The Response Surface Methodology for Assessment of HLB Values of Mixtures of Non-Ionic Surfactants Using Parameters from Their π-A Isotherms
Abstract
:1. Introduction
2. Results
2.1. Experimentally Determined ELM and SAM of the Tested Surfactant Mixtures
2.2. HLB as a Function of ELM and SAM in RSM Model
2.3. The Statistical Significance of the Influence of the Independent Variables ELM and SAM on the Dependent Variable HLB
3. Discussion
3.1. General Remarks on Structure of the Surfactants an Applied Equation
3.2. The Influence of Regression Parameters on HLB Value and the Structural Layout of Surfactants in Interfacial Area
3.3. Influence of Equation Parameters on the HLB Value in the Terms of the T Statistics
4. Materials and Methods
4.1. Materials
4.2. Preparation of Surfactant Mixtures of Theoretically Determined HLB
4.3. Experimental Determination of Elasticity Modules and Surface Area per Molecule Values
4.4. Assessment of the Impact of ELM and SAM on the Theoretically Calculated HLB Value Using RSM
4.4.1. Multivariate Analysis
4.4.2. T Statistics Values of Evaluated Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamoto, Y.; Ozutsumi, A.; Miwa, E.; Fukami, T.; Koide, T. Evaluation of the Factors Contributing to the Stability of the Mixture of Heparinoid Oil-Based Cream and Droplet Disper-sion-Type Ointment. J. Drug Deliv. Sci. Technol. 2021, 61, 102218. [Google Scholar] [CrossRef]
- Kothencz, R.; Nagy, R.; Bartha, L. Determination of HLB values of some nonionic surfactants and their mixtures. Stud. Univ. Babeș-Bolyai. Chem. 2017, 4, 451–459. [Google Scholar] [CrossRef]
- Altenbach, H.; Ihizane, R.; Jakob, B.; Lange, K.; Schneider, M.; Yilmaz, Z.; Nandi, S. Synthesis and characterization of novel surfactants: Combination products of fatty acids, hydroxycarboxylic acids and alcohols. J. Surfactants Deterg. 2010, 13, 399–407. [Google Scholar] [CrossRef]
- Davies, J.T. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. In Gas/Liquid and Liquid/Liquid Interface. Proc. Int. Congr. Surf. Act. 1957, 1, 426–438. Available online: https://es.firp-ula.org/wp-content/uploads/2019/07/57_Chap_Davies.pdf (accessed on 12 December 2023).
- Trumbetas, J.; Fioriti, J.A.; Sims, R.J. Use of pulsed nuclear magnetic resonance to predict emulsion stability. J. Am. Oil Chem. Soc. 1978, 55, 248–251. Available online: https://www.sciencegate.app/app/redirect#aHR0cHM6Ly9keC5kb2kub3JnLzEwLjEwMDcvYmYwMjY3NjkzNA (accessed on 12 December 2023). [CrossRef]
- Petrowski, G.E.; Vanatta, J.R. Gas chromatographic determination of hydrophile-lipophile balance of nonionic emulsifiers. J. Am. Oil Chem. Soc. 1973, 50, 284–289. [Google Scholar] [CrossRef]
- Verdinelli, V.; Messina, P.V.; Schulz, P.C.; Vuano, B. Hydrophile–lipophile balance (HLB) of n-alkane phosphonic acids and theirs salts. Colloids Surf. A Physicochem. Eng. Asp. 2008, 316, 131–135. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Möhwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 1999, 71, 779–819. [Google Scholar] [CrossRef]
- Guo, X.; Briscoe, W.H. Molecular interactions, elastic properties, and nanostructure of Langmuir bacterial-lipid monolayers: Towards solving the mystery in bacterial membrane asymmetry. Curr. Opin. Colloid Interface Sci. 2023, 67, 101731. [Google Scholar] [CrossRef]
- Langevin, D. Dynamics of surfactant layers. Curr. Opin. Colloid Interface Sci. 1998, 3, 600–607. [Google Scholar] [CrossRef]
- Masjedi, M.; Montahaei, T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102234. [Google Scholar] [CrossRef]
- Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.A.; Abdelmalak, N.S.; Badawi, A.; Elbayoumy, T.; Sabry, N.; El Ramly, A. Formulation of tretinoin-loaded topical proniosomes for treatment of acne: In-vitro characterization, skin irritation test and comparative clinical study. Drug Deliv. 2015, 22, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Mady, O. Span 60 as a microsphere matrix: Preparation and in vitro characterization of novel Ibuprofen-Span 60 microspheres. J. Surfactants Deterg. 2017, 20, 219–232. [Google Scholar] [CrossRef]
- Zainol, N.A.; Ming, T.S.; Darwis, Y. Development and characterization of cinnamon leaf oil nanocream for topical application. Indian J. Pharm. Sci. 2015, 77, 422. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Zhao, Y.; Quan, P.; Fang, L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian J. Pharm. Sci. 2016, 11, 248–254. [Google Scholar] [CrossRef]
- Agrawal, R.; Sandhu, S.K.; Sharma, I.; Kaur, I.P. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech 2015, 16, 364–374. [Google Scholar] [CrossRef]
- Taurina, W.; Andrie, M.; Pratama, T.N. Accelerated Stability Test of Snakehead Fish Extract (Channa striata) and Kelulut Honey (heterotrigona itama) Ointment Combination with Tween 80 and Span 80 as an Emulsifying Agent. Maj. Obat Tradis. 2021, 26, 136–142. [Google Scholar] [CrossRef]
- Hadi, M.A.; Saleem, M.D.; Rao, A.S.; Rao, V.U. Surface response methodology for development and optimization of Ace-clofenac pulsatile release drug delivery system. Asian J. Pharm. Technol. 2014, 4, 74–82. Available online: https://ajptonline.com/AbstractView.aspx?PID=2014-4-2-7 (accessed on 12 December 2023).
- Azmi, N.A.N.; Elgharbawy, A.A.M.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes 2019, 7, 617. [Google Scholar] [CrossRef]
- Lu, D.; Rhodes, D.G. Mixed Composition Films of Spans and Tween 80 at the Air−Water Interface. Langmuir 2000, 16, 8107–8112. [Google Scholar] [CrossRef]
- Ludwig, M.; Geisler, R.; Prévost, S.; von Klitzing, R. Shape and Structure Formation of Mixed Nonionic–Anionic Surfactant Micelles. Molecules 2021, 26, 4136. [Google Scholar] [CrossRef] [PubMed]
Parameters Source | Equation |
---|---|
Group numbers related to hydrophilic and lipophilic properties | (1) |
Nuclear Magnetic Resonance | (2) |
Gas Chromatography | (3) |
Composition | (4) |
Saponification number | (5) |
No | Trade Name | Simplified Chemical Name | HLB | Acronym |
---|---|---|---|---|
1. | Span 40 | Sorbitan monopalmitate | 6.7 | S40 |
2. | Span 60 | Sorbitan monostearate | 4.7 | S60 |
3. | Span 65 | Sorbitan tristearate | 2.1 | S65 |
4. | Span 80 | Sorbitan monooleate | 4.3 | S80 |
5. | Span 85 | Sorbitan trioleate | 1.8 | S85 |
State | LC | LE | ||
---|---|---|---|---|
Parameter | ELM | SAM | ELM | SAM |
Preparation | [mN/m] | [Å2] | [mN/m] | [Å2] |
S40 | −2.73 × 10−2 | 41.92 | −9.40 × 10−3 | 76.59 |
S40/S60 | −5.66 × 10−2 | 14.32 | −4.90 × 10−3 | 35.82 |
S40/S60 | −1.60 × 10−3 | 45.11 | −1.80 × 10−3 | 41.83 |
S40/S60 | −4.09 × 10−2 | 15.21 | −7.00 × 10−3 | 34.27 |
S60 | −3.95 × 10−2 | 6.68 | −9.60 × 10−3 | 12.20 |
S40 | −2.73 × 10−2 | 41.92 | −9.40 × 10−3 | 76.59 |
S40/S65 | −3.72 × 10−2 | 2.77 | −5.10 × 10−3 | 18.19 |
S40/S65 | −7.22 × 10−2 | 20.04 | −6.70 × 10−3 | 48.76 |
S40/S65 | −2.16 × 10−2 | 16.06 | −2.30 × 10−3 | 57.16 |
S65 | −3.72 × 10−2 | 88.76 | −5.10 × 10−3 | 272.08 |
S40 | −2.73 × 10−2 | 41.92 | −9.40 × 10−3 | 76.59 |
S40/S80 | −1.30 × 10−2 | 22.81 | −8.50 × 10−3 | 30.92 |
S40/S80 | −1.19 × 10−2 | 19.13 | −5.00 × 10−3 | 32.13 |
S80 | −6.60 × 10−3 | 107.18 | −3.60 × 10−3 | 161.19 |
S40 | −2.73 × 10−2 | 41.92 | −9.40 × 10−3 | 76.59 |
S40/S83 | −7.40 × 10−3 | 21.87 | −4.00 × 10−3 | 28.03 |
S40/S83 | −9.40 × 10−3 | 138.67 | −1.10 × 10−3 | 549.39 |
S40/S83 | −9.10 × 10−3 | 16.30 | −5.70 × 10−3 | 21.09 |
S83 | −4.80 × 10−3 | 84.21 | −1.29 × 10−2 | 47.60 |
S40 | −2.73 × 10−2 | 41.92 | −9.40 × 10−3 | 76.59 |
S40/S85 | −2.70 × 10−3 | 67.06 | −4.60 × 10−3 | 56.92 |
S40/S85 | −6.00 × 10−3 | 50.39 | −5.30 × 10−3 | 55.84 |
S40/S85 | −6.40 × 10−3 | 59.68 | −8.10 × 10−3 | 56.69 |
S85 | −4.90 × 10−3 | 125.64 | −7.50 × 10−3 | 107.05 |
No. | Preparation | LC State | LE State | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Equation (1) | S40/S60 | 2.382 | −43.791 | 0.080 | 39.031 | 0.00014 | 7.426 | −704.538 | 0.144 | 86,932.866 | 0.0019 |
Equation (2) | S40/S65 | 11.543 | −722.783 | 0.214 | −7490.891 | 0.0027 | 8.226 | 968.807 | 0.071 | 134,200.582 | 0.0002 |
Equation (3) | S40/S85 | 22.440 | 1257.341 | −0.310 | 38,875.915 | 0.00145 | −54.336 | −625.619 | 1.601 | −101,954.040 | 0.00996 |
Equation (4) | S40/S83 | 38.711 | 4087.569 | −0.4909 | 126,731.830 | 0.00324 | 6.484 | 619.960 | 0.0764 | 11,349.862 | 0.000139 |
Equation (5) | S40/S80 | 13.627 | 882.331 | 0.0430 | 25,445.147 | - | 64.979 | 17,820.387 | 1,308,742 | 0.0836 | - |
Preparation | Partial Function | Parameter | State of the Monolayer | |
---|---|---|---|---|
TLC | TLE | |||
S40/S60 | Linear | SAM | 0.02 | 1.98 (*) |
ELM | 2.42 * | 0.63 | ||
Square | SAM | 0.05 | 0.05 | |
ELM | 0.88 | 0.003 | ||
S40/S65 | Linear | SAM | 1.37 | 1.28 |
ELM | 1.02 | 4.27 * | ||
Square | SAM | 0.92 | 0.76 | |
ELM | 9.59 * | 3.38 * | ||
S40/S80 | Linear | SAM | 3.79 * | 10.90 * |
ELM | 0.40 | 4.68 * | ||
Square | SAM | N/A | N/A | |
ELM | 5.45 * | 22.01 * | ||
S40/S83 | Linear | SAM | 9.13 * | 3.00 * |
ELM | 3.92 * | 2.52 * | ||
Square | SAM | 0.25 | 0.16 | |
ELM | 6.31 * | 0.16 | ||
S40/S85 | Linear | SAM | 2.25 * | 5.43 * |
ELM | 1.22 | 2.07 * | ||
Square | SAM | 0.21 | 1.97 (*) | |
ELM | 0.04 | 0.40 |
Structure of Span Surfactants | Type of Interfacial Area | Proposed Behavior of Mixture Components in Interfacial Area |
---|---|---|
S40 | - | Common ingredient for all research systems |
S60 | IA.1 | |
S80 | IA.2 | |
S65 | IA.3 | |
S83 | IA.4 | |
S85 | IA.5 |
S40/S60 | HLBmx | S40/S65 | HLBmx | S40/80 | HLBmx | S40/S83 | HLBmx | S40/S85 | HLBmx | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fS40 | fS60 | fS40 | fS65 | fS40 | fS80 | fS40 | fS83 | fS40 | fS85 | |||||
1.00 | 0.00 | 6.70 | 1.00 | 0.00 | 6.70 | 1.00 | 0.00 | 6.70 | 1.00 | 0.00 | 6.70 | 1.00 | 0.00 | 6.70 |
0.70 | 0.30 | 6.10 | 0.75 | 0.25 | 5.55 | 0.49 | 0.51 | 5.48 | 0.84 | 0.16 | 6.22 | 0.70 | 0.30 | 5.23 |
0.53 | 0.47 | 5.76 | 0.58 | 0.42 | 4.77 | 0.67 | 0.33 | 5.91 | 0.72 | 0.28 | 5.86 | 0.54 | 0.46 | 4.45 |
0.36 | 0.64 | 5.42 | 0.26 | 0.74 | 3.30 | 0.00 | 1.00 | 4.30 | 0.39 | 0.61 | 4.87 | 0.20 | 0.80 | 2.78 |
0.00 | 1.00 | 4.70 | 0.00 | 1.00 | 2.10 | - | - | - | 0.00 | 1.00 | 3.70 | 0.00 | 1.00 | 1.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapolski, R.; Musiał, W. The Response Surface Methodology for Assessment of HLB Values of Mixtures of Non-Ionic Surfactants Using Parameters from Their π-A Isotherms. Molecules 2024, 29, 2351. https://doi.org/10.3390/molecules29102351
Zapolski R, Musiał W. The Response Surface Methodology for Assessment of HLB Values of Mixtures of Non-Ionic Surfactants Using Parameters from Their π-A Isotherms. Molecules. 2024; 29(10):2351. https://doi.org/10.3390/molecules29102351
Chicago/Turabian StyleZapolski, Remigiusz, and Witold Musiał. 2024. "The Response Surface Methodology for Assessment of HLB Values of Mixtures of Non-Ionic Surfactants Using Parameters from Their π-A Isotherms" Molecules 29, no. 10: 2351. https://doi.org/10.3390/molecules29102351
APA StyleZapolski, R., & Musiał, W. (2024). The Response Surface Methodology for Assessment of HLB Values of Mixtures of Non-Ionic Surfactants Using Parameters from Their π-A Isotherms. Molecules, 29(10), 2351. https://doi.org/10.3390/molecules29102351