Recent Advances in the Preparation Methods of Magnesium-Based Hydrogen Storage Materials
Abstract
:1. Introduction
2. Basic Characteristics
2.1. Thermodynamic Properties
2.2. Kinetic Properties
2.3. Cycling Stability
2.4. Other Important Properties
3. Preparation Methods
3.1. Mechanical Ball Milling
3.1.1. Principles and Processes
3.1.2. Optimization of Milling Parameters
3.1.3. Modification Strategies
3.2. Methanol-Wrapped Chemical Vapor Deposition (MWCVD)
3.2.1. Principles and Processes
3.2.2. Influence of Process Parameters
3.2.3. Selection of Catalysts
3.3. Plasma-Assisted Ball Milling
3.3.1. Plasma Activation Mechanism
3.3.2. Optimization of Ball-Milling Parameters
3.4. Organic Ligand-Assisted Method
3.4.1. Roles of Organic Ligands
3.4.2. Preparation Process and Mechanism
3.5. Other Emerging Methods
3.5.1. Rapid Solid-Phase Reaction
3.5.2. Mechanical-Induced Reaction
3.5.3. Electrochemically Assisted Synthesis
4. Comparison and Evaluation of Preparation Methods
4.1. Analysis of Different Preparation Methods
4.2. Influence of Preparation Methods on Hydrogen Storage Properties
4.3. Assessment of Practical Application Potential
5. Summary and Outlook
5.1. Summary of Research Status on Preparation Methods
5.2. Existing Problems and Challenges
- Hydrogen Storage Capacity and Kinetics: The theoretical hydrogen storage capacity of magnesium-based materials is 7.6 wt.% (MgH2). However, due to the presence of impurities, surface oxidation, and incomplete hydrogenation, the practically achievable capacity often falls short of this ideal value. To meet the U.S. Department of Energy’s target of 6.5 wt.% for light-duty vehicles, further improvements in the hydrogen storage capacity of magnesium-based materials are necessary. Additionally, the hydrogen absorption and desorption kinetics of these materials exhibit significant limitations, hindering their ability to achieve rapid hydrogen uptake and release at moderate temperatures. The high activation energy barriers for hydrogen dissociation and recombination, coupled with the slow diffusion of hydrogen in the solid state, are the primary bottlenecks restricting the rates of hydrogenation and dehydrogenation. Consequently, research efforts are currently focused on reducing these energy barriers and enhancing hydrogen diffusion rates, which are key concerns for both the academic and industrial communities.
- Cycling Stability: The cycling stability and reversibility of magnesium-based materials need substantial enhancement to ensure their reliable performance in long-term practical applications. During multiple hydrogen absorption–desorption cycles, the hydrogen storage capacity and kinetics of these materials tend to degrade gradually. This degradation is typically caused by factors such as particle agglomeration, surface oxidation, and phase segregation. Particle agglomeration leads to a reduction in the specific surface area, thereby decreasing the material’s reactivity. Surface oxidation forms an oxide layer that hinders hydrogen absorption and desorption processes, while phase segregation results in structural heterogeneity within the material, further impairing its performance. Thus, effectively mitigating these degradation mechanisms and improving the cycling stability of magnesium-based materials are critical areas of future research.
- Cost and Safety: Although some advanced preparation methods have been demonstrated to significantly enhance the performance of magnesium-based hydrogen storage materials, their scalability and cost-effectiveness for industrial-scale production require further optimization. These methods often involve high temperatures, vacuum conditions, and complex multi-step synthesis processes, thereby increasing production costs and technical challenges. Additionally, the safety aspects of magnesium-based hydrogen storage materials cannot be overlooked. Magnesium is a highly reactive metal, and its hydrides are prone to oxidation and ignition upon exposure to air or moisture. Therefore, developing effective surface protection strategies and safe handling protocols is essential to ensure the safety and reliability of magnesium-based materials in practical applications. These improvements will facilitate the advancement of magnesium-based hydrogen storage materials towards practical use, enhancing their competitiveness in the market.
5.3. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Jain, I.P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Kim, H.-T.; Jung, S.; Roh, S.-H.; Park, J.-H.; Jung, H.-Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew. Sustain. Energy Rev. 2017, 72, 523–534. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Ding, Z.; Jiang, H.; Yang, H.; Du, W.; Zheng, Y.; Huo, K.; Shaw, L.L. MOFs-Based Materials for Solid-State Hydrogen Storage: Strategies and Perspectives. Chem. Eng. J. 2024, 485, 149665. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Dam, B.; Denys, R.V.; Dornheim, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; de Jongh, P.; Latroche, M.; Milanese, C.; et al. Review of magnesium hydride-based materials: Development and optimisation. Appl. Phys. A 2016, 122, 97. [Google Scholar] [CrossRef]
- Ding, Z.; Li, H.; Shaw, L. New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chem. Eng. J. 2020, 385, 123856. [Google Scholar] [CrossRef]
- Yartys, V.; Lototskyy, M.; Akiba, E.; Albert, R.; Antonov, V.; Ares, J.; Baricco, M.; Bourgeois, N.; Buckley, C.; von Colbe, J.B.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Varin, R.A.; Czujko, T.; Wronski, Z.S. Nanomaterials for Solid State Hydrogen Storage; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Yang, H.; Ding, Z.; Li, Y.-T.; Li, S.-Y.; Wu, P.-K.; Hou, Q.-H.; Zheng, Y.; Gao, B.; Huo, K.-F.; Du, W.-J.; et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 2023, 42, 2906–2927. [Google Scholar] [CrossRef]
- Grochala, W.; Edwards, P.P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 2004, 104, 1283–1316. [Google Scholar] [CrossRef]
- Hardian, R.; Pistidda, C.; Chaudhary, A.L.; Capurso, G.; Gizer, G.; Cao, H.; Milanese, C.; Girella, A.; Santoru, A.; Yigit, D.; et al. Waste Mg-Al alloys for hydrogen storage. Int. J. Hydrogen Energy 2018, 43, 16738–16748. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, Z.; Ma, T.; Lu, C.-T.; Ma, W.; Shaw, L. Predicting the hydrogen release ability of LiBH4-based mixtures by ensemble machine learning. Energy Storage Mater. 2020, 27, 466–477. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Y.; Yang, H.; Lu, Y.; Tan, J.; Li, J.; Li, Q.; Chen, Y.; Shaw, L.L.; Pan, F. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J. Magnes. Alloys 2022, 10, 2946–2967. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr. Mater. 2003, 49, 213–217. [Google Scholar] [CrossRef]
- Lei, Z.; Liu, Z.; Chen, Y. Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and NiO. J. Alloys Compd. 2009, 470, 470–472. [Google Scholar]
- Ding, Z.; Lu, Y.; Li, L.; Shaw, L. High reversible capacity hydrogen storage through Nano-LiBH4 + Nano-MgH2 system. Energy Storage Mater. 2019, 20, 24–35. [Google Scholar] [CrossRef]
- Imamura, H.; Kusuhara, M.; Minami, S.; Matsumoto, M.; Masanari, K.; Sakata, Y.; Itoh, K.; Fukunaga, T. Carbon nanocomposites synthesized by high-energy mechanical milling of graphite and magnesium for hydrogen storage. Acta Mater. 2003, 51, 6407–6414. [Google Scholar] [CrossRef]
- Skripnyuk, V.; Rabkin, E.; Estrin, Y.; Lapovok, R. Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing. Int. J. Hydrogen Energy 2009, 34, 6320–6324. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X.; Zhang, J.; Hou, Q.; Zou, J. Progress in improving hydrogen storage properties of Mg-based materials. Mater. Today Adv. 2023, 19, 100387. [Google Scholar]
- Fichtner, M. Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mater. 2005, 7, 443–455. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Li, B.; Liu, B.; Shao, H.; Li, Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnes. Alloys 2019, 7, 58–71. [Google Scholar] [CrossRef]
- Chen, B.W.J.; Mavrikakis, M. Effects of composition and morphology on the hydrogen storage properties of transition metal hydrides: Insights from PtPd nanoclusters. Nano Energy 2019, 63, 103858. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Zhang, W.; Fang, F.; Li, J.; Hu, J.; Gu, C.; Sun, W.; Gao, M.; Pan, H.; et al. In situ creation of a catalytic multiphase and multiscale surroundings for remarkable hydrogen storage performance of MgH2. J. Mater. Chem. A 2024, 12, 2423–2434. [Google Scholar] [CrossRef]
- Yao, X.; Wu, C.; Du, A.; Lu, G.Q.; Cheng, H.; Smith, S.C.; Zou, J.; He, Y. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage. J. Phys. Chem. B 2006, 110, 11697–11703. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 2004, 364, 242–246. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Schulz, R.; Huot, J.; Liang, G.; Boily, S.; Lalande, G.; Denis, M.; Dodelet, J. Recent developments in the applications of nanocrystalline materials to hydrogen technologies. Mater. Sci. Eng. A 1999, 267, 240–245. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M. Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review. Energies 2021, 14, 6400. [Google Scholar] [CrossRef]
- Bobet, J.L.; Akiba, E.; Nakamura, Y.; Darriet, B. Study of Mg-M (M=Co, Ni and Fe) mixture elaborated by reactive mechanical alloying: Hydrogen sorption properties. Int. J. Hydrogen Energy 2000, 25, 987–996. [Google Scholar] [CrossRef]
- Varin, R.; Czujko, T.; Chiu, C.; Wronski, Z. Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). J. Alloys Compd. 2006, 424, 356–364. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Ding, B.; Hu, Z. Direct hydrogenation of Mg and decomposition behavior of the hydride formed. J. Alloys Compd. 2000, 313, 209–213. [Google Scholar] [CrossRef]
- Zhu, M.; Ouyang, L.Z. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys. Acta Metall. Sin. 2021, 57, 1416–1428. [Google Scholar]
- Fátay, D.; Révész, Á.; Spassov, T. Particle size and catalytic effect on the dehydriding of MgH2. J. Alloys Compd. 2005, 399, 237–241. [Google Scholar] [CrossRef]
- Jędrzkiewicz, D.; Mai, J.; Langer, J.; Mathe, Z.; Patel, N.; DeBeer, S.; Harder, S. Access to a Labile Monomeric Magnesium Radical by Ball-Milling. Angew. Chem. Int. Ed. 2022, 61, e202200511. [Google Scholar] [CrossRef]
- Révész, Á.; Fátay, D.; Spassov, T. Microstructure and hydrogen sorption kinetics of Mg nanopowders with catalyst. J. Alloys Compd. 2007, 434–435, 725–728. [Google Scholar] [CrossRef]
- Castro, F.J.; Gennari, F.C. Effect of the nature of the starting materials on the formation of Mg2FeH6. J. Alloys Compd. 2004, 375, 292–296. [Google Scholar] [CrossRef]
- Huot, J.; Liang, G.; Boily, S.; Van Neste, A.; Schulz, R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 1999, 293, 495–500. [Google Scholar] [CrossRef]
- Korablov, D.; Besenbacher, F.; Jensen, T.R. Kinetics and thermodynamics of hydrogenation-dehydrogenation for Mg-25%TM (TM = Ti, Nb or V) composites synthesized by reactive ball milling in hydrogen. Int. J. Hydrogen Energy 2018, 43, 16804–16814. [Google Scholar] [CrossRef]
- Yao, P.; Jiang, Y.; Liu, Y.; Wu, C.; Chou, K.-C.; Lyu, T.; Li, Q. Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2. J. Magnes. Alloys 2020, 8, 461–471. [Google Scholar] [CrossRef]
- Din, R.; Zhang, L.; Luo, P.; Qu, X. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of MgH2. J. Alloys Compd. 2010, 508, 119–128. [Google Scholar]
- Zhou, C.; Fang, Z.Z.; Ren, C.; Li, J.; Lu, J. Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride nanocrystals. J. Phys. Chem. C 2013, 117, 12973–12980. [Google Scholar] [CrossRef]
- Molinas, B.; Ghilarducci, A.A.; Melnichuk, M.; Corso, H.L.; Peretti, H.A.; Agresti, F.; Bianchin, A.; Russo, S.L.; Maddalena, A.; Principi, G. Scaled-up production of a promising Mg-based hydride for hydrogen storage. Int. J. Hydrogen Energy 2009, 34, 4597–4601. [Google Scholar] [CrossRef]
- Lillo-Ródenas, M.A.; Guo, Z.X.; Aguey-Zinsou, K.F.; Cazorla-Amorós, D.; Linares-Solano, A. Effects of different carbon materials on MgH2 decomposition. Carbon 2008, 46, 126–137. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Ma, T.; Li, K.; Ye, F.; Wang, X.; Jiao, L.; Yuan, H.; Wang, Y. Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage. J. Alloys Compd. 2020, 825, 153953. [Google Scholar] [CrossRef]
- Calka, A.; Radlinski, A.P. The local value of the Avrami exponent: A new approach to devitrification of glassy metallic ribbons. Mater. Sci. Eng. 1988, 97, 241–246. [Google Scholar] [CrossRef]
- Ouyang, L.Z.; Yang, X.S.; Zhu, M.; Liu, J.W.; Dong, H.W.; Sun, D.L.; Zou, J.; Yao, X.D. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites. J. Phys. Chem. C 2014, 118, 7808–7820. [Google Scholar] [CrossRef]
- Shao, H.; Felderhoff, M.; Schüth, F. Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int. J. Hydrogen Energy 2011, 36, 10828–10833. [Google Scholar] [CrossRef]
- Jung, H.S.; Lee, J.-K.; Kim, J.-Y.; Hong, K.S. Crystallization behaviors of nanosized MgO particles from magnesium alkoxides. J. Colloid Interface Sci. 2003, 259, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Imbok, L.; Jungtae, N.; Sang, J.P.; Bae, D.J.; Hong, S.; Kim, K.S. Rapid chemical vapor deposition of graphene using methanol as a precursor. Carbon Lett. 2021, 31, 307–313. [Google Scholar]
- Vigeholm, B.; Kjøller, J.; Larsen, B.; Pedersen, A. Formation and decomposition of magnesium hydride. J. Less Common Met. 1983, 89, 135–144. [Google Scholar] [CrossRef]
- De Castro, J.F.; Santos, S.F.; Costa, A.L.M.; Yavari, A.R.; Botta, F.W.J.; Ishikawa, T.T. Structural characterization and dehydrogenation behavior of Mg–5 at.% Nb nano-composite processed by reactive milling. J. Alloys Compd. 2004, 376, 251–256. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Jung, K.S.; Lee, E.Y.; Lee, K.S. Catalytic effects of metal oxide on hydrogen absorption of magnesium metal hydride. J. Alloys Compd. 2006, 421, 179–184. [Google Scholar] [CrossRef]
- Zhu, C.; Hayashi, H.; Saita, I.; Akiyama, T. Direct synthesis of MgH2 nanofibers at different hydrogen pressures. Int. J. Hydrogen Energy 2009, 34, 7283–7290. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Zhang, Y.; Chen, C.; Wang, Q. Hydrogen storage alloys for high-pressure suprapure hydrogen compressor. J. Alloys Compd. 2006, 420, 322–325. [Google Scholar] [CrossRef]
- Oh, M.H.; Cho, M.G.; Chung, D.Y.; Park, I.; Kwon, Y.P.; Ophus, C.; Kim, D.; Kim, M.G.; Jeong, B.; Gu, X.W.; et al. Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature 2020, 577, 359–363. [Google Scholar] [CrossRef]
- Zahiri, B.; Danaie, M.; Tan, X.; Amirkhiz, B.S.; Botton, G.A.; Mitlin, D. Stable hydrogen storage cycling in magnesium hydride, in the range of room temperature to 300 °C, achieved using a new bimetallic Cr-V nanoscale catalyst. J. Phys. Chem. C 2012, 116, 3188–3199. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Al-Halaili, B. Nanocrystalline β-γ-β cyclic phase transformation in reacted ball milled MgH2 powders. Mater. Sci. Eng. B 2014, 182, 21–28. [Google Scholar]
- Xie, L.; Liu, Y.; Zhang, X.; Qu, J.; Wang, Y.; Li, X. Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles. J. Alloys Compd. 2009, 482, 388–392. [Google Scholar] [CrossRef]
- Zhu, M.; Dai, L.Y.; Gu, N.S.; Cao, B.; Ouyang, L.Z. Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide. J. Alloys Compd. 2009, 478, 624–629. [Google Scholar] [CrossRef]
- Herrich, M.; Ismail, N.; Lyubina, J.; Handstein, A.; Pratt, A.; Gutfleisch, O. Synthesis and decomposition of Mg2FeH6 prepared by reactive milling. Mater. Sci. Eng. B 2004, 108, 28–32. [Google Scholar] [CrossRef]
- Gialanella, S.; Ceccato, R.; Casari, F.; Ischia, G.; Molinari, A. Microstructural refinement using ball-milling and spark-plasma sintering of MgH2 based materials for hydrogen storage. Calphad 2009, 33, 82–88. [Google Scholar] [CrossRef]
- Gennari, F.C.; Esquivel, M.R. Structural characterization and hydrogen sorption properties of nanocrystalline Mg-Ti-H composites prepared by reactive ball milling. J. Alloys Compd. 2008, 459, 425–432. [Google Scholar] [CrossRef]
- Surrey, A.; Schultz, L.; Rellinghaus, B. Electron beam induced dehydrogenation of MgH2 studied by VEELS. Adv. Struct. Chem. Imaging 2016, 2, 7. [Google Scholar] [CrossRef]
- Cao, Z.; Ouyang, L.; Wu, Y.; Wang, H.; Liu, J.; Fang, F.; Sun, D.; Zhang, Q.; Zhu, M. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling. J. Alloys Compd. 2015, 623, 354–358. [Google Scholar] [CrossRef]
- Liang, H.; Alshareef, H.N. A Plasma-Assisted Route to the Rapid Preparation of Transition-Metal Phosphides for Energy Conversion and Storage. Small Methods 2017, 1, 1700111. [Google Scholar] [CrossRef]
- Ma, M.; Yang, L.; Ouyang, L.; Shao, H.; Zhu, M. Promoting hydrogen generation from the hydrolysis of Mg-Graphite composites by plasma-assisted milling. Energy 2019, 167, 1205–1211. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.-C.; Yang, D.-Z.; Liu, Z.-J. Direct synthesis of AlN nano powder by dielectric barrier discharge plasma assisted high-energy ball milling. J. Mater. Sci. Mater. Electron. 2016, 27, 8518–8523. [Google Scholar] [CrossRef]
- Hou, X.; Hu, R.; Zhang, T. Microstructure and hydrogen storage properties of Mg-Ni nanoparticles. Mater. Sci. Eng. B 2015, 200, 22–27. [Google Scholar] [CrossRef]
- Baum, L.A.; Meyer, M.; Mendoza-Zélis, L. Complex Mg-based hydrides obtained by mechanosynthesis: Characterisation and formation kinetics. Int. J. Hydrogen Energy 2008, 33, 3442–3446. [Google Scholar] [CrossRef]
- Luo, S.; Kiyada, H.; Takahashi, Y. Microstructure and hydrogen desorption of magnesium hydride produced by high pressure torsion. J. Mater. Sci. 2018, 53, 5112–5121. [Google Scholar]
- Hua, J.; Zhang, Y.; Liao, Y.; Zhang, Y.; Yan, J.; Wang, Q.; Yang, Y.; Qiu, J. Study on the mechanism of organic ligand-assisted synthesis of superwater-stable CsPbBr3 quantum dots. J. Lumin. 2023, 263, 120061. [Google Scholar] [CrossRef]
- Rambhujun, N.; Aguey-Zinsou, K.-F. Halide-free Grignard reagents for the synthesis of superior MgH2 nanostructures. Int. J. Hydrogen Energy 2021, 46, 28675–28685. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.-F.; Ares-Fernández, J.-R. Synthesis of colloidal magnesium: A near room temperature store for hydrogen. Chem. Mater. 2008, 20, 376–378. [Google Scholar] [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.B. Improvement of hydrogen storage properties of MgH2 catalyzed by FeCl3 and carbon nanotubes. RSC Adv. 2011, 1, 408–414. [Google Scholar] [CrossRef]
- Xia, G.; Tan, Y.; Chen, X.; Sun, D.; Guo, Z.; Liu, H.; Ouyang, L.; Zhu, M.; Yu, X. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater. 2015, 27, 5981–5988. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; An, Y.; Xu, G.; Chen, C. Hydriding behavior of magnesium-based hydrogen storage alloy modified by mechanical ball-milling in hydrogen. Mater. Chem. Phys. 2004, 83, 340–344. [Google Scholar] [CrossRef]
- Ranjbar, A.; Guo, Z.P.; Yu, X.B.; Wexler, D.; Calka, A.; Kim, C.J.; Liu, H.K. Hydrogen storage properties of MgH2–SiC composites. Mater. Chem. Phys. 2009, 114, 168–172. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, W.; Chen, J.; Wang, J.; Pei, P.; Li, F. Superior hydrogen performance of in situ formed carbon modified MgH2 composites. RSC Adv. 2023, 13, 9091–9098. [Google Scholar] [CrossRef] [PubMed]
- Ryden, J.; Rydén, J.; Hjörvarsson, B.; Ericsson, T.; Karlsson, E.; Krozer, A.; Kasemo, B. Unusual kinetics of hydride formation in Mg-Pd sandwiches, studied by hydrogen profiling and quartz crystal microbalance measurements. J. Less Common Met. 1989, 152, 295–309. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite. J. Alloys Compd. 1999, 291, 295–299. [Google Scholar] [CrossRef]
- Ding, S.; Dai, X.; Li, Z.; Wang, C.; Meng, A.; Wang, L.; Li, G.; Huang, J.; Li, S. PVP-induced synergistic engineering of interlayer, self-doping, active surface and vacancies in VS4 for enhancing magnesium ions storage and durability. Energy Storage Mater. 2022, 47, 211–222. [Google Scholar] [CrossRef]
- Mavromatis, V.; Immenhauser, A.; Buhl, D.; Purgstaller, B.; Baldermann, A.; Dietzel, M. Effect of organic ligands on Mg partitioning and Mg isotope fractionation during low-temperature precipitation of calcite in the absence of growth rate effects. Geochim. Cosmochim. Acta 2017, 207, 139–153. [Google Scholar] [CrossRef]
- Somvanshi, S.B.; Patade, S.R.; Andhare, D.D.; Jadhav, S.A.; Khedkar, M.V.; Kharat, P.B.; Khirade, P.P.; Jadhav, K.M. Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: Enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloys Compd. 2020, 835, 155422. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, L.; Wang, Z.; Zhang, Y.; Chi, R. Effect of surfactant addition on leaching process of weathered crust elution-deposited rare earth ores with magnesium sulfate. Int. J. Min. Sci. Technol. 2023, 33, 1045–1053. [Google Scholar] [CrossRef]
- Patah, A.; Takasaki, A.; Szmyd, J.S. Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2. Int. J. Hydrog. Energy 2009, 34, 3032–3037. [Google Scholar] [CrossRef]
- Li, W.Y.; Li, C.S.; Ma, H. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption. J. Am. Chem. Soc. 2007, 129, 6710–6711. [Google Scholar] [CrossRef] [PubMed]
- Huot, J.; Ravnsbæk, D.; Zhang, J.; Cuevas, F.; Latroche, M.; Jensen, T. Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 2013, 58, 30–75. [Google Scholar] [CrossRef]
- Imamura, H.; Masanari, K.; Kusuhara, M.; Katsumoto, H.; Sumi, T.; Sakata, Y. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling. J. Alloys Compd. 2005, 386, 211–216. [Google Scholar] [CrossRef]
- Kelekar, R.; Giffard, H.; Kelly, S.T.; Clemens, B.M. Formation and dissociation of MgH2 in epitaxial Mg thin films. J. Phys. Chem. C 2007, 111, 14136–14140. [Google Scholar] [CrossRef]
- Lu, J.; Choi, Y.J.; Fang, Z.Z.; Sohn, H.Y.; Rönnebro, E. Hydrogen storage properties of nanosized MgH2—0.1 TiH2 prepared by ultrahigh-energy high-pressure milling. J. Am. Chem. Soc. 2009, 131, 15843–15852. [Google Scholar] [CrossRef]
- Shao, H.; He, L.; Lin, H.; Li, H. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technol. 2018, 6, 445–458. [Google Scholar] [CrossRef]
- Srinivasan, S.; Magusin, P.C.M.M.; Kalisvaart, W.P.; Notten, P.H.L.; Cuevas, F.; Latroche, M.; van Santen, R.A. Nanostructures of Mg0.65Ti0.35Dx studied with X-ray diffraction, neutron diffraction, and magic-angle-spinning 2H NMR spectroscopy. Phys. Rev. B 2010, 81, 054107. [Google Scholar] [CrossRef]
- Danaie, M.; Tao, S.X.; Kalisvaart, P.; Mitlin, D. Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powder. Acta Mater. 2010, 58, 3162–3172. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Banyan, M.; Al-Ajmi, F. Discovering a new MgH2 metastable phase. RSC Adv. 2010, 8, 32003–32008. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dong, K.; Song, Y.; Cheng, X.; Dong, Q.; Han, E.-H. Deposition mechanism of cathodic electrophoresis coating on Mg alloys: Effects of Mg substrates on deposition process. Prog. Org. Coat. 2024, 187, 108103. [Google Scholar] [CrossRef]
- Yadav, S.; Oberoi, A.S.; Mittal, M.K. Electrochemical hydrogen storage: Achievements, emerging trends, and perspectives. Int. J. Energy Res. 2022, 46, 16316–16335. [Google Scholar] [CrossRef]
- Gao, D.; Li, H.; Wei, P.; Wang, Y.; Wang, G.; Bao, X. Electrochemical synthesis of catalytic materials for energy catalysis. Chin. J. Catal. 2022, 43, 1001–1016. [Google Scholar] [CrossRef]
- Knotek, V.; Lhotka, M.; Vojtěch, D. Catalytic effect of Mg2Ni and Mg12RE on MgH2 formation and decomposition. Int. J. Hydrog. Energy 2016, 41, 11736–11745. [Google Scholar] [CrossRef]
- Somasundaram, M.; Uttamchand, N.K.; Annamalai, A.R.; Jen, C.-P. Insights on Spark Plasma Sintering of Magnesium Composites: A Review. Nanomaterials 2022, 12, 2178. [Google Scholar] [CrossRef] [PubMed]
- Sezer, N.; Evis, Z.; Kayhan, S.M.; Tahmasebifar, A.; Koç, M. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloys 2018, 6, 23–43. [Google Scholar] [CrossRef]
- Guan, H.; Xiao, H.; Ouyang, S.; Tang, A.; Chen, X.; Tan, J.; Feng, B.; She, J.; Zheng, K.; Pan, F. A review of the design, processes, and properties of Mg-based composites. Nanotechnol. Rev. 2022, 11, 712–730. [Google Scholar] [CrossRef]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Drelich, J.W.; Goldman, J.; Sharif, S.; Ismail, A.F. Razzaghi, Magnesium-based nanocomposites: A review from mechanical, creep and fatigue properties. J. Magnes. Alloys 2023, 11, 2655–2687. [Google Scholar] [CrossRef]
- Zhou, C.; Li, K.; Huang, T.; Sun, P.; Wang, L.; Lu, Y.; Fang, Z.Z. In situ formation of nanocrystalline MgH2 through room temperature hydrogenation. Mater. Des. 2022, 218, 110729. [Google Scholar] [CrossRef]
- Pundt, A.; Sachs, C.; Winter, M.; Reetz, M.; Fritsch, D.; Kirchheim, R. Hydrogen sorption in elastically soft stabilized Pd-clusters. J. Alloys Compd. 1999, 293, 480–483. [Google Scholar] [CrossRef]
- Qin, H.; Li, H.; Fu, Q.; Yu, R.; Zhao, Y.; Kang, Z.; Chen, X.; Wang, M. Process optimisation of controlled and continuous MgH2 hydrolysis to produce hydrogen. Sustain. Mater. Technol. 2022, 33, e00505. [Google Scholar] [CrossRef]
- Pighin, S.A.; Urretavizcaya, G.; Bobet, J.L.; Castro, F.J. Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding. J. Alloys Compd. 2020, 827, 154000. [Google Scholar] [CrossRef]
- Zahiri, B.; Harrower, C.T.; Amirkhiz, B.S.; Mitlin, D. Rapid and reversible hydrogen sorption in Mg-Fe-Ti thin films. Appl. Phys. Lett. 2009, 95, 103114. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Z.; Yao, Z.; Ji, L.; Sun, Z.; Yan, N.; Zhang, B.; Xiao, B.; Du, J.; Zhu, X.; et al. A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the dehydrogenation kinetics of MgH2. J. Mater. Chem. A 2019, 7, 5626–5634. [Google Scholar] [CrossRef]
Property | Influencing Factors | Effect on Hydrogen Storage Performance |
---|---|---|
Thermal conductivity | Addition of high-conductivity additives Optimization of system design | Enhances heat transfer during absorption/desorption Improves kinetics and reversibility |
Mechanical stability | Incorporation of reinforcing agents Optimization of microstructure | Prevents degradation during cycling Improves long term stability and reliability |
Resistance to Impurities | Surface modification and protection Purification of hydrogen gas | Minimizes contamination and degradation Maintains high storage capacity and kinetics |
Activation energy | Catalytic additives Nanostructuring | Lowers energy barrier for hydrogen sorption Enhances kinetics and reduces operating temperature |
Parameter | Effects | Optimized Range |
---|---|---|
Plasma power | Higher power leads to more intense surface modification Excessive power may cause Sûrface damage | 50–200 W |
Gas composition | Hydrogen-containing atmosphere promotes hydrogenation Inert gases (e.g., Ar, He) prevent oxidation | H2/Ar or H2/He ratio: 1:1 to 1:5 |
Treatment time | Longer time leads to more extensive surface modification Excessive time may cause surface saturation and degradation | 10–60 min |
Ball-to-powder ratio | Higher ratio leads to more intense milling and surface modification Excessive ratio may cause contamination and amorphization | 10:1 to 50:1 |
Milling speed | Higher speed leads to more intense milling and surface modification Excessive speed may cause overheating and phase transformation | 200–600 rpm |
Organic Ligand | Role | Effect on Nanostructure | Effect on Hydrogen Storage Properties |
---|---|---|---|
Oleylamine | Surfactant Capping agent | Controls particle size and shape Prevents agglomeration | Enhances kinetics and storage capacity Improves cycling stability |
Oleic acid | Surfactant Capping agent | Controls particle size and shape Prevents oxidation | Enhances kinetics and storage capacity Improves resistance to air and moisture |
Polyvinylpyrrolidone (PVP) | Stabilizer Structure-directing agent | Controls particle size and morphology Improves dispersibility | Enhances kinetics and storage capacity Improves cycling stability |
Citric acid | Chelating agent Reducing agent | Controls particle size and shape Provides carbon coating | Enhances kinetics and storage capacity Improves thermal conductivity |
Preparation Method | Advantages | Disadvantages |
---|---|---|
Mechanical ball milling | Simple and scalable process Effective in reducing particle size and creating defects | Long milling times required Potential contamination from milling tools |
Methanol-wrapped chemical vapor deposition | Controlled morphology and composition High surface area and improved kinetics | Complex setup and process control Limited scalability |
Plasma-assisted ball milling | Enhanced surface activation and modification Improved kinetics and reduced temperatures | Additional cost and complexity of plasma setup Potential plasma instability |
Organic ligand-assisted synthesis | Tailored nanostructures and surface properties Improved dispersibility and stability | Removal of organic ligands may be challenging Limited hydrogen storage capacity |
Rapid solid-phase reaction | Short reaction times and low energy consumption High-purity products | Limited control over particle size and morphology |
Shear-induced reaction | Enhanced solid-state reactions and reduced temperatures Scalable process | Potential contamination from the extrusion or milling tools |
Electrochemically assisted synthesis | Control over composition, morphology, and thickness Improved kinetics and reversibility | Complex setup and process control Limited scalability |
Research Direction | Strategy | Expected Outcome |
---|---|---|
Novel catalytic systems | Explore bimetallic alloys, metal oxides, and MOFs Optimize composition, size, and distribution | Enhanced kinetics and reduced operating temperature Improved hydrogen storage capacity |
Advanced characterization techniques | In situ X-ray diffraction, neutron scattering, and TEM Investigate structure–property relationships | Better understanding of hydrogen storage mechanisms Guided design of high-performance materials |
Multi-scale computational modeling | Integrate first-principles calculations, molecular dynamics, and finite element analysis Predict and optimize hydrogen storage properties | Accelerated discovery and optimization of materials Reduced experimental trial and error |
Innovative preparation methods | Combine different methods (e.g., ball milling + MWCVD) Develop new methods (e.g., 3D printing, self-assembly) | Novel materials with unique nanostructures and properties Enhanced hydrogen storage performance |
System design and integration | Develop efficient heat management, pressure control, and gas purification systems Optimize system design for practical applications | Improved overall performance and efficiency Accelerated commercialization of hydrogen storage technologies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhou, Y.; Li, Y.; Hao, Y.; Wu, P.; Ding, Z. Recent Advances in the Preparation Methods of Magnesium-Based Hydrogen Storage Materials. Molecules 2024, 29, 2451. https://doi.org/10.3390/molecules29112451
Xu Y, Zhou Y, Li Y, Hao Y, Wu P, Ding Z. Recent Advances in the Preparation Methods of Magnesium-Based Hydrogen Storage Materials. Molecules. 2024; 29(11):2451. https://doi.org/10.3390/molecules29112451
Chicago/Turabian StyleXu, Yaohui, Yang Zhou, Yuting Li, Yechen Hao, Pingkeng Wu, and Zhao Ding. 2024. "Recent Advances in the Preparation Methods of Magnesium-Based Hydrogen Storage Materials" Molecules 29, no. 11: 2451. https://doi.org/10.3390/molecules29112451
APA StyleXu, Y., Zhou, Y., Li, Y., Hao, Y., Wu, P., & Ding, Z. (2024). Recent Advances in the Preparation Methods of Magnesium-Based Hydrogen Storage Materials. Molecules, 29(11), 2451. https://doi.org/10.3390/molecules29112451