Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Design
2.2. Validation of Design
PC | Excitation | a | a | Cal. b | |
---|---|---|---|---|---|
nm | L/(mol·cm) | Debye | |||
ZnTPP | - (0–0) | 600 | 1.0 | 1.627 | 0.023 |
- (0–1) | 560 | 2.1 | |||
- (0–0) | 427 | 55.3 | 10.212 | 1.307 | |
- (0–1) | 406 | 4.7 | |||
ZnTNP | -(0–0) | 604 | 1.5 | 2.335 | 0.047 |
- (0–1) | 563 | 2.3 | |||
- (0–0) | 433 | 53.2 | 10.997 | 1.453 | |
- (0–1) | 412 | 5.0 | |||
ZnTPTBP | - (0–0) | 655 | 5.2 | 3.623 | 0.105 |
- (0–1) | 610 | 2.0 | |||
- (0–0) | 467 | 34.6 | 10.917 | 1.379 | |
- (0–1) | 442 | 4.3 |
2.3. PET-RAFT Polymerization
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of PCs (ZnTNP and ZnTPTBP) and RAFT Agent (InZ)
3.3. General Procedure for PET-RAFT Polymerization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PC | photocatalyst |
PET-RAFT | photoinduced electron/energy transfer reversible addition-fragmentation |
chain transfer | |
ZnTPP | zinc tetraphenylporphyrin |
ZnTNP | zinc tetranaphenylporphyrin |
ZnTPTBP | zinc tetraphenyl tetrabenzoporphyrin |
HOMO | highest occupied molecular orbital |
LUMO | lowest unoccupied molecular orbital |
apparent propagation rate | |
maximum absorption wavelength | |
molar extinction coefficient | |
transition dipole moment | |
f | oscillator strength |
/ | molecular weight dispersity |
MWD | molecular weight distribution |
full width at half maximum of the absorption peak |
References
- Taniguchi, M.; Lindsey, J. Absorption and Fluorescence Spectral Database of Chlorophylls and Analogues. Photochem. Photobiol. 2021, 97, 136–165. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S.; Xu, J.; Boyer, C. Utilizing the Electron Transfer Mechanism of Chlorophyll a under Light for Controlled Radical Polymerisation. Chem. Sci. 2015, 6, 1341–1349. [Google Scholar] [CrossRef]
- Wu, C.; Shanmugam, S.; Xu, J.; Zhu, J.; Boyer, C. Chlorophyll a Crude Extract: Efficient Photo-Degradable Photocatalyst for PET-RAFT Polymerisation. Chem. Commun. 2017, 53, 12560–12563. [Google Scholar] [CrossRef]
- Shanmugam, S.; Xu, J.; Boyer, C. Exploiting Metalloporphyrins for Selective Living Radical Polymerisation Tunable over Visible Wavelengths. J. Am. Chem. Soc. 2015, 137, 9174–9185. [Google Scholar] [CrossRef] [PubMed]
- Seal, P.; Xu, J.; De Luca, S.; Boyer, C.; Smith, S. Unraveling Photocatalytic Mechanism and Selectivity in PET-RAFT Polymerisation. Adv. Theory Simul. 2019, 2, 1900038. [Google Scholar] [CrossRef]
- Wu, C.; Jung, K.; Ma, Y.; Liu, W.; Boyer, C. Unravelling an Oxygen-Mediated Reductive Quenching Pathway for Photopolymerisation under Long Wavelengths. Nat. Commun. 2021, 12, 478. [Google Scholar] [CrossRef] [PubMed]
- Masahiko, T.; Jonathan, S.; David, F.; Dewey, H. Comprehensive Review of Photophysical Parameters (ϵ, ϕf, τt) of Tetraphenylporphyrin (H2TPP) and Zinc Tetraphenylporphyrin (ZnTPP) Critical benchmark molecules in photochemistry and photosynthesis. J. Photochem. Photobiol. C 2021, 46, 100401. [Google Scholar]
- Shanmugam, S.; Xu, J.; Boyer, C. Light-Regulated Polymerisation under Near-Infrared/Far-Red Irradiation Catalyzed by Bacteriochlorophyll a. Angew. Chem. Int. Ed. 2016, 55, 1036–1040. [Google Scholar] [CrossRef]
- Bräm, O.; Cannizzo, A.; Chergui, M. Ultrafast Broadband Fluorescence Up-conversion Study of the Electronic Relaxation of Metalloporphyrins. J. Phys. Chem. A 2019, 123, 1461–1468. [Google Scholar] [CrossRef]
- Cao, H.; Wang, G.; Xue, Y.; Yang, G.; Tian, J.; Liu, F.; Zhang, W. Far-Red Light-Induced Reversible Addition–Fragmentation Chain Transfer Polymerisation Using a Man-Made Bacteriochlorin. ACS Macro Lett. 2019, 8, 616–622. [Google Scholar] [CrossRef]
- Sun, J.; Ren, S.; Zhao, H.; Zhang, S.; Xu, X.; Zhang, L.; Cheng, Z. NIR-Photocontrolled Aqueous RAFT Polymerisation with Polymerisable Water-Soluble Zinc Phthalocyanine as Photocatalyst. ACS Macro Lett. 2023, 12, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, R.; Ma, Z.; Zuo, W.; Zhu, M. Unleashing the Power of PET-RAFT Polymerisation: Journey from Porphyrin-Based Photocatalysts to Combinatorial Technologies and Advanced Bioapplications. Biomacromolecules 2024, 25, 1371–1390. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Corrigan, N.; Lim, C.; Liu, W.; Miyake, G.; Boyer, C. Rational Design of Photocatalysts for Controlled Polymerisation: Effect of Structures on Photocatalytic Activities. Chem. Rev. 2022, 122, 5476–5518. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, C.; Liu, W. Toward the Rational Design of Organic Catalysts for Organocatalysed Atom Transfer Radical Polymerisation. Polymers 2024, 16, 323. [Google Scholar] [CrossRef] [PubMed]
- Gouterman, M. Study of the Effects of Substitution on the Absorption Spectra of Porphin. J. Chem. Phys. 1959, 30, 1139–1161. [Google Scholar] [CrossRef]
- Wu, C.; Corrigan, N.; Lim, C.; Jung, K.; Zhu, J.; Miyake, G.; Xu, J.; Boyer, C. Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerisation: Halogenated Xanthene Dyes. Macromolecules 2019, 52, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. A Robust and Versatile Photoinduced Living Polymerisation of Conjugated and Unconjugated Monomers and Its Oxygen Tolerance. J. Am. Chem. Soc. 2014, 136, 5508–5519. [Google Scholar] [CrossRef]
- Sparks, L.; Medforth, C.; Park, M.; Chamberlain, J.; Ondrias, M.; Senge, M.; Smith, K.; Shelnutt, J. Metal Dependence of the Nonplanar Distortion of Octaalkyltetraphenylporphyrins. J. Am. Chem. Soc. 1993, 115, 581–592. [Google Scholar] [CrossRef]
- Gentemann, S.; Medforth, C.; Forsyth, T.; Nurco, D.; Smith, K.; Fajer, J.; Holten, D. Photophysical Properties of Conformationally Distorted Metal-Free Porphyrins. Investigation into the Deactivation Mechanisms of the Lowest Excited Singlet State. J. Am. Chem. Soc. 1994, 116, 7363–7368. [Google Scholar] [CrossRef]
- Senge, M. Exercises in Molecular Gymnastics—Bending, stretching and twisting porphyrins. Chem. Commun. 2006, 243–256. [Google Scholar] [CrossRef]
- Martynov, A.; Mack, J.; May, A.; Nyokong, T.; Gorbunova, Y.; Tsivadze, A. Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV–Vis–NIR Spectra of Phthalocyanines. ACS Omega 2019, 4, 7265–7284. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Nagao, Y. Design of Near-Infrared Dyes Based on π-Conjugation System Extension. Theoretical Evaluation of Arylimidazole Derivatives of Perylene Chromophore. Chem. Mater. 1999, 11, 2107–2114. [Google Scholar] [CrossRef]
- Roznyatovskiy, V.; Lee, C.; Sessler, J. π-Extended isomeric and expanded porphyrins. Chem. Soc. Rev. 2013, 42, 1921–1933. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Morales, Y. HOMO-LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I. J. Phys. Chem. A 2002, 106, 11283–11308. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Y.; Liang, W.; Zhao, Y. Vibrationally Resolved Absorption Spectra and Exciton Dynamics in Zinc Phthalocyanine Aggregates: Effects of Aggregation Lengths and Remote Exciton Transfer. J. Phys. Chem. A 2021, 125, 2932–2943. [Google Scholar] [CrossRef] [PubMed]
- Liu, W. SDS: The Static-Dynamic-Static Framework for Strongly Correlated Electrons. Theor. Chem. Accounts 2014, 133, 1481. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, W.; Hoffmann, M. Further Development of SDSPT2 for Strongly Correlated Electrons. Mol. Phys. 2017, 115, 2696–2707. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Y.; Lei, Y.; Zhang, N.; Liu, W. The Static–Dynamic–Static Family of Methods for Strongly Correlated Electrons: Methodology and Benchmarking. Top. Curr. Chem. 2021, 379, 43. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrisation of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- Liu, W.; Hong, G.; Dai, D.; Li, L.; Dolg, M. The Beijing Four-Component Density Functional Program Package (BDF) and Its Application to EuO, EuS, YbO and YbS. Theor. Chem. Accounts 1997, 96, 75–83. [Google Scholar] [CrossRef]
- Liu, W.; Wang, F.; Li, L. The Beijing Density Functional (BDF) Program Package: Methodologies and Applications. J. Theor. Comput. Chem. 2003, 2, 257–272. [Google Scholar] [CrossRef]
- Zhang, Y.; Suo, B.; Wang, Z.; Zhang, N.; Li, Z.; Lei, Y.; Zou, W.; Gao, J.; Peng, D.; Pu, Z.; et al. BDF: A Relativistic Electronic Structure Program Package. J. Chem. Phys. 2020, 152, 064113. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Z Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Roy, P.; Kundu, S.; Makri, N.; Fleming, G. Interference between Franck–Condon and Herzberg–Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives. J. Phys. Chem. Lett. 2022, 13, 7413–7419. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Y.; Boyer, C.; Wu, Z.; Wu, C. Design and Synthesis of a New Indazole-Decorated RAFT Agent for Highly Efficient PET-RAFT Polymerisation. Marcromolecules 2024, 57, 4421–4429. [Google Scholar] [CrossRef]
- James, G.; Ivan, M.; John, T.; Graeme, M. Dithiocarbamate RAFT agents with broad applicability–the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polym. Chem. 2016, 7, 481–492. [Google Scholar]
- Thang, S.; Chong, Y.; Mayadunne, R.; Moad, G.; Rizzardo, E. A Novel Synthesis of Functional Dithioesters, Dithiocarbamates, Xanthates and Trithiocarbonates. Tetrahedron Lett. 1999, 40, 2435–2438. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Wang, Z.; Liu, W. When do Tripdoublet States Fluoresce? A Theoretical Study of Copper(II) Porphyrin. Front. Chem. 2023, 11, 1259016. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.; Cramer, C.; Truhlar, D. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Garcia-Ratés, M.; Neese, F. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme. J. Comput. 2020, 41, 922–939. [Google Scholar] [CrossRef]
Entry | PC | min−1 | min | % |
d g·mol−1 | g·mol−1 | / | min |
---|---|---|---|---|---|---|---|---|
1 | ZnTPP a | 0.120 | 4.96 | 66.2 | 13,400 | 14,400 | 1.12 | 12 |
2 | ZnTNP a | 0.137 | 5.51 | 68.9 | 14,000 | 14,800 | 1.13 | 12 |
3 | ZnTPTBP b | 0.179 | 4.20 | 76.6 | 15,500 | 13,200 | 1.12 | 12 |
4 | ZnTPTBP c | 0.128 | 5.30 | 66.7 | 13,500 | 13,100 | 1.13 | 14 |
Entry | Monomer | RAFT Agent | % | g·mol−1 | g·mol−1 | / | min |
---|---|---|---|---|---|---|---|
1 | DMA | InZ | 76.6 | 15,500 | 13,200 | 1.12 | 12 |
2 | NAM | InZ | 73.0 | 20,900 | 20,700 | 1.24 | 12 |
3 | DEA | InZ | 62.2 | 16,100 | 19,000 | 1.30 | 12 |
4 | MA | InZ | 65.3 | 11,500 | 11,300 | 1.10 | 48 |
5 | TMA | InZ | 63.3 | 20,100 | 18,200 | 1.27 | 36 |
6 | BzA | InZ | 55.3 | 18,200 | 22,000 | 1.11 | 12 |
7 | DEEGA | InZ | 71.3 | 27,100 | 21,100 | 1.36 | 36 |
8 | MMA | CDTPA | 37.0 | 7800 | 8100 | 1.37 | 40 |
Entry | Solvent | Monomer | % | g·mol−1 | g·mol−1 | / | min |
---|---|---|---|---|---|---|---|
1 | DMSO | DMA | 76.6 | 15,500 | 13,200 | 1.12 | 12 |
2 | MeOH | DMA | 45.2 | 9300 | 9900 | 1.17 | 24 |
3 | DMF | DMA | 56.1 | 11,400 | 11,600 | 1.14 | 12 |
4 | MeCN | DMA | 74.9 | 15,100 | 14,700 | 1.12 | 24 |
5 | EtOH | DMA | 72.2 | 14,600 | 13,900 | 1.14 | 24 |
6 | EtOAc | DMA | 51.5 | 10,600 | 11,700 | 1.14 | 24 |
7 | THF | DMA | 57.8 | 11,700 | 12,100 | 1.21 | 24 |
8 | DCM | DMA | 64.8 | 13,100 | 12,600 | 1.15 | 24 |
Entry | PC Loading ppm | min−1 | min | % |
a g·mol−1 | g·mol−1 | / | min |
---|---|---|---|---|---|---|---|---|
1 | 25 | 0.110 | 4.78 | 70.9 | 14,400 | 14,200 | 1.09 | 16 |
2 | 10 | 0.071 | 5.11 | 70.4 | 13,700 | 14,200 | 1.14 | 22 |
3 | 5 | 0.057 | 6.57 | 67.5 | 13,700 | 15,100 | 1.13 | 28 |
4 | 1 | 0.019 | 31.14 | 65.3 | 13,200 | 12,800 | 1.08 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, Z.; Wu, C.; Wang, Z.; Liu, W. Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects. Molecules 2024, 29, 2377. https://doi.org/10.3390/molecules29102377
Wang Z, Zhang Z, Wu C, Wang Z, Liu W. Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects. Molecules. 2024; 29(10):2377. https://doi.org/10.3390/molecules29102377
Chicago/Turabian StyleWang, Zhilei, Zipeng Zhang, Chenyu Wu, Zikuan Wang, and Wenjian Liu. 2024. "Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects" Molecules 29, no. 10: 2377. https://doi.org/10.3390/molecules29102377
APA StyleWang, Z., Zhang, Z., Wu, C., Wang, Z., & Liu, W. (2024). Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects. Molecules, 29(10), 2377. https://doi.org/10.3390/molecules29102377