Metal–Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy
Abstract
:1. Introduction
2. Results
2.1. Metal–Organic Framework-Capped Gold Nanorods Hybrid Characterization
2.2. Drug Loads and Releases
2.3. Photothermal Conversion Effect
2.4. Cytotoxicity Analysis
2.5. Hoechst 33342 Staining Was Used to Detect Cell Apoptosis
2.6. Mitochondrial Transmembrane Potential in A549 Cells
2.7. Intracellular Ca2+ Influx Concentration
2.8. Intracellular Reactive Oxygen Species (ROS) Content in A549 Cells
2.9. Caspase-3/-8/-9 Enzyme Activity
2.10. Western Blotting of A549 Cell Proteins
3. Discussion
4. Materials and Methods
4.1. Chemicals and Characterization
4.2. Preparation and Characterization of Nanomaterials
4.2.1. Synthesis of GNRs
4.2.2. Synthesis of MOF-Capped Gold Nanorod
4.2.3. DOX Loading
4.3. Photothermal Performance of Nanomaterials
4.4. Drug Loading and Release
4.5. Peroxidase-like Activity
4.6. Cell Culture
4.7. MTT Assay
4.8. Analysis of Apoptosis Morphology
4.9. Nuclear Apoptosis Measurement
4.10. Analysis of Mitochondrial Membrane Potential (MMP)
4.11. Intracellular Ca2+ Concentration
4.12. Intracellular ROS
4.13. Caspase 3/8/9 Activity Assay
4.14. Western Blotting
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, P.; Liang, F. Nanomaterial-Based Tumor Photothermal Immunotherapy. Int. J. Nanomed. 2020, 15, 9159–9180. [Google Scholar] [CrossRef] [PubMed]
- Simelane, N.W.N.; Abrahamse, H. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 12405. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Lei, H.; Cheng, L. Bioactive inorganic nanomaterials for cancer theranostics. Chem. Soc. Rev. 2023, 52, 2031–2081. [Google Scholar] [CrossRef] [PubMed]
- Nejabat, M.; Samie, A.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. An overview on gold nanorods as versatile nanoparticles in cancer therapy. J. Control. Release 2023, 354, 221–242. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dai, D.; Zhang, X.; Teng, L.; Ma, L.; Yang, Y.W. Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: From single to combination therapy. Theranostics 2023, 13, 295–323. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer 2023, 22, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhang, M.; Xi, J.; Li, J.; Ma, R.; Ren, L.; Bai, Z.; Qi, K.; Li, X. Gold Nanorods-Based Photothermal Therapy: Interactions Between Biostructure, Nanomaterial, and Near-Infrared Irradiation. Nanoscale Res. Lett. 2022, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, Y.; Ying, Y.; Wu, B.; Liu, Y.; Zhou, J.; Hu, L. Progress of Mesoporous Silica Coated Gold Nanorods for Biological Imaging and Cancer Therapy. Chemmedchem 2024, 19, e202300374. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, C.; Mei, C.; Sun, J.; Lee, J.; Wu, Q.; Hubbe, M.A.; Li, M.C. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord. Chem. Rev. 2022, 461, 214496. [Google Scholar] [CrossRef]
- Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E. Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials 2021, 14, 3652. [Google Scholar] [CrossRef]
- Cun, J.E.; Fan, X.; Pan, Q.; Gao, W.; Luo, K.; He, B.; Pu, Y. Copper-based metal-organic frameworks for biomedical applications. Adv. Colloid Interface Sci. 2022, 305, 102686. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Gielecinska, A.; Mujwar, S.; Kolat, D.; Kaluzinska-Kolat, Z.; Celik, I.; Kontek, R. Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023, 12, 659. [Google Scholar] [CrossRef] [PubMed]
- Aloss, K.; Hamar, P. Recent Preclinical and Clinical Progress in Liposomal Doxorubicin. Phamacutics 2023, 15, 893. [Google Scholar] [CrossRef]
- Tadepalli, S.; Yim, J.; Cao, S.; Wang, Z.; Naik, R.R.; Singamaneni, S. Metal–Organic Framework Encapsulation for the Preservation and Photothermal Enhancement of Enzyme Activity. Small 2018, 14, 1702382. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, W.; Wang, L.; Wang, Y.; Liao, C.K.; Chen, J.; Hu, P.; Hong, W.; Huang, M.; Chen, Z.; et al. Suppression of Cancer Proliferation and Metastasis by a Versatile Nanomedicine Integrating Photodynamic therapy, Photothermal therapy, and Enzyme Inhibition. Acta Biomater. 2020, 113, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lv, Y.; Wang, Y.; Kong, D.; Xia, J.; Li, J.; Zhou, Q. Tumor Acidic Microenvironment-Responsive Promodulator Iron Oxide Nanoparticles for Photothermal-Enhanced Chemodynamic Immunotherapy of Cancer. ACS Biomater. Sci. Eng. 2023, 9, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Boyne, D.A.; Chipara, A.C.; Griep, M.H. Transverse axis morphological control for tailored gold nanorod (GNR) synthesis. RSC Adv. 2016, 6, 63634–63641. [Google Scholar] [CrossRef]
- Huang, X.; Neretina, S.; El-Sayed, M.A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 2009, 21, 4880–4910. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724. [Google Scholar] [CrossRef] [PubMed]
- Sattar, R.; Shahzad, F.; Ishaq, T.; Mukhtar, R.; Naz, A. Nano-Drug Carriers: A Potential Approach towards Drug Delivery Methods. ChemistrySelect 2022, 7, e202200884. [Google Scholar] [CrossRef]
- Lv, S.; Zheng, D.; Chen, Z.; Jia, B.; Zhang, P.; Yan, J.; Jiang, W.; Zhao, X.; Xu, J.J. Near-Infrared Light-Responsive Size-Selective Lateral Flow Chip for Single-Cell Manipulation of Circulating Tumor Cells. Anal. Chem. 2023, 95, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 2016, 74, 144–154. [Google Scholar] [CrossRef]
- Black, K.C.L.; Yi, J.; Rivera, J.G.; Zelasko-Leon, D.C.; Messersmith, P.B. Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine 2013, 8, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Niidome, T.; Fujii, M.; Nakashima, N.; Katayama, Y.; Niidome, Y. Imaging Mass Spectrometry of Gold Nanorods Distributed in Tumor Tissues. Chem. Lett. 2015, 44, 931–933. [Google Scholar] [CrossRef]
- Yang, X.; Li, M.; Liang, J.; Hou, X.; Wang, K. NIR-Controlled Treatment of Multidrug-Resistant Tumor Cells by Mesoporous Silica Capsules Containing Gold Nanorods and Doxorubicin. ACS Appl. Mater. Interfaces 2021, 13, 14894–14910. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, L.; Lin, M.; Wang, D.; Song, Z.; Li, S.; Ge, R.; Zhang, X.; Liu, Y.; Li, Z. Cu(II)-Doped Polydopamine-Coated Gold Nanorods for Tumor Theranostics. ACS Appl. Mater. Interfaces 2017, 9, 44293–44306. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, R.; Pichaimani, A.; Hari, K.; Balasubramanian, P.K.; Premkumar, K. Doxorubicin conjugated gold nanorods: A sustained drug delivery carrier for improved anticancer therapy. J. Mater. Chem. B 2013, 1, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Alkhateeb, A.A.; Connor, J.R. The significance of ferritin in cancer: Anti-oxidation, inflammation and tumorigenesis. Biochim. Biophys. Acta Rev. Cancer 2013, 1836, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 2003, 15, 247–254. [Google Scholar] [CrossRef]
- Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Wu, W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006, 25, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Bauer, G. Tumor Cell-protective Catalase as a Novel Target for Rational Therapeutic Approaches Based on Specific Intercellular ROS Signaling. Anticancer Res. 2012, 32, 2599–2624. [Google Scholar] [PubMed]
- Godin, B.; Chiappini, C.; Srinivasan, S.; Alexander, J.F.; Yokoi, K.; Ferrari, M.; Decuzzi, P.; Liu, X. Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice. Adv. Funct. Mater. 2012, 22, 4225–4235. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Liu, H.; Huang, S.; Guo, Y.; Xu, L. Metal–Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules 2024, 29, 2384. https://doi.org/10.3390/molecules29102384
Zhao C, Liu H, Huang S, Guo Y, Xu L. Metal–Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules. 2024; 29(10):2384. https://doi.org/10.3390/molecules29102384
Chicago/Turabian StyleZhao, Chong, Hongxiang Liu, Sijun Huang, Yi Guo, and Li Xu. 2024. "Metal–Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy" Molecules 29, no. 10: 2384. https://doi.org/10.3390/molecules29102384
APA StyleZhao, C., Liu, H., Huang, S., Guo, Y., & Xu, L. (2024). Metal–Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules, 29(10), 2384. https://doi.org/10.3390/molecules29102384