Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of 1H-isochromen-1-ones 4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, M.; Hussain, M.T.; Rama, N.H.; Hameed, S.; Malik, A.; Khan, K.M. Synthesis and antimicrobial activities of some isocoumarin and dihydroisocoumarin derivatives. Nat. Prod. Res. 2003, 17, 207–214. [Google Scholar] [CrossRef]
- Heynekamp, J.J.; Hunsaker, L.A.; Vander Jagt, T.A.; Royer, R.E.; Decka, L.M.; Vander Jagt, D.L. Isocoumarin-based inhibitors of pancreatic cholesterol esterase. Bioorg. Med. Chem. 2008, 16, 5285–5294. [Google Scholar] [CrossRef]
- Nozawa, K.; Yamada, M.; Tsuda, Y.; Kawai, K.; Nakajima, S. Antifungal activity of oosponol, oospolactone, phyllodulcin, hydrangnol, and some other related compounds. Chem. Pharm. Bull. 1981, 29, 2689–2691. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, B.; Kindl, J.; Jiros, P.; Zacek, P.; Vasickova, S.; Budesinsky, M.; Valterova, I. Composition and electrophysiological activity of constituents identified in male wing gland secretion of the bumblebee parasite aphomia sociella. J. Nat. Prod. 2009, 72, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, M.E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; De Celis, E.R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg. Med. Chem. 2008, 16, 2665–2675. [Google Scholar] [CrossRef]
- Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Lee, K.H. Chemical Constituents of Prangos tschimganica; Structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti-HIV activity. Chem. Pharm. Bull. 2001, 49, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Molotkov, A.P.; Arsenov, M.A.; Kapustin, D.A.; Muratov, D.V.; Shepel, N.E.; Fedorov, Y.V.; Smol’yakov, A.F.; Knyazeva, E.I.; Lypenko, D.A.; Dmitriev, A.V.; et al. Effect of Cp-ligand methylation on Rhodium(III)-catalyzed annulations of aromatic carboxylic acids with alkynes: Synthesis of isocoumarins and PAHs for organic light-emitting devices. ChemPlusChem 2020, 85, 334–345. [Google Scholar] [CrossRef]
- Arsenov, M.A.; Fedorov, Y.V.; Muratov, D.V.; Nelyubina, Y.V.; Loginov, D.V. Synthesis of isocoumarins and PAHs with electron-withdrawing substituents: Impact of the substituent nature on the photophysical behavior. Dyes Pigm. 2022, 206, 110653–110665. [Google Scholar] [CrossRef]
- Chutia, K.; Sarmah, M.; Gogoi, P. Substituted Isocoumarins: An assemble of synthetic strategies towards 3-substituted and 3,4-disubstituted isocoumarins. Chem. Asian J. 2023, 18, e202201240. [Google Scholar] [CrossRef] [PubMed]
- Pirovano, V.; Marchetti, M.; Carbonaro, J.; Brambilla, E.; Rossi, E.; Ronda, L.; Abbiati, G. Synthesis and photophysical properties of isocoumarin-based D-π-A systems. Dyes Pigm. 2020, 173, 107917. [Google Scholar] [CrossRef]
- Han, T.; Deng, H.; Yu, C.Y.Y.; Gui, C.; Song, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Functional isocoumarin-containing polymers synthesized by rhodium-catalyzed oxidative polycoupling of aryl diacid and internal diyne. Polym. Chem. 2016, 7, 2501–2510. [Google Scholar] [CrossRef]
- Mayakrishnan, S.; Arun, Y.; Maheswari, N.U.; Perumal, P.T. Rhodium(III)-catalysed decarbonylative annulation through C–H activation: Expedient access to aminoisocoumarins by weak coordination. Chem. Commun. 2018, 54, 11889–11892. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Murfin, L.C.; Wu, L.L.; Lewis, S.E.; James, T.D. Fluorescent small organic probes for biosensing. Chem. Sci. 2021, 12, 3406–3426. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, N.; Parhi, R.; Tripathi, R.K.P.; Pachuau, L.; Kaishap, P.P. Recent advances in synthesis of isocoumarins: An overview. Tetrahedron 2024, 150, 133740. [Google Scholar] [CrossRef]
- Barry, R.D. Isocoumarins. developments since 1950. Chem. Rev. 1964, 64, 229–260. [Google Scholar] [CrossRef]
- Oliver, M.A.; Gandour, R.D. The identity of 4-bromo-3-phenylisocoumarin. A facile preparation by bromolactonization of alkyl 2-(2-phenylethynyl)benzoates. J. Org. Chem. 1984, 49, 558–559. [Google Scholar] [CrossRef]
- Pal, S.; Chatare, V.; Pal, M. Isocoumarin and its derivatives: An overview on their synthesis and applications. Curr. Org. Chem. 2011, 15, 782–800. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhang, H.J.; Han, T.T.; Ruan, W.Q.; Wen, T.B. Rh(III)-catalyzed oxidative coupling of benzoic acids with geminal substituted vinyl acetates: Synthesis of 3-substituted isocoumarins. J. Org. Chem. 2015, 80, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.J.; Wang, F.; Xi, C.J. Assembly of 3-substituted isocoumarins via a CuI-catalyzed domino coupling/addition/deacylation process. J. Org. Chem. 2012, 77, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.C.; Li, Y.F.; Xuan, J.; Hu, X.Q. Practical synthesis of isocoumarins via Rh(III)-catalyzed C–H activation/annulation cascade. Beilstein J. Org. Chem. 2023, 19, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, L.Y.; Shi, X.Y. Copper-promoted intramolecular oxidative dehydrogenation for synthesizing dihydroisocoumarins and isocoumarins. Molecules 2023, 28, 6319–6328. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Qiu, G.; Zhou, H.; Xie, W.; Liu, J.B. Regioselective cyclization of 2-alkynylbenzoic acid in water for the synthesis of isocoumarin. Tetrahedron 2019, 75, 3850–3855. [Google Scholar] [CrossRef]
- Jang, Y.J.; Chen, G.Y.; Jhan, Y.L.; Lo, P.T.; Hsu, W.Y.; Wang, K.; Hsu, Y.T.; Lee, C.L.; Yang, Y.L.; Wu, Y.C. Chemo- and regioselective construction of functionalized isocoumarin, flavone, and isoquinolinedione via a one-pot reaction of o-quinol acetate and soft nucleophiles. Adv. Synth. Catal. 2023, 365, 2900–2911. [Google Scholar] [CrossRef]
- Chen, Z.; Nieves-Quinones, Y.; Waas, J.R.; Singleton, D.A. Isotope effects, dynamic matching, and solvent dynamics in a Wittig reaction. betaines as bypassed intermediates. J. Am. Chem. Soc. 2014, 136, 13122–13125. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.P.; Cao, Z.Y.; Wang, X.; Chen, L.; Zhou, F.; Zhu, F.; Wang, C.H.; Zhou, J. Activation of chiral (salen)AlCl complex by phosphorane for highly enantioselective cyanosilylation of ketones and enones. J. Am. Chem. Soc. 2016, 138, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Liu, Y.B.; Gong, M.; Li, Y.B.; Huang, M.M.; Wu, Y.J. A facile visible-light-induced one-pot synthesis of 3-alkyl coumarins from simple salicylaldehydes. Tetrahedron 2023, 132, 133249. [Google Scholar] [CrossRef]
- Lee, C.J.; Chang, T.H.; Yu, J.K.; Reddy, G.M.; Hsiao, M.Y.; Lin, W.W. Synthesis of functionalized furans via chemoselective reduction/Wittig reaction using catalytic triethylamine and phosphine. Org. Lett. 2016, 18, 3758–3761. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.; Voituriez, A. Synthesis of 9H-pyrrolo[1,2-a]indole and 3H-pyrrolizine derivatives via a phosphine-catalyzed umpolung addition/intramolecular Wittig reaction. J. Org. Chem. 2016, 81, 4371–4377. [Google Scholar] [CrossRef] [PubMed]
- Longwitz, L.; Spannenberg, A.; Werner, T. Phosphetane oxides as redox cycling catalysts in the catalytic Wittig reaction at room temperature. ACS Catal. 2019, 9, 9237–9244. [Google Scholar] [CrossRef]
- Schneider, L.M.; Schmiedel, V.M.; Pecchioli, T.; Lentz, D.; Merten, C.; Christmann, M. Asymmetric synthesis of carbocyclic propellanes. Org. Lett. 2017, 19, 2310–2313. [Google Scholar] [CrossRef] [PubMed]
- Grandane, A.; Longwitz, L.; Roolf, C.; Spannenberg, A.; Escobar, H.M.; Junghanss, C.; Suna, E.; Werner, T. Intramolecular base-free catalytic Wittig reaction: Synthesis of benzoxepinones. J. Org. Chem. 2018, 84, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Chien, P.C.; Chen, Y.R.; Chen, Y.J.; Chang, C.F.; Marri, G.; Lin, W.W. Synthesis of Furo[2,3-f]dibenzotropones via Intramolecular Wittig Reaction of Alkylidene Dibenzo-β-tropolones. Adv. Synth. Catal. 2023, 366, 420–425. [Google Scholar] [CrossRef]
- Sun, M.; Wan, Q.; Ding, M.W. New facile synthesis of furan-2(3H)-ones and 2,3,5-trisubstituted furans via intramolecular Wittig reaction of acid anhydride. Tetrahedron 2019, 75, 3441–3447. [Google Scholar] [CrossRef]
- Kayser, M.M.; Bxeau, L. Neighboring effects on regioselectivity of Wittig reactions with maleic anhydrides. Tetrahedron Lett. 1988, 29, 6203–6206. [Google Scholar] [CrossRef]
- Wang, L.; Ren, Z.L.; Ding, M.W. Synthesis of 2,3-dihydro-1H-2-benzazepin-1-ones and 3H-2-benzoxepin-1-ones by isocyanide-based multicomponent reaction/Wittig sequence starting from phosphonium salt precursors. J. Org. Chem. 2015, 80, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.H.; Wang, H.M.; Ding, M.W. Unexpected synthesis of 5,6-dihydropyridin-2(1H)-ones by a domino Ugi/aldol/hydrolysis reaction starting from baylis–hillman phosphonium Salts. Org. Lett. 2015, 17, 2234–2237. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.L.; Guan, Z.R.; Kong, H.H.; Ding, M.W. Multifunctional odorless isocyano(triphenylphosphoranylidene)-acetates: Synthesis and direct one-pot four-component Ugi/Wittig cyclization to multisubstituted oxazoles. Org. Chem. Front. 2017, 4, 2044–2048. [Google Scholar] [CrossRef]
- Yan, Y.M.; Rao, Y.; Ding, M.W. One-pot synthesis of indoles by a sequential Ugi-3CR/Wittig reaction starting from odorless isocyanide-substituted phosphonium salts. J. Org. Chem. 2017, 82, 2772–2776. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhao, L.; Ding, M.W. One-pot-three-component synthesis of 2-(1,2,3,4-tetrahydroisoquinolin-1-yl)oxazoles via DEAD-promoted oxidative Ugi/Wittig reaction. J. Org. Chem. 2019, 84, 14313–14319. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhi, Y.M.; Yao, G.; Zhang, J.A.; Feng, Q.X.; He, H.T.; Pang, Y.L.; Shi, H.; Ding, M.W. One-pot synthesis of polysubstituted pyrroles via sequential ketenimine formation/Ag(I)-catalyzed alkyne cycloisomerisation starting from ylide adducts. Chin. J. Chem. 2021, 39, 1553–1557. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Cao, Z.; He, Y.R.; Ye, T.T.; Gao, Y.S.; Li, D.H.; Liu, Q.M.; Zhou, W.W.; Fang, W.Y. Multi-stimuli-responsive fluorescence of bibranched bromo-substituted cyanostilbene derivative with aggregation induced emission enhancement and green light-emitting diode. Results Opt. 2022, 8, 100264. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Dai, J.; Yang, T.S.; Wang, Z.J.; Gao, Y.; Xia, J.; Chen, Y.; Sun, M. Multi-stimuli fluorescence responsiveness of α-cyanostilbene derivative: AIEE, stimuli response to polarity, acid, force and light, applications in anti-counterfeiting and single phosphor w-OLED. Dyes Pigm. 2024, 222, 111906. [Google Scholar] [CrossRef]
- Ren, T.B.; Xu, W.; Zhang, W.; Zhang, X.X.; Wang, Z.Y.; Zhen, X.; Lin, Y.; Zhang, X.B. A general method to increase stokes shift by introducing alternating vibronic structures. J. Am. Chem. Soc. 2018, 140, 7716–7722. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.L.; Liang, Z.Y.; Guo, X.F.; Wang, H. A D-π-A-based near-infrared fluorescent probe with large Stokes shift for the detection of cysteine in vivo. Talanta 2024, 268, 125354. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Dong, H.L.; Jiang, L.; Hu, W.P. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.B.; Xiao Li, J.X.; Zhu, C.L.; Wu, W.Q.; Jiang, H.F. Palladium-Catalyzed Sequential Nucleophilic Addition/Oxidative Annulation of Bromoalkynes with Benzoic Acids to Construct Functionalized Isocoumarins. Org. Lett. 2017, 19, 4440–4443. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.R.; Irudayanathan, F.M.; Moon, J.H.; Lee, S. Regioselective One-Pot Synthesis of Isocoumarins and Phthalides from 2-Iodobenzoic Acids and Alkynes by Temperature Control. Adv. Synth. Catal. 2013, 355, 3221–3230. [Google Scholar] [CrossRef]
Entry | Solvent | Temp (°C) | Base | Time | Yield (%) |
1 | DCM | 25 | DMAP | 12 h | 0 |
2 | DCM | 25 | NEt3 | 12 h | 79 |
3 | DCM | 25 | DBU | 12 h | 20 |
4 | DCM | 25 | t-BuOK | 12 h | 10 |
5 | DCM | 25 | K2CO3 | 12 h | 50 |
6 | DCM | 25 | NaOH | 12 h | 10 |
7 | THF | 25 | NEt3 | 12 h | 38 |
8 | CH3CN | 25 | NEt3 | 12 h | 42 |
9 | DCE | 25 | NEt3 | 12 h | 53 |
10 | 1,4-dioxane | 25 | NEt3 | 12 h | 57 |
11 | toluene | 25 | NEt3 | 12 h | 77 |
12 | toluene | 80 | NEt3 | 6 h | 80 |
13 | toluene | 110 | NEt3 | 2 h | 82 |
Entry | R1 | R2 | Time | Yield (%) | Entry | R1 | R2 | Time | Yield (%) |
4a | H | Ph | 2 h | 85 | 4l | 4-Cl | Ph | 2 h | 86 |
4b | H | 4-CH3C6H4 | 2 h | 84 | 4m | 4-Cl | 4-CH3C6H4 | 2 h | 84 |
4c | H | 4-FC6H4 | 2 h | 90 | 4n | 4-Cl | 4-CH3OC6H4 | 2.5 h | 82 |
4d | H | 4-CH3OC6H4 | 2.5 h | 83 | 4o | 4-Cl | 4-t-BuC6H4 | 2.5 h | 81 |
4e | H | 3-CH3C6H4 | 2 h | 82 | 4p | 4-Cl | 3,4,5-(CH3O)3C6H4 | 3 h | 80 |
4f | H | 4-BrC6H4 | 1.5 h | 89 | 4q | 4-Cl | naphthalen-1-yl | 2 h | 86 |
4g | H | 4-t-BuC6H4 | 2.5 h | 78 | 4r | 4-Cl | C6H4CH=CH | 3 h | 81 |
4h | H | C6H4CH=CH | 3 h | 81 | 4s | 4-Cl | 2-CH3C6H4 | 3 h | 75 |
4i | H | 4-CF3C6H4 | 1 h | 72 | 4t | 5-Cl | thiophene-2-yl | 2.5 h | 80 |
4j | H | 2-CH3C6H4 | 3 h | 79 | 4u | 5-Cl | CH3CH2 | 4 h | 60 |
4k | H | naphthalen-1-yl | 2 h | 85 |
Comps. | Experimental Value | Theoretical Value | ||||||
---|---|---|---|---|---|---|---|---|
λa | ε | λe | ∆ν | Φ | λcalc | fosc | Major Contribution | |
4a | 332 | 1.0 | 409 | 5670 | 1% | 338 | 0.3801 | H → L (89%) |
289 | 3.8 | 300 | 0.4871 | H → L+1 (85%) | ||||
4h | 365 | 1.8 | 427 | 3978 | 14% | 373 | 0.9345 | H → L (89%) |
322 | 2.3 | 326 | 0.5218 | H → L+1 (87%) | ||||
278 | 3.2 | 277 | 0.0204 | H-2 → L+1 (61%) | ||||
4j | 335 | 0.8 | 404 | 5098 | 2% | 342 | 0.4632 | H → L (92%) |
290 | 2.9 | 305 | 0.5353 | H → L+1 (90%) | ||||
4k | 329 | 2.6 | 416 | 6356 | 5% | 325 | 0.1213 | H → L+1 (92%) |
280 | 3.2 | 276 | 0.0827 | H-2 → L+1 (50%) | ||||
4p | 361 | 1.7 | 458 | 5866 | 12% | 367 | 0.4832 | H → L (92%) |
315 | 2.4 | 320 | 0.5485 | H → L+1 (87%) | ||||
281 | 3.1 | 287 | 0.3640 | H-2 → L+1 (95%) | ||||
4u | 328 | 0.5 | 420 | 6678 | --- | 308 | 0.1048 | H → L (90%) |
276 | 3.4 | 266 | 0.1759 | H → L+1 (77%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Zeng, C.-Y.; Bu, L.-L.; Xu, M.; Chen, K.; Liu, J.-L.; Zhang, T.; Dai, J.-Y.; Hong, J.-X.; Ding, M.-W. Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications. Molecules 2024, 29, 2449. https://doi.org/10.3390/molecules29112449
Sun M, Zeng C-Y, Bu L-L, Xu M, Chen K, Liu J-L, Zhang T, Dai J-Y, Hong J-X, Ding M-W. Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications. Molecules. 2024; 29(11):2449. https://doi.org/10.3390/molecules29112449
Chicago/Turabian StyleSun, Mei, Chong-Yang Zeng, Lu-Lu Bu, Mai Xu, Kai Chen, Jia-Lin Liu, Tao Zhang, Jia-You Dai, Jia-Xin Hong, and Ming-Wu Ding. 2024. "Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications" Molecules 29, no. 11: 2449. https://doi.org/10.3390/molecules29112449
APA StyleSun, M., Zeng, C. -Y., Bu, L. -L., Xu, M., Chen, K., Liu, J. -L., Zhang, T., Dai, J. -Y., Hong, J. -X., & Ding, M. -W. (2024). Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications. Molecules, 29(11), 2449. https://doi.org/10.3390/molecules29112449