Use of Botanical Ingredients: Nice Opportunities to Avoid Premature Oxidation of NABLABs by Increasing Their ORAC Values Strongly Impacted by Dealcoholization or Pasteurization
Abstract
:1. Introduction
2. Results and Discussion
2.1. ORAC Values of Fresh NABLABs and Relationship to Color, Phenols, and Bitterness
2.2. Comparison of the ORAC Assay with Two Other Antioxidant Assays Used on NABLABs
2.3. Impact of NABLAB Dealcoholization and Pasteurization on ORAC Values, Thermal Indicators, Bitter Compounds, Phenols, and Aromas
2.4. Potential to Increase NABLAB ORAC Values by Using Sorghum, Vernonia amygdalina, Spices, or Wood Chips
3. Materials and Methods
3.1. Chemicals
3.2. Samples
3.3. Standard Analyses on NABLABs and Pilot Samples
3.4. Antioxidant Assays
3.4.1. ORAC Values of NABLABs, Chemical Standards, Pilot Samples, and Botanical Extracts
3.4.2. TINH Values of NABLABs
3.4.3. ITT Values of NABLABs
3.5. Analyses of Bitter Compounds in NABLABs and Pilot Samples by High-Performance Liquid Chromatography–Ultraviolet Detection (HPLC-UV)
3.6. Phenols Quantitation in NABLABs and Pilot Samples
3.6.1. Total Polyphenol Measurement
3.6.2. Catechin, Epicatechin, and Procyanidin B3 Determination by HPLC-UV
3.6.3. Tryptophan and Tyrosine Quantitation by Ultra-Performance Liquid Chromatography–UV Detection (UPLC-UV)
3.7. Pilot Sample Aroma Extraction
3.7.1. XAD-2 Resin Extraction of Sotolon, Methional, and Phenylacetaldehyde, and Quantification by Gas Chromatography-Electron-Impact Mass Spectrometry (GC-MS)
3.7.2. Ag Selective Extraction of Polyfunctional Thiols, and Quantification by Gas Chromatography–Pulsed-Flame Photometric Detection (GC-PFPD)
3.8. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles, and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Pascoe, H.M.; Ames, J.M.; Chandra, S. Critical stages of the brewing process for changes in antioxidant activity and levels of phenolic compounds in ale. J. Am. Soc. Brew. Chem. 2003, 61, 203–209. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging–a critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Uchida, M.; Ono, M. Technological approach to improve beer flavor stability: Analysis of the effect of brewing processes on beer flavor stability by the electron spin resonance method. J. Am. Soc. Brew. Chem. 2000, 58, 8–13. [Google Scholar] [CrossRef]
- Noel, S.; Metais, N.; Bonte, S.; Bodart, E.; Peladan, F.; Dupire, S.; Collin, S. The use of oxygen 18 in appraising the impact of oxidation process during beer storage. J. Inst. Brew. 1999, 105, 269–274. [Google Scholar] [CrossRef]
- Bamforth, C.W. Making sense of flavor change in beer. Tech. Q. Master Brew. Assoc. Am. 2000, 37, 165–171. [Google Scholar]
- Tafulo, P.A.R.; Queirós, R.B.; Delerue-Matos, C.M.; Sales, M.G.F. Control and comparison of the antioxidant capacity of beers. Food Res. Int. 2010, 43, 1702–1709. [Google Scholar] [CrossRef]
- Yang, D.; Gao, X. Research progress on the antioxidant biological activity of beer and strategy for applications. Trends Food Sci. Technol. 2021, 110, 754–764. [Google Scholar] [CrossRef]
- Rothe, J.; Fischer, R.; Cotterchio, C.; Gastl, M.; Becker, T. Analytical determination of antioxidant capacity of hop-derived compounds in beer using specific rapid assays (ORAC, FRAP) and ESR-spectroscopy. Eur. Food Res. Technol. 2023, 249, 81–93. [Google Scholar] [CrossRef]
- Bamforth, C.W.; Muller, R.E.; Walker, M.D. Oxygen and oxygen radicals in malting and brewing: A review. J. Am. Soc. Brew. Chem. 1993, 51, 79–88. [Google Scholar] [CrossRef]
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and melanoidins as natural antioxidants in beer. Structure, reactivity and antioxidant activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Koren, D.; Kun, S.; Hegyesné Vecseri, B.; Kun-Farkas, G. Study of antioxidant activity during the malting and brewing process. J. Food Sci. Technol. 2019, 56, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- De Clerck, J. Cours de Brasserie: Matières Premières, Fabrication, Installations; Volume 1 de Cours de Brasserie; Université de Louvain—Institut Agronomique Section de Brasserie: Louvain, Belgium, 1962. [Google Scholar]
- Chapon, L. Oxygen and beer. In Brewing Science; Pollock, J.R.A., Ed.; Academic Press: London, UK, 1981; pp. 407–455. [Google Scholar]
- van Strien, J. Direct measurement of the oxidation-reduction condition of wort and beer. J. Am. Soc. Brew. Chem. 1987, 45, 77–79. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Bektas¸ oğlu, B.; Bener, M. Cupric ion reducing antioxidant capacity assay for food antioxidants: Vitamins, polyphenolics, and flavonoids in food extracts. In Advanced Protocols in Oxidative Stress I; Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2008; Volume 477, pp. 163–193. [Google Scholar]
- Kaneda, H.; Kobayashi, N.; Furusho, S.; Sahara, H.; Koshino, S. Reducing activity and flavor stability of beer. Tech. Q. Master Brew. Assoc. Am. 1995, 32, 90–94. [Google Scholar]
- Araki, S.; Kimura, T.; Shimizu, C.; Furusho, S.; Takashio, M.; Shinotsuka, K. Estimation of antioxidative activity and its relationship to beer flavor stability. J. Am. Soc. Brew. Chem. 1999, 57, 34–37. [Google Scholar] [CrossRef]
- Walters, M.T.; Hughes, P.S.; Bamforth, C.W. The evaluation of natural antioxidants in beer and its raw materials. In Proceedings of the 24th European Brewery Convention, Singapore, 17–22 March 1996; pp. 103–109. [Google Scholar]
- Bright, D.; Stewart, G.G.; Patino, H. A novel assay for antioxidant potential of specialty malts. J. Am. Soc. Brew. Chem. 1999, 57, 133–137. [Google Scholar] [CrossRef]
- Carvalho, J.R.; Meireles, A.N.; Marques, S.S.; Gregório, B.J.; Ramos, I.I.; Silva, E.M.; Segundo, M.A. Exploiting kinetic features of ORAC assay for evaluation of radical scavenging capacity. Antioxidants 2023, 12, 505. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of selected foods; Release 2; US Department of Agriculture: Beltsville, MD, USA, 2010; Volume 3, pp. 10–48.
- Liégeois, C.; Lermusieau, G.; Collin, S. Measuring antioxidant efficiency of wort, malt, and hops against the 2,2′-azobis (2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid. J. Agric. Food Chem. 2000, 48, 1129–1134. [Google Scholar] [CrossRef]
- Andersen, M.L.; Outtrup, H.; Skibsted, L.H. Potential antioxidants in beer assessed by ESR spin trapping. J. Agric. Food Chem. 2000, 48, 3106–3111. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Suga, S.; Ono, M. Improvement for oxidative flavor stability of beer—Rapid prediction method for beer flavor stability by electron spin resonance spectroscopy. J. Am. Soc. Brew. Chem. 1996, 54, 205–211. [Google Scholar] [CrossRef]
- Kaneda, H.; Kobayashi, N.; Tsuchiya, Y.; Munekata, M.; Koshino, S. Some applications of chemiluminescence analysis to brewing. J. Am. Soc. Brew. Chem. 1994, 52, 163–168. [Google Scholar] [CrossRef]
- Guido, L.F.; Boivin, P.; Benismail, N.; Gonçalves, C.R.; Barros, A.A. An early development of the nonenal potential in the malting process. Eur. Food Res. Technol. 2005, 220, 200–206. [Google Scholar] [CrossRef]
- Čechovská, L.; Konečný, M.; Velíšek, J.; Cejpek, K. Effect of Maillard reaction on reducing power of malts and beers. Czech J. Food Sci. 2012, 30, 548–558. [Google Scholar] [CrossRef]
- Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010, 58, 10677–10683. [Google Scholar] [CrossRef]
- Goupy, P.; Hugues, M.; Boivin, P.; Amiot, M.J. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric. 1999, 79, 625–1634. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Involvement of flavanoids in beer color instability during storage. J. Agric. Food Chem. 2007, 55, 9066–9073. [Google Scholar] [CrossRef] [PubMed]
- Rivero, D.; Pérez-Magariño, S.; González-Sanjosé, M.L.; Valls-Belles, V.; Codoñer, P.; Muñiz, P. Inhibition of induced DNA oxidative damage by beers: Correlation with the content of polyphenols and melanoidins. J. Agric. Food Chem. 2005, 53, 3637–3642. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Sun, G.; Yang, B.; Zhao, M. Assessment of endogenous antioxidative compounds and antioxidant activities of lager beers. J. Sci. Food Agric. 2013, 93, 910–917. [Google Scholar] [CrossRef]
- Rahman, M.J.; Liang, J.; Eskin, N.M.; Eck, P.; Thiyam-Holländer, U. Identification of hydroxycinnamic acid derivatives of selected canadian and foreign commercial beer extracts and determination of their antioxidant properties. LWT 2020, 122, 109021–109029. [Google Scholar] [CrossRef]
- Silva Ferreira, C.; Simon, M.; Collin, S. Why catechin and epicatechin from early hopping impact the color of aged dry-hopped beers while flavan-3-ol oligomers from late and dry hopping increase colloidal instability. J. Am. Soc. Brew. Chem. 2023, 81, 255–264. [Google Scholar] [CrossRef]
- Simon, M.; Collin, S. Why oxidation should be still more feared in NABLABs: Fate of polyphenols and bitter compounds. Beverages 2022, 8, 61. [Google Scholar] [CrossRef]
- Guido, L.F. Sulfites in beer: Reviewing regulation, analysis and role. Sci. Agric. 2016, 73, 189–197. [Google Scholar] [CrossRef]
- Sisein, E.A. Biochemistry of free radicals and antioxidants. Sch. Acad. J. Biosci. 2014, 2, 110–118. [Google Scholar]
- Spreng, S.; Hofmann, T. Activity-guided identification of in vitro antioxidants in beer. J. Agric. Food Chem. 2018, 66, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, S.; Popović, D.; Despotović, S.; Veljović, M.; Atanacković, M.; Cvejić, J.; Nedović, V.; Leskošek-Čukalović, I. Extracts of medicinal plants as functional beer additives. Chem. Ind. Chem. Eng. Q. 2016, 22, 301–308. [Google Scholar] [CrossRef]
- Martínez, A.; Vegara, S.; Herranz-López, M.; Martí, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries–The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef]
- Deng, Y.; Lim, J.; Lee, G.H.; Nguyen, T.T.H.; Xiao, Y.; Piao, M.; Kim, D. Brewing rutin-enriched lager beer with buckwheat malt as adjuncts. J. Microbiol. Biotechnol. 2019, 29, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Garzón, A.G.; Torres, R.L.; Drago, S.R. Changes in phenolics, γ-aminobutyric acid content and antioxidant, antihypertensive and hypoglycaemic properties during ale white sorghum (Sorghum bicolor (L.) Moench) brewing process. Int. J. Food Sci. Technol. 2019, 54, 1901–1908. [Google Scholar] [CrossRef]
- Gorjanovic, S.Z.; Novakovic, M.M.; Potkonjak, N.I.; Leskosek-Cukalovic, I.; Suznjevic, D.Z. Application of a novel antioxidative assay in beer analysis and brewing process monitoring. J. Agric. Food Chem. 2010, 58, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A.; Mandarano, M.; Hirst, M.; Trevithick, J.R.; Bose, P. Phenol antioxidant quantity and quality in foods: Beers and the effect of two types of beer on an animal model of atherosclerosis. J. Agric. Food Chem. 2003, 51, 5528–5533. [Google Scholar] [CrossRef] [PubMed]
- Milani, E.A.; Silva, F.V. Pasteurization of beer by non-thermal technologies. Front. Food. Sci. Technol. 2022, 1, 798676–798690. [Google Scholar] [CrossRef]
- Rachon, G.; Rice, C.J.; Pawlowsky, K.; Raleigh, C.P. Challenging the assumptions around the pasteurisation requirements of beer spoilage bacteria. J. Inst. Brew. 2018, 124, 443–449. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Collin, S. Fate of bitter compounds through dry-hopped beer aging. Why cis-humulinones should be as feared as trans-isohumulones? J. Am. Soc. Brew. Chem. 2020, 78, 103–113. [Google Scholar] [CrossRef]
- Intelmann, D.; Hofmann, T. On the autoxidation of bitter-tasting iso-α-acids in beer. J. Agric. Food Chem. 2010, 58, 5059–5067. [Google Scholar] [CrossRef]
- Simon, M.; Vuylsteke, G.; Collin, S. Flavor defects of fresh and aged NABLABs: New challenges against oxidation. J. Am. Soc. Brew. Chem. 2023, 81, 533–543. [Google Scholar] [CrossRef]
- Lermusieau, G.; Liégeois, C.; Collin, S. Reducing power of hop cultivars and beer ageing. Food Chem. 2001, 72, 413–418. [Google Scholar] [CrossRef]
- Chenot, C.; Simon, M.; Dusart, A.; Collin, S. Exploring hop varieties with discriminating flavan-3-ol profiles likely to improve color and colloidal stability of beers. Beverages 2023, 9, 67. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Wannenmacher, J.; Cotterchio, C.; Schlumberger, M.; Reuber, V.; Gastl, M.; Becker, T. Technological influence on sensory stability and antioxidant activity of beers measured by ORAC and FRAP. J. Sci. Food Agric. 2019, 99, 6628–6637. [Google Scholar] [CrossRef]
- Lund, M.N.; Hoff, S.; Berner, T.S.; Lametsch, R.; Andersen, M.L. Effect of pasteurization on the protein composition and oxidative stability of beer during storage. J. Agric. Food Chem. 2012, 60, 12362–12370. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shen, Y.; Yin, X.; Peng, L.; Li, Q. Influence of pasteurization and microfiltration on beer aging and anti-aging levels. J. Am. Soc. Brew. Chem. 2014, 72, 285–295. [Google Scholar] [CrossRef]
- Hoff, S.; Lund, M.N.; Petersen, M.A.; Frank, W.; Andersen, M.L. Storage stability of pasteurized non-filtered beer. J. Inst. Brew. 2013, 119, 172–181. [Google Scholar] [CrossRef]
- Kaneda, H.; Kano, Y.; Osawa, T.; Kawakishi, S.; Koshino, S. Free radical reactions in beer during pasteurization. Int. J. Food Sci. Technol. 1994, 29, 195–200. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Polyphenol and colour stability through beer ageing: Comparison of polyphenol quantification assays. In Proceedings of the European Brewery Congress, Venice, Italy, 6–10 May 2007; Volume 55, pp. 1–6. [Google Scholar]
- Liguori, L.; De Francesco, G.; Russo, P.; Perretti, G.; Albanese, D.; Di Matteo, M. Production and characterization of alcohol-free beer by membrane process. Food Bioprod. Process. 2015, 94, 158–168. [Google Scholar] [CrossRef]
- Verzele, M.; De Keukeleire, D. Chemistry and Analysis of Hop and Beer Bitter Acids; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Lyumugabe, F.; Gros, J.; Thonart, P.; Collin, S. Occurrence of polyfunctional thiols in sorghum beer ‘ikigage’ made with Vernonia amygdalina ‘umubirizi’. Flavour Fragr. J. 2012, 27, 372–377. [Google Scholar] [CrossRef]
- Bröhan, M.; Jerkovic, V.; Wilmotte, R.; Collin, S. Catechins and derived procyanidins in red and white sorghum: Their contributions to antioxidant activity. J. Inst. Brew. 2011, 117, 600–607. [Google Scholar] [CrossRef]
- Sterckx, F.L.; Saison, D.; Delvaux, F.R. Wood aging of beer. Part I: Influence on beer flavor and monophenol concentrations. J. Am. Soc. Brew. Chem. 2012, 70, 55–61. [Google Scholar] [CrossRef]
- European Brewery Convention. Analytica-EBC; Fachverlag Hans Carls: Nürnberg, Germany, 2006. [Google Scholar]
- ASBC. Methods of Analysis, Method Wort 21. Thiobarbituric Acid Index; American Society of Brewing Chemists: St. Paul, MN, USA, 2009. [Google Scholar]
Beer Samples | Ethanol (% v/v) | Color (°EBC) | Isohumulones (mg/L) | Phenols (mg/L) | Antioxidant Activity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cis- | trans- | Total polyphenols | (+)-Catechin | (−)-Epicatechin | Procyanidin B3 | Tryptophan | Tyrosine | ORAC value (μmol eq. Trolox/L) | TINH (min) | ITT (min) | |||
NABLABs | Special yeasts | ||||||||||||
A | 0.5 | 6.9 | 5.5 e (<0.1) | 1.7 e,f (<0.1) | 43 f (82) | 1.0 f (1.9) | 0.3 f (0.6) | 1.1 c (1.1) | 2.7 g (1.3) | 4.8 i (1.3) | 2014 g | 15 f | 0.7 d |
B | 0.3 | 9.3 | 16.0 c (<0.1) | 4.7 b (<0.1) | 124 d (60) | 1.5 e (0.7) | 1.0 b (0.5) | 2.0 b (0.5) | 15.9 d (2.0) | 25.5 f (1.7) | 7906 c | 29 c | 14 b |
C | 0.2 | 4.7 | 5.8 e (<0.1) | 0.3 g (<0.1) | 135 d (>100) | 3.5 a (3.0) | 1.2 a (1.0) | 1.0 c (0.4) | 15.4 e (3.5) | 26.0 e (3.2) | 4428 e | 25 d | 14 b |
Limited fermentation or cold contact | |||||||||||||
D | 0.8 | 5.6 | 4.3 e (<0.1) | 0.2 g (<0.1) | 56 f (64) | 2.1 b (2.3) | 0.9 c (1.0) | 1.2 c (0.7) | nd | 12.4 h (2.0) | 3382 f | 20 e | 66 a |
E | 0.1 | 19.7 | 10.9 d (<0.1) | 3.6 c (<0.1) | 149 d (49) | 1.1 f (0.4) | 0.8 c,d (0.3) | 0.7 c (0.1) | 16.0 d (1.4) | 35.0 c (1.6) | 11,637 a | 43 b | 0.8 d |
Vacuum dealcoholization | |||||||||||||
F | <0.1 | 8.0 | 12.0 d (<0.1) | 2.6 d,e (<0.1) | 84 e (47) | 1.4 e (0.8) | 0.8 c,d (0.5) | 0.9 c (0.3) | 17.6 b (2.6) | 33.0 d (2.6) | 6865 d | 21 e | 4 c |
G | <0.1 | 17.8 | 9.4 d (<0.1) | 0.5 g (<0.1) | 171 c (>100) | 1.6 d,e (1.1) | 0.6 e (0.4) | 0.9 c (0.3) | 0.7 h (0.1) | 3.4 j (0.3) | 5420 e | 28 c | 3 c |
H | 0.1 | 7.8 | 10.7 d (<0.1) | 1.8 e,f (<0.1) | 68 e,f (52) | 1.8 c,d (1.4) | 0.3 f (0.2) | 1.0 c (0.4) | 16.5 c (3.3) | 38.0 a (4.1) | 5047 e | 20 e | 0.7 d |
I | <0.1 | 7.0 | 15.3 c (<0.1) | 1.2 f,g (<0.1) | 50 f (42) | 0.9 f (0.7) | 0.3 f (0.2) | 0.7 c (0.3) | 8.6 f (1.9) | 24.1 g (2.8) | 4621 e | 20 e | 12 b |
J | <0.1 | 10.9 | 18.9 b (<0.1) | 3.2 c,d (<0.1) | 269 b (>100) | 1.9 b,c (1.1) | 0.7 d (0.4) | 1.1 c (0.3) | nd | nd | 6890 d | 24 d | 5 c |
Filtration dealcoholization | |||||||||||||
K | 0.5 | 13.9 | 28.9 a (<0.1) | 6.2 a (<0.1) | 304 a (>100) | 3.6 a (1.5) | 1.0 b (0.4) | 2.6 a (0.5) | 19.0 a (2.1) | 35.5 b (2.1) | 9193 b | 51 a | 0.7 d |
Conventional beers | |||||||||||||
Lager | 5.2 | 5.7 | 10,171 b | ||||||||||
Dry-hopped | 6.0 | 18.2 | 11,456 a | ||||||||||
Trappist brown beer | 9.0 | 60.0 | 12,332 a |
Sample A | Sample B | |||||
---|---|---|---|---|---|---|
BD | AD | AP | BD | AD | AP | |
Antioxidant Activity | ||||||
ORAC value (μmol eq. Trolox/L) | 8238 a | 3372 b | 1042 c | 7204 a | 355 b | 291 b |
Thermal indicators | ||||||
Color (°EBC) | 9.0 | 7.0 | 9.5 | 6.5 | 5.5 | 8.5 |
TBA | 35 c | 43 b | 60 a | 12 c | 14 b | 36 a |
Bitter compounds | ||||||
Alloisohumulones (mg/L eq. isohumulones) | 0.2 a | 0.4 a | 0.6 a | 0.1 b | 0.2 a,b | 0.3 a |
cis-Isohumulones (mg/L) | 9.3 a | 8.6 a,b | 7.6 b | 11.4 a | 10.0 b | 8.8 c |
trans-Isohumulones (mg/L) | 6.0 a | 5.2 a,b | 3.5 b | 6.0 a | 5.1 b | 4.8 b |
Phenols (mg/L) | ||||||
Total polyphenols | 144 a | 134 a | 148 a | 154 a | 89 b | 107 a |
Catechin | 2.0 a | 1.2 b | 0.5 c | 3.2 a | 1.5 b | 1.3 b |
Epicatechin | 1.0 a | 0.6 a | 0.5 a | 1.4 a | 0.8 a | 0.6 a |
Procyanidin B3 | 2.0 a | 1.4 a | 1.4 a | 1.8 a | 1.2 a | 0.9 a |
Stale odorants and pleasant polyfunctional thiols (μg/L) | ||||||
Sotolon (thr. = 0.8 μg/L) | 0.2 c | 0.6 b | 0.9 a | 0.1 c | 0.3 b | 1.4 a |
Methional (thr. = 0.5 μg/L) | 0.5 b | 0.5 b | 1.3 a | 0.7 b | 0.6 b | 2.5 a |
Phenylacetaldehyde (thr. = 5.4 μg/L) | 7.0 b | 8.1 b | 28.4 a | 7.2 b | 5.9 b | 10.4 a |
3SHol (thr. = 0.055 μg/L) | 4.3 a | 0.3 b | nd | nd | nd | nd |
3SHA (thr. = 0.005 μg/L) | nq | nd | nd | 0.3 a | 0.1 b | 0.1 b |
3S4MPol (thr. = 0.07 μg/L) | 0.3 a | nd | 0.3 b | 0.7 a | 0.4 b | 0.3 b |
3S4MPA (thr. = 0.16 μg/L) | 0.9 a | nd | 0.5 b | 0.7 a | nd | nd |
ORAC Value (μmol eq. Trolox/g) | Amount Required (g/hL Beer for 100% Recovery) to Bring the ORAC Value of a NABLAB (on Average 6127 μmol eq. Trolox/L) to the Antioxidant Power of a Conventional Beer (on Average 11,320 μmol eq. Trolox/L) | |
---|---|---|
Common brewing antioxidants | ||
Ascorbic acid | 5982 a | 87 |
Potassium metabisulfite | 1344 c,d | 386 |
Non-conventional cereals | ||
Unmalted white sorghum | 24 k | 21,638 |
Unmalted red sorghum | 390 h,i,j,k | 1332 |
Rwandan traditional malted red sorghum | 855 d,e,f,g,h | 607 |
Hops | ||
Citra T-90 pellets | 615 e,f,g,h,i,j | 844 |
Saaz T-90 pellets | 1101 c,d,e | 472 |
Spices/herbs and other botanical ingredients | ||
Coriander | 273 i,j,k | 1902 |
Orange peel | 510 f,g,h,i,j,k | 1018 |
Cardamom | 56 k | 9273 |
Licorice | 212 i,j,k | 2450 |
Cinnamon | 907 d,e,f,g,h | 573 |
Ginger | 721 e,f,g,h,i | 720 |
Hibiscus | 477 g,h,i,j,k | 1089 |
Vernonia amygdalina leaves | 5234 b | 99 |
Vernonia amygdalina flowers | 1457 c | 356 |
Wood chips | ||
Oak | 980 c,d,e,f,g | 530 |
Acacia | 1036 c,d,e,f | 501 |
Mulberry | 148 j,k | 3509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, M.; Kageruka, H.; Collin, S. Use of Botanical Ingredients: Nice Opportunities to Avoid Premature Oxidation of NABLABs by Increasing Their ORAC Values Strongly Impacted by Dealcoholization or Pasteurization. Molecules 2024, 29, 2370. https://doi.org/10.3390/molecules29102370
Simon M, Kageruka H, Collin S. Use of Botanical Ingredients: Nice Opportunities to Avoid Premature Oxidation of NABLABs by Increasing Their ORAC Values Strongly Impacted by Dealcoholization or Pasteurization. Molecules. 2024; 29(10):2370. https://doi.org/10.3390/molecules29102370
Chicago/Turabian StyleSimon, Margaux, Hubert Kageruka, and Sonia Collin. 2024. "Use of Botanical Ingredients: Nice Opportunities to Avoid Premature Oxidation of NABLABs by Increasing Their ORAC Values Strongly Impacted by Dealcoholization or Pasteurization" Molecules 29, no. 10: 2370. https://doi.org/10.3390/molecules29102370
APA StyleSimon, M., Kageruka, H., & Collin, S. (2024). Use of Botanical Ingredients: Nice Opportunities to Avoid Premature Oxidation of NABLABs by Increasing Their ORAC Values Strongly Impacted by Dealcoholization or Pasteurization. Molecules, 29(10), 2370. https://doi.org/10.3390/molecules29102370