan, C.R.; Leng, D.C.; Lei, E.Y. Hybrid density functional studies of C-anion-doped anatase TiO2. Chem. Phys. Lett. 2016, 650, 19–28. [Google Scholar] [CrossRef]
- Varnagiris, S.; Medvids, A.; Lelis, M.; Milcius, D.; Antuzevics, A. Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. J. Photochem. Photobiol. A Chem. 2019, 382, 111941. [Google Scholar] [CrossRef]
- Shao, J.; Sheng, W.; Wang, M.; Li, S.; Chen, J.; Zhang, Y.; Cao, S. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl. Catal. B Environ. 2017, 209, 311–319. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Chen, J.; Cheng, L.; Chang, J.; Sheng, W.; Hu, C.; Cao, S. C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl. Catal. B Environ. 2015, 165, 715–722. [Google Scholar] [CrossRef]
- Chen, T.; Liu, G.; Jin, F.; Wei, M.; Feng, J.; Ma, Y. Mediating both valence and conduction bands of TiO2 by anionic dopants for visible- and infrared-light photocatalysis. Phys. Chem. Chem. Phys. 2018, 20, 12785–12790. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Cao, C.; Chen, S.; He, M.; Fang, J.; Chen, J.; Li, X.; Li, D. Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. Appl. Catal. B Environ. 2015, 179, 344–351. [Google Scholar] [CrossRef]
- Zhang, P.; Tachikawa, T.; Fujitsuka, M.; Majima, T. In Situ Fluorine Doping of TiO2 Superstructures for Efficient Visible-Light Driven Hydrogen Generation. ChemSusChem 2016, 9, 617–623. [Google Scholar] [CrossRef]
- Yang, K.; Dai, Y.; Huang, B. Study of the Nitrogen Concentration Influence on N-Doped TiO2 Anatase from First-Principles Calculations. J. Phys. Chem. C 2007, 111, 12086–12090. [Google Scholar] [CrossRef]
- Sasinska, A.; Bialuschewski, D.; Islam, M.M.; Singh, T.; Deo, M.; Mathur, S. Experimental and Theoretical Insights into Influence of Hydrogen and Nitrogen Plasma on the Water Splitting Performance of ALD Grown TiO2 Thin Films. J. Phys. Chem. C 2017, 121, 15538–15548. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Li, C.; He, L. Electronic and photocatalytic properties of N/F co-doped anatase TiO2. RSC Adv. 2017, 7, 55282–55287. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, Z.; Ma, X.; Jing, K.; Shen, M.; Yu, N.; Tang, J.; Dionysiou, D.D. Preparation of N,F-codoped TiO 2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances. Sep. Purif. Technol. 2017, 175, 305–313. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, J.; Cao, D. I, N-Codoping Modification of TiO2 for Enhanced Photoelectrochemical H2O Splitting in Visible-Light Region. J. Phys. Chem. C 2017, 121, 26202–26208. [Google Scholar] [CrossRef]
- Sun, C.; Searles, D.J. Origin of the Visible Light Absorption of Boron/Nitrogen Co-doped Anatase TiO2. J. Phys. Chem. C 2013, 117, 26454–26459. [Google Scholar] [CrossRef]
- Xing, M.-Y.; Li, W.-K.; Wu, Y.-M.; Zhang, J.-L.; Gong, X.-Q. Formation of New Structures and Their Synergistic Effects in Boron and Nitrogen Codoped TiO2 for Enhancement of Photocatalytic Performance. J. Phys. Chem. C 2011, 115, 7858–7865. [Google Scholar] [CrossRef]
- Mi, L.; Xu, P.; Shen, H.; Wang, P.-N.; Shen, W. First-principles calculation of N:H codoping effect on energy gap narrowing of TiO2. Appl. Phys. Lett. 2007, 90, 171909. [Google Scholar] [CrossRef]
- Xu, P.; Mi, L.; Wang, P.-N. Improved optical response for N-doped anatase TiO2 films prepared by pulsed laser deposition in N2/NH3/O2 mixture. J. Cryst. Growth 2006, 289, 433–439. [Google Scholar] [CrossRef]
- Xia, S.M.; Zhang, Y.Q.; Zheng, Y.F.; Xu, C.S.; Liu, G.M. Enhanced visible light photocatalytic activity of N, F-codoped TiO2 powders with high thermal stability. Environ. Technol. 2019, 40, 1418–1424. [Google Scholar] [CrossRef]
- Wu, T.; Niu, P.; Yang, Y.; Yin, L.-C.; Tan, J.; Zhu, H.; Irvine, J.T.S.; Wang, L.; Liu, G.; Cheng, H.-M. Homogeneous Doping of Substitutional Nitrogen/Carbon in TiO2 Plates for Visible Light Photocatalytic Water Oxidation. Adv. Funct. Mater. 2019, 29, 1901943. [Google Scholar] [CrossRef]
Type | Sample | Fabrication Method | Light Source | H2 Generation Efficiency | Quantum Efficiency | Durability, h (Retention, %) | Ref. |
---|---|---|---|---|---|---|---|
Metal ion doping | Cu-TiO2 | Magnetron sputtering | 300 W Xe lamp | 2.80 μmol·cm−2·h−1 | -- | -- | [45] |
Cu-TiO2 | Hydrothermal | UV-B | 280 μmol··h−1 | -- | -- | [40] | |
Cu-TiO2 (P25) | Photoassisted deposition | 450 W Hg lamp | 8.47 mmol··h−1 | 7.0% | 3 (stable) | [46] | |
Co-TiO2 | Photoassisted deposition | 450 W Hg lamp | 2.48 mmol··h−1 | 2.1% | 3 (50–70%) | [46] | |
Ni-TiO2 (P25) | Photoassisted deposition | 450 W Hg lamp | 3.39 mmol··h−1 | 2.8% | 3 (50–70%) | [46] | |
Fe-TiO2 | Sol–gel | Solar light | 270 μmol·h−1 | -- | -- | [47] | |
Fe-TiO2 | Microwave–hydrothermal | Xe lamp (350–780 nm) | 10.95 μmol·h−1 | -- | -- | [39] | |
Fe-TiO2 | Impregnation procedure | 500 W Xe/Hg lamp (UV light) | 230 μmol··h−1 | -- | -- | [43] | |
Ru-TiO2 | Micro-emulsion | 500 W Xe lamp (280–400 nm) | ≈4.60 mmol··h−1 | 3.1% | -- | [48] | |
Ru-TiO2 | Micro-emulsion | 500 W Xe lamp (420–680 nm) | ≈0.80 mmol··h−1 | 0.6% | -- | [48] | |
ME-TiO2@Ru | Sol–gel | 300 W Xe lamp | 7.2 mmol··h−1 | -- | 5 (stable) | [49] | |
Zn-TiO2 | Atomic layer deposition | 150 W Xe lamp | 2.66 mmol··h−1 | 4.88% | -- | [50] | |
Sr-TiO2 | Hydrothermal | 200 W Hg−Xe lamp | 3.3 mmol··h−1 | -- | 24 (98.6%) | [29] | |
Ag-TiO2 | Chemical reduction | UV Lamp | 23.5 mmol··h−1 | 19% | 18 (stable) | [51] | |
Au-TiO2 | Photodeposition | UV Lamp (300–400 nm) | 1.118 mmol·h−1 | -- | 8 (stable) | [52] | |
Pt-TiO2 | Photodeposition | UV Lamp (300–400 nm) | 2.125 mmol·h−1 | -- | 8 (stable) | [52] | |
Pt/Sn-TiO2 | Hydrothermal | 350 W Xe lamp | 39.4 mmol··h−1 | -- | 9 (stable) | [53] | |
Pt-TiO2 | Sol–gel | 15 W Black-Blue lamp (320–410 nm) | 0.117 μmol·cm−3·h−1 | 22.6% | 50 (stable) | [54] | |
Pd/N-TiO2 | Chemical vapor deposition | White LED (400–800 nm) | 6.3 mmol··h−1 | 5.6% | 120 (stable) | [55] | |
Metal NP deposition | Au-TiO2 | Sol–gel | 300 W Xe lamp (λ > 420 nm) | 7.00 μmol··h−1 | -- | 24 (stable) | [56] |
Au/TiO2 | Chemical reduction | UV LED (375 nm) | 6.661 mmol·gcat−1·h−1 | 1.03% | 18 (stable) | [57] | |
Au/TiO2 | Magnetron-sputtering | UV light | 1.95 mmol·h−1 | -- | -- | [58] | |
Au/TiO2 | Photodeposition | UV-VIS light | 360 μmol··h−1 | 61.2% | 15 (80%) | [59] | |
Au/TiO2 | Urea reduction | 350 W Xe lamp | ≈230 μmol·h−1 | 15.94% | -- | [60] | |
Au-P25 | Standard Sol | 300 W Xe lamp (400 nm) | 1.05 mmol··h−1 | -- | 24 (stable) | [61] | |
Au@TiO2 | Hydrothermal | 300 W Xe lamp | 4.92 mmol··h−1 | -- | 18 (stable) | [62] | |
Ag/Au-TO2 | Photodeposition | AM 1.5 | 718 μmol··h−1 | 3.3% | 24 (stable) | [63] | |
Ag/TiO2 | Microwave-assisted chemical reduction | 16 W Hg lamp (UV), 500 W Xe lamp (VIS) | 2.7 µmol·cm−2·h−1 | -- | 5 (stable) | [64] | |
Ag/H-TiO2 | Pulse electrodeposition | 300 W Xe lamp (λ > 420 nm) | 124.4 µmol·cm−2·h−1 | -- | -- | [65] | |
AgCu/TiO2 | Electrodeposition process | AM 1.5 G | 246.77 μL·cm−2·h−1 | -- | -- | [66] | |
Ag-Fe/ TiO2 | Sol–gel | 300 W Xe lamp (VIS light) | 475.56 μmol··h−1 | -- | -- | [21] | |
Fe-Ni/Ag/TiO2 | Solvothermal | 500 W Xe lamp (λ > 400 nm) | 793.86 μmol··h−1 | -- | 30 (stable) | [67] | |
Pt/N-TiO | Sol–gel | 400 W Hg lamp (VIS) | 772 μmol··h−1 | -- | 70 (90.67%) | [68] | |
Pt/Mg-TiO2 | Hydrothermal | 300 W Xe lamp | 850 μmol··h−1 | 19.4% | -- | [69] | |
Pt-SA/TiO2 | Magnetron sputtering | 50 mW laser (325 nm) | ≈380 μmol··h−1 | -- | 144 (80%) | [70] | |
Pt SA/Def-s-TiO2 | Deposition–precipitation | 300 W Xe lamp | 13.4607 mmol··h−1 | 10 (97%) | [71] | ||
Pd-TiO2 | Chemical reduction | 300 W Xe lamp (solar simulator) | 3.096 mmol··h−1 | 3.4% | 6 (stable) | [72] | |
Pd/K+-TiO2 | Hydrothermal | 300 Xe lamp (UV-VIS light) | 76.6 μmol·h−1 | 3.0% | 21 (72.1%) | [73] | |
Cu-TiO2 | Ball milling | 300 W Xe lamp | 9.5 mmol··h−1 | -- | 20 (73%) | [74] | |
Cu-TiO2 | Situ photodeposition | 300 W Xe lamp(λ > 300 nm) | 1.0238 mmol·h−1 | -- | 36 (stable) | [75] | |
Cu/TiO2 | Electrochemical deposition | Solar simulator (λ > 400 nm) | 159.59 μL·cm−2·h−1 | -- | 2 (stable) | [76] | |
Cu-TiO2 | Hydrothermal | 300 W Xe lamp | 5.566 mmol··h−1 | -- | 10 (stable) | [77] | |
Eosin Y/Cu-CuO/TiO2 | Two-step electrochemical | Solar simulator | ≈118 μL·cm−2·h−1 | -- | 3 (stable) | [78] | |
Ni-TiO2 | Molten salt | 300 W Xe lamp | 1.89 mmol··h−1 | -- | 20 (stable) | [79] | |
Ni-TiO2 @CMK-8 | Solvothermal | 300 W Xe lamp | 592.67 μmol··h−1 | 37.9% | -- | [80] | |
NiCu-TiO2 | Electrochemical deposition; Plasma sputtering | LED UV light | 7.4 μL·cm−2·h−1 | -- | -- | [81] | |
Sn/TiO2 | Photoinduced deposition | 3 W UV lamp (365 nm) | 553.1 μmol··h−1 | 1.48% | 10 (stable) | [82] | |
Nonmetal ion doping | N-TiO2 | Hydrothermal | 300 W Xe lamp | 323 μmol··h−1 | -- | 18 (stable) | [83] |
N-doped TiO2 | Hydrothermal | 300 W Xe lamp (VIS light) | 0.67 mmol··h−1 | -- | 40 (stable) | [84] | |
N-TiO2 | Sol–gel and electrospinning | 150 W Xe lamp (VIS light) | 28 μmol ·h−1 | -- | -- | [85] | |
N-TiO2 | RF magnetron sputtering deposition | 300 W Xe lamp | 4.50 mmol·cm−2·h−1 | -- | -- | [86] | |
N-TiO2 with VO | Solvothermal | Solar simulator (λ > 300 nm) | 1.035 mmol··h−1 | 16% | 6 (stable) | [87] | |
S-TiO2 | Thermal protection | VIS light | 163.9 μmol··h−1 | -- | -- | [88] | |
TiC@C-TiO2 | Situ thermal growth | 300 W Xe lamp (λ > 400 nm) | 558.46 μmol· | -- | 6 (stable) | [89] | |
F-TiO2 | Hydrothermal | VIS light | 18.27 mmol··h−1 | 21.6% | 40 (stable) | [90] | |
N/F-TiO2 | Calcination | 300 W Xe lamp (λ > 420 nm) | ≈11.5 μmol·h−1 | -- | 24 (stable) | [91] | |
C/N self-doped TiO2 | Hydrothermal | 350 W Xe lamp | 332.3 μmol·h−1 | -- | -- | [92] | |
Br/N-TiO2 | Hydrothermal | 300 W Xe lamp (λ > 420 nm) | 2.247 mmol··h−1 | -- | -- | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Tang, X.; Liu, P.; Huang, Q.; Li, T.; Ju, L. Recent Progress of Ion-Modified TiO2 for Enhanced Photocatalytic Hydrogen Production. Molecules 2024, 29, 2347. https://doi.org/10.3390/molecules29102347
Zhao D, Tang X, Liu P, Huang Q, Li T, Ju L. Recent Progress of Ion-Modified TiO2 for Enhanced Photocatalytic Hydrogen Production. Molecules. 2024; 29(10):2347. https://doi.org/10.3390/molecules29102347
Chicago/Turabian StyleZhao, Dongqiu, Xiao Tang, Penglan Liu, Qiao Huang, Tingxian Li, and Lin Ju. 2024. "Recent Progress of Ion-Modified TiO2 for Enhanced Photocatalytic Hydrogen Production" Molecules 29, no. 10: 2347. https://doi.org/10.3390/molecules29102347
APA StyleZhao, D., Tang, X., Liu, P., Huang, Q., Li, T., & Ju, L. (2024). Recent Progress of Ion-Modified TiO2 for Enhanced Photocatalytic Hydrogen Production. Molecules, 29(10), 2347. https://doi.org/10.3390/molecules29102347