Adsorption of Cu(II) and Ni(II) from Aqueous Solutions Using Synthesized Alkali-Activated Foamed Zeolite Adsorbent: Isotherm, Kinetic, and Regeneration Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Effect of pH
2.3. Effect of Time
2.4. Effect of Adsorbate Concentration
2.5. Kinetic Study
2.6. Isotherm Study
2.7. Regeneration
3. Material and Methods
3.1. Materials
3.2. Preparation of Adsorbents
3.3. Characterization
3.4. Adsorption and Desorption Experiments
- -
- represents the amount of metal adsorbed (mg/g);
- -
- denotes the initial metal concentration in the solution (mg/L);
- -
- signifies the equilibrium concentration of the metal in the solution (mg/L);
- -
- V stands for the volume of the solution (L);
- -
- m corresponds to the dry weight of the adsorbents (g).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.-L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Qiu, J.; Zhang, L.; Ma, H.; Yao, J. Amino-functionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(VI) and tetracycline. J. Colloid Interface Sci. 2022, 607, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Okant, M.; Ugurlar, F.; Alyemeni, M.N.; Ashraf, M.; Ahmad, P. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 2019, 225, 627–638. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm models for adsorption of heavy metals from water—A review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Alyemeni, M.N.; Al-Huqail, A.A.; Alqahtani, M.A.; Wijaya, L.; Ashraf, M.; Kaya, C.; Bajguz, A. Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants 2020, 9, 825. [Google Scholar] [CrossRef]
- Bhat, J.A.; Ahmad, P.; Corpas, F.J. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. J. Hazard. Mater. 2021, 406, 124289. [Google Scholar] [CrossRef]
- Chang, Y.S.; Au, P.I.; Mubarak, N.M.; Khalid, M.; Jagadish, P.; Walvekar, R.; Abdullah, E.C. Adsorption of Cu (II) and Ni (II) ions from wastewater onto bentonite and bentonite/GO composite. Environ. Sci. Pollut. Res. 2020, 27, 33270–33296. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Yuan, J.; Zwain, H.M.; Mojiri, A.; Gholami, Z.; Gholami, F.; Wang, W.; Giwa, A.S.; Yu, Y.; et al. Nickel ion removal from aqueous solutions through the adsorption process: A review. Rev. Chem. Eng. 2021, 37, 755–778. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Anderson, A.; Anbarasu, A.; Pasupuleti, R.R.; Manigandan, S.; Praveenkumar, T.; Kumar, J.A. Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends. Chemosphere 2022, 295, 133724. [Google Scholar] [CrossRef]
- He, P.Y.; Zhang, Y.J.; Chen, H.; Han, Z.C.; Liu, L.C. Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium(VI) separation from aqueous solution. J. Hazard. Mater. 2020, 392, 122359. [Google Scholar] [CrossRef] [PubMed]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Aghel, B.; Mohadesi, M.; Gouran, A.; Razmegir, M.H. Use of modified Iranian clinoptilolite zeolite for cadmium and lead removal from oil refinery wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 1239–1250. [Google Scholar] [CrossRef]
- Molla Mahmoudi, M.; Nadali, A.; Soheil Arezoomand, H.R.; Mahvi, A.H. Adsorption of cationic dye textile wastewater using Clinoptilolite: Isotherm and kinetic study. J. Text. Inst. 2019, 110, 74–80. [Google Scholar] [CrossRef]
- Finish, N.; Ramos, P.; Borojovich, E.J.C.; Zeiri, O.; Amar, Y.; Gottlieb, M. Zeolite performance in removal of multicomponent heavy metal contamination from wastewater. J. Hazard. Mater. 2023, 457, 131784. [Google Scholar] [CrossRef] [PubMed]
- Tisler, Z.; Horacek, J.; Safar, J.; Velvarska, R.; Peliskova, L.; Kocik, J.; Gherib, Y.; Marklova, K.; Bulanek, R.; Kubicka, D. Clinoptilolite foams prepared by alkali activation of natural zeolite and their post-synthesis modifications. Microporous Mesoporous Mater. 2019, 282, 169–178. [Google Scholar] [CrossRef]
- Škvára, F.; Šulc, R.; Tišler, Z.; Skřičík, P.; Šmilauer, V.; Zlámalová, C.Z. Adsorption of heavy metals on alkali-activated zeolite foams. Materials 2024, 17, 685. [Google Scholar] [CrossRef] [PubMed]
- Hrachovcová, K.; Tišler, Z.; Svobodová, E.; Šafář, J. Modified alkali activated zeolite foams with improved textural and mechanical properties. Minerals 2020, 10, 483. [Google Scholar] [CrossRef]
- Tišler, Z.; Hrachovcová, K.; Svobodová, E.; Šafář, J.; Pelíšková, L. Acid and thermal treatment of alkali-activated zeolite foams. Minerals 2019, 9, 719. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Liu, D.; Li, T.; Yu, G. Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium. Int. J. Biol. Macromol. 2019, 139, 352–360. [Google Scholar] [CrossRef]
- You, Q.; Zhang, Q.; Gu, M.; Du, R.; Chen, P.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac. J. Chem. Eng. 2022, 431, 133927. [Google Scholar] [CrossRef]
- Liu, D.; Deng, S.; Du, R.; Tao, L.; Sun, J.; Yu, G. Efficient and selective removal of copper from aqueous solution by nanosized hydrated zirconium oxides loaded in vermiculite. J. Environ. Chem. Eng. 2020, 8, 104315. [Google Scholar] [CrossRef]
- Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. J. Chem. Eng. 2019, 359, 363–372. [Google Scholar] [CrossRef]
- Elboughdiri, N. The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Eng. 2020, 7, 1782623. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Himagirish Kumar, S.; Jyothi, N.V.V. Rapid removal of Ni(II) from aqueous solution using 3-Mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Resour. 2015, 12, 1–7. [Google Scholar] [CrossRef]
- Babalola, B.M.; Babalola, A.O.; Akintayo, C.O.; Lawal, O.S.; Abimbade, S.F.; Oseghe, E.O.; Akinola, L.S.; Ayanda, O.S. Adsorption and desorption studies of Delonix regia pods and leaves: Removal and recovery of Ni(II) and Cu(II) ions from aqueous solution. Drink. Water Eng. Sci. 2020, 13, 15–27. [Google Scholar] [CrossRef]
- Koprivica, M.; Simić, M.; Petrović, J.; Ercegović, M.; Dimitrijević, J. Evaluation of adsorption efficiency on Pb(II) ions removal using alkali-modified hydrochar from paulownia leaves. Processes 2023, 11, 1327. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water 2020, 12, 587. [Google Scholar] [CrossRef]
- Sulaiman, N.S.; Mohamad Amini, M.H.; Danish, M.; Sulaiman, O.; Hashim, R. Kinetics, thermodynamics, and isotherms of methylene blue adsorption study onto cassava stem activated carbon. Water 2021, 13, 2936. [Google Scholar] [CrossRef]
- Hasani, N.; Selimi, T.; Mele, A.; Thaçi, V.; Halili, J.; Berisha, A.; Sadiku, M. Theoretical, equilibrium, kinetics and thermodynamic investigations of methylene blue adsorption onto lignite coal. Molecules 2022, 27, 1856. [Google Scholar] [CrossRef]
- Duan, G.; Li, X.; Ma, X.; Zhong, W.; Wang, S. High-efficiency adsorption removal for Cu(II) and Ni(II) using a novel acylamino dihydroxamic acid chelating resin. Sci. Total Environ. 2023, 864, 160984. [Google Scholar] [CrossRef] [PubMed]
- Güçoğlu, M.; Şatıroğlu, N. Adsorption of Pb(II), Cu(II), Cd(II), Ni(II), and Co(II) ions by newly synthesized 2-(2′-Hydroxyphenyl)Benzothiazole-functionalized silica. J. Mol. Liq. 2022, 348, 118388. [Google Scholar] [CrossRef]
- Jilal, I.; El Barkany, S.; Bahari, Z.; Sundman, O.; El Idrissi, A.; Abou-Salama, M.; Romane, A.; Zannagui, C.; Amhamdi, H. New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: Synthesis, characterization and application for Pb (II) and Cu (II) removal. Carbohydr. Polym. 2018, 180, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, S.; Li, R.; Peng, Y.; Sun, C.; Vakili, M.; Yu, G.; Deng, S. Preparation of magnetic powdered carbon/nano-Fe3O4 composite for efficient adsorption and degradation of trichloropropyl phosphate from water. J. Hazard. Mater. 2021, 416, 125765. [Google Scholar] [CrossRef] [PubMed]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Ibrahim, M.H.; Abdullah, A.Z. Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads. Carbohydr. Polym. 2015, 132, 89–96. [Google Scholar] [CrossRef]
- Lou, H.; Cao, X.; Yan, X.; Wang, L.; Chen, Z. Adsorption performance of Cd (II), Cr (III), Cu (II), Ni (II), Pb (II) and Zn (II) by aminated solution-blown polyacrylonitrile micro/nanofibers. Water Sci. Technol. 2018, 2017, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Bohli, T.; Ouederni, A.; Villaescusa, I. Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: Analysis of metal interactions. Euro-Mediterr. J. Environ. Integr. 2017, 2, 1–15. [Google Scholar] [CrossRef]
- Kalantari, K.; Ahmad, M.B.; Masoumi, H.R.F.; Shameli, K.; Basri, M.; Khandanlou, R. Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology. Int. J. Mol. Sci. 2014, 15, 12913–12927. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kwak, J.-H.; Islam, M.S.; Naeth, M.A.; Gamal El-Din, M.; Chang, S.X. Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Sci. Total Environ. 2020, 712, 136538. [Google Scholar] [CrossRef]
- Hokkanen, S.; Repo, E.; Suopajärvi, T.; Liimatainen, H.; Niinimaa, J.; Sillanpää, M. Adsorption of Ni (II), Cu (II) and Cd (II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 2014, 21, 1471–1487. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; El-Bindary, A.A.; Kouta, E.Y.; Guibal, E. Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions. J. Chem. Eng. 2018, 332, 727–736. [Google Scholar] [CrossRef]
- Hatay, I.; Gup, R.; Ersöz, M. Silica gel functionalized with 4-phenylacetophynone 4-aminobenzoylhydrazone: Synthesis of a new chelating matrix and its application as metal ion collector. J. Hazard. Mater. 2008, 150, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. J. Environ. Chem. Eng. 2020, 8, 103895. [Google Scholar] [CrossRef]
- Huang, X.; Lang, L.; Li, J.-s.; Poon, C.S. Synthesis of Na-A zeolite loaded bentonite and its application for removal of Cu(II) from aqueous solutions. J. Water Proc. Engineering 2023, 56, 104359. [Google Scholar] [CrossRef]
- Hellal, M.S.; Rashad, A.M.; Kadimpati, K.K.; Attia, S.K.; Fawzy, M.E. Adsorption characteristics of nickel (II) from aqueous solutions by Zeolite Scony Mobile-5 (ZSM-5) incorporated in sodium alginate beads. Sci. Rep. 2023, 13, 19601. [Google Scholar] [CrossRef] [PubMed]
- Küçük, M.E.; Makarava, I.; Kinnarinen, T.; Häkkinen, A. Simultaneous adsorption of Cu (II), Zn (II), Cd (II) and Pb (II) from synthetic wastewater using NaP and LTA zeolites prepared from biomass fly ash. Heliyon 2023, 9, e20253. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; El-Bindary, A.A.; Kouta, E.Y. Retention of copper, cadmium and lead from water by Na-Y-Zeolite confined in methyl methacrylate shell. J. Environ. Chem. Eng. 2017, 5, 3698–3710. [Google Scholar] [CrossRef]
- Panayotova, M.I. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manag. 2001, 21, 671–676. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, X.-F.; Wang, Z.; Song, L.; Yao, J. Flexible cellulose foams with a high loading of attapulgite nanorods for Cu2+ ions removal. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126038. [Google Scholar] [CrossRef]
- Vakili, M.; Gholami, F.; Zwain, H.M.; Wang, W.; Mojiri, A.; Gholami, Z.; Tomas, M.; Giwa, A.S.; Cagnetta, G. Treatment of As(III)-contaminated food waste using alkali treatment and its potential application for methylene blue removal from aqueous solutions. J. Water Proc. Eng. 2023, 55, 104100. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- Xiao, G.; Li, R.; Zhu, D.; Vakili, M.; Zhu, X.; Liu, X.; Zhou, S.; Wang, W. Adsorption of Pb(II) on covalent organic frameworks: Overlooked sorption sites formed in the post-synthetic modification process. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132791. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, D.; Yang, Q.; Liu, X.; Gholami, Z.; Vakili, M.; Zhou, S.; Wang, W. Triazole and methylthio modified covalent organic frameworks for enhancing Hg(II) adsorption from water. Mater. Today Commun. 2024, 38, 107976. [Google Scholar] [CrossRef]
Adsorbents | Oxide Parameter (Wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TiO2 | MgO | Na2O | CaO | Fe2O3 | K2O | Si/Al | |
ZZ50 | 75.30 | 12.60 | 0.23 | 0.78 | 0.30 | 4.28 | 1.91 | 4.26 | 5.07 |
AAFZ | 68.80 | 10.00 | 0.16 | 3.19 | 5.12 | 2.72 | 1.19 | 8.63 | 5.84 |
Items | ZZ50 | AAFZ |
---|---|---|
BET surface area (m2/g) | 34.3 | 13.6 |
Total pore volume (cm3/g) | 0.16 | 0.09 |
Average pore diameter (nm) | 13.38 | 17.26 |
Mesopore volume (cm3/g) | 0.123 | 0.059 |
Micropore volume (cm3/g) | 0 | 0 |
Kinetic Parameters | Cu(II) | Ni(II) | ||
---|---|---|---|---|
ZZ50 | AAFZ | ZZ50 | AAFZ | |
Pseudo-first order | ||||
(mg/g) | 28.91 | 62.30 | 19.2 | 42.60 |
(mg/g) | 42.93 | 86.62 | 32.14 | 56.47 |
(1/min) | 2.470 | 1.611 | 2.201 | 2.912 |
χ2 | 7.871 | 21.53 | 0.946 | 10.59 |
R2 | 0.936 | 0.960 | 0.981 | 0.946 |
Pseudo-second order | ||||
(mg/g) | 28.91 | 62.30 | 19.2 | 42.60 |
(mg/g) | 31.11 | 66.01 | 22.05 | 43.98 |
(g/mg/min) | 0.013 | 0.016 | 0.010 | 0.018 |
χ2 | 6.035 | 13.90 | 0.720 | 7.154 |
R2 | 0.951 | 0.972 | 0.986 | 0.967 |
Isotherm Parameters | Cu(II) | Ni(II) | ||
---|---|---|---|---|
ZZ50 | AAFZ | ZZ50 | AAFZ | |
Langmuir | ||||
(mg/g) | 69.28 | 99.54 | 48.53 | 88.99 |
K1 (L/mg) | 0.021 | 0.033 | 0.022 | 0.025 |
χ2 | 12.86 | 44.62 | 6.99 | 18.92 |
R2 | 0.970 | 0.948 | 0.966 | 0.972 |
RL | 0.192 | 0.131 | 0.185 | 0.166 |
Freundlich | ||||
(mg/g) | 6.222 | 14.62 | 4.244 | 9.378 |
n | 2.345 | 2.894 | 2.321 | 2.49 |
χ2 | 46.30 | 152.6 | 22.10 | 70.42 |
R2 | 0.891 | 0.824 | 0.894 | 0.896 |
Adsorbent | Adsorbate | qm (mg/g) | pH | Time (h) | Ref. |
---|---|---|---|---|---|
Willow wood (1 mg/L) | Cu(II) (0.05–160 mg/L) | 12.2 | 5.2 | 0.5 | [39] |
Ni(II) (0.05–160 mg/L) | 9.8 | 6.1 | 0.5 | [39] | |
3-aminopropyl triethoxysilane-microfibrillated cellulose (0.67 mg/L) | Cu(II) (10–300 mg/L) | 2.74 | 5 | 5 | [40] |
Ni(II) (10–300 mg/L) | 2.63 | 5 | 5 | [40] | |
Polyacrylonitrile/Na-Y-zeolite (1.00 g/L) | Cu(II) (5–100 mg/L) | 54.80 | 4 | 1.5 | [41] |
Hydroxylamine-polyacrylonitrile micro/nanofibers (0.1 g/L) | Cu(II) (10–300 mg/L) | 105 | 5.5 | 8 | [36] |
Ni(II) (10–300 mg/L) | 104 | 5.5 | 6 | [36] | |
4-phenylacetophynone 4-aminobenzoylhydrazone silica gel (5 g/L) | Cu(II) (1–20 mg/L) | 0.76 | 6 | 2 | [42] |
Ni(II) (1–20 mg/L) | 0.82 | 7 | 2 | [42] | |
SiO2-NH-HPBT (1 g/L) | Cu(II) (2–200 mg/L) | 20.5 | 5 | 3 | [32] |
Ni(II) (2–200 mg/L) | 23.0 | 6 | 5 | [32] | |
FAU zeolite (5 g/L) | Cu(II) (100–500 mg/L) | 57.80 | - | 1 | [43] |
Zeolite (25 g/L) | Cu(II) (30–1600 mg/L) | 114.94 | 5 | 2 | [44] |
SA/ZSM-5 (4 g/L) | Ni(II) (25–100 mg/L) | 19.60 | 6 | 0.75 | [45] |
NaP zeolite (2.5 g/L) | Cu(II) (10–250 mg/L) | 42.9 | 5.2 | 5 | [46] |
LTA zeolite (2.5 g/L) | Cu(II) (10–250 mg/L) | 140.1 | 5.2 | 1 | [46] |
Methacrylate-Na-Y-Zeolite (0.5 g/L) | Cu(II) (5–100 mg/L) | 37.10 | 4.5 | 1.5 | [47] |
Zeolite (0.2 g/L) | Cu(II) (10–50 mg/L) | 6.74 | 5 | 1 | [48] |
ZZ50 (0.5 g/L) | Cu(II) (10–200 mg/L) | 69.28 | 5 | 2 | Present study |
Ni(II) (10–200 mg/L) | 48.53 | 6 | 2 | ||
AAFZ (0.5 g/L) | Cu(II) (10–200 mg/L) | 99.54 | 5 | 2 | Present study |
Ni(II) (10–200 mg/L) | 88.99 | 6 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svobodová, E.; Tišler, Z.; Peroutková, K.; Strejcová, K.; Abrham, J.; Šimek, J.; Gholami, Z.; Vakili, M. Adsorption of Cu(II) and Ni(II) from Aqueous Solutions Using Synthesized Alkali-Activated Foamed Zeolite Adsorbent: Isotherm, Kinetic, and Regeneration Study. Molecules 2024, 29, 2357. https://doi.org/10.3390/molecules29102357
Svobodová E, Tišler Z, Peroutková K, Strejcová K, Abrham J, Šimek J, Gholami Z, Vakili M. Adsorption of Cu(II) and Ni(II) from Aqueous Solutions Using Synthesized Alkali-Activated Foamed Zeolite Adsorbent: Isotherm, Kinetic, and Regeneration Study. Molecules. 2024; 29(10):2357. https://doi.org/10.3390/molecules29102357
Chicago/Turabian StyleSvobodová, Eliška, Zdeněk Tišler, Kateřina Peroutková, Kateřina Strejcová, Jan Abrham, Josef Šimek, Zahra Gholami, and Mohammadtaghi Vakili. 2024. "Adsorption of Cu(II) and Ni(II) from Aqueous Solutions Using Synthesized Alkali-Activated Foamed Zeolite Adsorbent: Isotherm, Kinetic, and Regeneration Study" Molecules 29, no. 10: 2357. https://doi.org/10.3390/molecules29102357
APA StyleSvobodová, E., Tišler, Z., Peroutková, K., Strejcová, K., Abrham, J., Šimek, J., Gholami, Z., & Vakili, M. (2024). Adsorption of Cu(II) and Ni(II) from Aqueous Solutions Using Synthesized Alkali-Activated Foamed Zeolite Adsorbent: Isotherm, Kinetic, and Regeneration Study. Molecules, 29(10), 2357. https://doi.org/10.3390/molecules29102357