Fluorescent Materials Based on Spiropyran for Advanced Anti-Counterfeiting and Information Encryption
Abstract
:1. Introduction
2. Application of Spiropyran in Fluorescent Anti-Counterfeiting and Information Encryption
2.1. Organic Small-Molecule Fluorescent Materials
2.2. Fluorescent Polymer Materials
2.3. Metal–Organic-Framework Fluorescent Materials
2.4. Nanoparticle Fluorescent Materials
2.5. The Other Fluorescent Materials
3. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Muthamma, K.; Sunil, D. Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS Omega 2022, 7, 42681–42699. [Google Scholar] [CrossRef]
- Spink, J.; Levente Fejes, Z. A review of the economic impact of counterfeiting and piracy methodologies and assessment of currently utilized estimates. Int. J. Comp. Appl. Crim. Justice 2012, 36, 249–271. [Google Scholar] [CrossRef]
- Fink, C.; Maskus, K.E.; Qian, Y. The economic effects of counterfeiting and piracy: A review and implications for developing countries. World Bank Res. Obs. 2016, 31, 1–28. [Google Scholar]
- Zhang, H.; Hua, D.; Huang, C.; Samal, S.K.; Xiong, R.; Sauvage, F.; Braeckmans, K.; Remaut, K.; De Smedt, S.C. Materials and Technologies to Combat Counterfeiting of Pharmaceuticals: Current and Future Problem Tackling. Adv. Mater. 2020, 32, 1905486. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, M.; Tong, Z.; Zhao, S.; Zhou, Y.; Wang, Y.; Jin, S.; Zhang, J.; Yao, H.-B.; Zhu, M.; et al. Multimodal-Responsive Circularly Polarized Luminescence Security Materials. J. Am. Chem. Soc. 2023, 145, 4246–4253. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, H.; Yu, J. Luminescence anti-counterfeiting: From elementary to advanced. Aggregate 2021, 2, 20–34. [Google Scholar] [CrossRef]
- Kalytchuk, S.; Wang, Y.; Poláková, K.; Zbořil, R. Carbon Dot Fluorescence-Lifetime-Encoded Anti-Counterfeiting. ACS Appl. Mater. Interfaces 2018, 10, 29902–29908. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Huo, X.; Meng, X.; Wang, Y.; Suo, H.; Li, P. Anti-Counterfeiting Application of Persistent Luminescence Materials and Its Research Progress. Laser Photonics Rev. 2024, 18, 2300751. [Google Scholar] [CrossRef]
- Suo, H.; Zhu, Q.; Zhang, X.; Chen, B.; Chen, J.; Wang, F. High-security anti-counterfeiting through upconversion luminescence. Mater. Today Phys. 2021, 21, 100520. [Google Scholar] [CrossRef]
- Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano 2020, 14, 14417–14492. [Google Scholar] [CrossRef]
- Zuo, M.; Qian, W.; Li, T.; Hu, X.-Y.; Jiang, J.; Wang, L. Full-Color Tunable Fluorescent and Chemiluminescent Supramolecular Nanoparticles for Anti-counterfeiting Inks. ACS Appl. Mater. Interfaces 2018, 10, 39214–39221. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Gupta, B.K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297–14340. [Google Scholar] [CrossRef]
- Sun, Y.; Le, X.; Zhou, S.; Chen, T. Recent Progress in Smart Polymeric Gel-Based Information Storage for Anti-Counterfeiting. Adv. Mater. 2022, 34, 2201262. [Google Scholar] [CrossRef]
- Ansari, A.A.; Aldajani, K.M.; AlHazaa, A.N.; Albrithen, H.A. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord. Chem. Rev. 2022, 462, 214523. [Google Scholar] [CrossRef]
- Quan, Z.; Zhang, Q.; Li, H.; Sun, S.; Xu, Y. Fluorescent cellulose-based materials for information encryption and anti-counterfeiting. Coord. Chem. Rev. 2023, 493, 215287. [Google Scholar] [CrossRef]
- Hu, D.; Xu, W.; Wang, G.; Liu, K.; Wang, Z.; Shi, Q.; Lin, S.; Liu, Z.; Fang, Y. A Mild-Stimuli-Responsive Fluorescent Molecular System Enables Multilevel Anti-Counterfeiting and Highly Adaptable Temperature Monitoring. Adv. Funct. Mater. 2022, 32, 2207895. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.; Deng, J. Liquid Crystals Doped with Chiral Fluorescent Polymer: Multi-Color Circularly Polarized Fluorescence and Room-Temperature Phosphorescence with High Dissymmetry Factor and Anti-Counterfeiting Application. Adv. Mater. 2023, 35, 2304405. [Google Scholar] [CrossRef]
- Lv, H.; Wang, S.; Wang, Z.; Meng, W.; Han, X.; Pu, J. Fluorescent cellulose-based hydrogel with carboxymethyl cellulose and carbon quantum dots for information storage and fluorescent anti-counterfeiting. Cellulose 2022, 29, 6193–6204. [Google Scholar] [CrossRef]
- Kortekaas, L.; Browne, W.R. The evolution of spiropyran: Fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 2019, 48, 3406–3424. [Google Scholar] [CrossRef]
- Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184. [Google Scholar] [CrossRef]
- Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 2000, 100, 1741–1754. [Google Scholar] [CrossRef]
- Seefeldt, B.; Kasper, R.; Beining, M.; Mattay, J.; Arden-Jacob, J.; Kemnitzer, N.; Drexhage, K.H.; Heilemann, M.; Sauer, M. Spiropyrans as molecular optical switches. Photochem. Photobiol. Sci. 2010, 9, 213–220. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, Y.; Tang, Z.; Zheng, N.; Zhang, C.; Xie, C.; Wu, Z. One-Pot Synthesis of Spiropyrans. Asian J. Org. Chem. 2019, 8, 1866–1869. [Google Scholar] [CrossRef]
- Lee, C.K.; Beiermann, B.A.; Silberstein, M.N.; Wang, J.; Moore, J.S.; Sottos, N.R.; Braun, P.V. Exploiting Force Sensitive Spiropyrans as Molecular Level Probes. Macromolecules 2013, 46, 3746–3752. [Google Scholar] [CrossRef]
- Mandal, M.; Banik, D.; Karak, A.; Manna, S.K.; Mahapatra, A.K. Spiropyran–merocyanine based photochromic fluorescent probes: Design, synthesis, and applications. ACS Omega 2022, 7, 36988–37007. [Google Scholar] [CrossRef]
- Babar, K.; Zahoor, A.F.; Ahmad, S.; Akhtar, R. Recent synthetic strategies toward the synthesis of spirocyclic compounds comprising six-membered carbocyclic/heterocyclic ring systems. Mol. Divers. 2021, 25, 2487–2532. [Google Scholar] [CrossRef]
- Hughes-Whiffing, C.A.; Perry, A. Three Complementary One-Pot Four-Component Reaction Sequences for Rapid, General and Direct Spiropyran Synthesis. Eur. J. Org. Chem. 2023, 26, e202201245. [Google Scholar] [CrossRef]
- Khuzin, A.A.; Galimov, D.I.; Khuzina, L.L.; Tukhbatullin, A.A. New Triphenylphosphonium Salts of Spiropyrans: Synthesis and Photochromic Properties. Molecules 2024, 29, 368. [Google Scholar] [CrossRef]
- Pugachev, A.D.; Ozhogin, I.V.; Lukyanova, M.B.; Lukyanov, B.S.; Kozlenko, A.S.; Rostovtseva, I.A.; Makarova, N.I.; Tkachev, V.V.; Aldoshin, S.M.; Metelitsa, A.V. Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. J. Mol. Struct. 2021, 1229, 129615. [Google Scholar] [CrossRef]
- Shao, N.; Wang, H.; Gao, X.; Yang, R.; Chan, W. Spiropyran-based fluorescent anion probe and its application for urinary pyrophosphate detection. Anal. Chem. 2010, 82, 4628–4636. [Google Scholar] [CrossRef]
- Fang, Y.; Dehaen, W. Small-molecule-based fluorescent probes for f-block metal ions: A new frontier in chemosensors. Coord. Chem. Rev. 2021, 427, 213524. [Google Scholar] [CrossRef]
- Chatterjee, S.; Liu, B.; Peng, H.-s. Chelation strategies in spiropyran-based chemosensors for colorimetric and fluorescent sensing of metal ions and anions. Coord. Chem. Rev. 2024, 508, 215779. [Google Scholar] [CrossRef]
- Zuo, Y.; Chai, Y.; Liu, X.; Gao, Z.; Jin, X.; Wang, F.; Bai, Y.; Zheng, Z. A ratiometric fluorescent probe based on spiropyran in situ switching for tracking dynamic changes of lysosomal autophagy and anticounterfeiting. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122338. [Google Scholar] [CrossRef]
- Miguez, F.B.; Trigueiro, J.P.C.; Lula, I.; Moraes, E.S.; Atvars, T.D.Z.; de Oliveira, L.F.C.; Alexis, F.; Nobuyasu, R.S.; De Sousa, F.B. Photochromic sensing of La3+ and Lu3+ ions using poly(caprolactone) fibers doped with spiropyran dyes. J. Photochem. Photobiol. A Chem. 2024, 452, 115568. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, Q.; Tong, Q.; Wu, G. Fluorescent probes based on benzothiazole-spiropyran derivatives for pH monitoring in vitro and in vivo. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117506. [Google Scholar] [CrossRef]
- Rad, J.K.; Balzade, Z.; Mahdavian, A.R. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. J. Photochem. Photobiol. C Photochem. Rev. 2022, 51, 100487. [Google Scholar]
- Moncelsi, G.; Ballester, P. Photoswitchable Host-guest systems incorporating hemithioindigo and spiropyran units. ChemPhotoChem 2019, 3, 304–317. [Google Scholar] [CrossRef]
- Imato, K.; Momota, K.; Kaneda, N.; Imae, I.; Ooyama, Y. Photoswitchable Adhesives of Spiropyran Polymers. Chem. Mater. 2022, 34, 8289–8296. [Google Scholar] [CrossRef]
- Wang, X.; Xu, B.; Tian, W. Solid-State Luminescent Molecular Photoswitches. Acc. Mater. Res. 2023, 4, 311–322. [Google Scholar] [CrossRef]
- Sheng, J.; Perego, J.; Bracco, S.; Czepa, W.; Danowski, W.; Krause, S.; Sozzani, P.; Ciesielski, A.; Comotti, A.; Feringa, B.L. Construction of Multi-Stimuli Responsive Highly Porous Switchable Frameworks by In Situ Solid-State Generation of Spiropyran Switches. Adv. Mater. 2024, 36, 2305783. [Google Scholar] [CrossRef]
- Ali, A.A.; Kharbash, R.; Kim, Y. Chemo-and biosensing applications of spiropyran and its derivatives-A review. Anal. Chim. Acta 2020, 1110, 199–223. [Google Scholar] [CrossRef]
- Cong, Y.; Wang, X.; Zhu, S.; Liu, L.; Li, L. Spiropyran-Functionalized Gold Nanoclusters with Photochromic Ability for Light-Controlled Fluorescence Bioimaging. ACS Appl. Bio Mater. 2021, 4, 2790–2797. [Google Scholar] [CrossRef]
- He, X.; Xu, W.; Xu, C.; Ding, F.; Chen, H.; Shen, J. Reversible spiropyran-based chemosensor with pH-switches and application for bioimaging in living cells, Pseudomonas aeruginosa and zebrafish. Dye. Pigment. 2020, 180, 108497. [Google Scholar] [CrossRef]
- Chien, H.-W.; Yang, C.-H.; Tsai, M.-T.; Wang, T.-L. Photoswitchable spiropyran-capped hybrid nanoparticles based on UV-emissive and dual-emissive upconverting nanocrystals for bioimaging. J. Photochem. Photobiol. A Chem. 2020, 392, 112303. [Google Scholar] [CrossRef]
- Kang, J.; Li, E.; Cui, L.; Shao, Q.; Yin, C.; Cheng, F. Lithium ion specific fluorescent reversible extraction-release based on spiropyran isomerization combining crown ether coordination and its bioimaging. Sens. Actuators B Chem. 2021, 327, 128941. [Google Scholar] [CrossRef]
- Kozlenko, A.S.; Ozhogin, I.V.; Pugachev, A.D.; Rostovtseva, I.A.; Makarova, N.I.; Demidova, N.V.; Tkachev, V.V.; Borodkin, G.S.; Metelitsa, A.V.; El-Sewify, I.M.; et al. New cationic spiropyrans with photoswitchable NIR fluorescence. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 297, 122712. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, J.; Park, I.S.; Jeon, S.; Lee, J.; Kim, J.-M. Recent functional material based approaches to prevent and detect counterfeiting. J. Mater. Chem. C 2013, 1, 2388–2403. [Google Scholar] [CrossRef]
- Zhu, M.-Q.; Zhu, L.; Han, J.J.; Wu, W.; Hurst, J.K.; Li, A.D.Q. Spiropyran-Based Photochromic Polymer Nanoparticles with Optically Switchable Luminescence. J. Am. Chem. Soc. 2006, 128, 4303–4309. [Google Scholar] [CrossRef]
- Sylvia, G.M.; Heng, S.; Bachhuka, A.; Ebendorff-Heidepriem, H.; Abell, A.D. A spiropyran with enhanced fluorescence: A bright, photostable and red-emitting calcium sensor . Tetrahedron 2018, 74, 1240–1244. [Google Scholar] [CrossRef]
- Xia, H.; Ding, Y.; Gong, J.; Lilienkampf, A.; Xie, K.; Bradley, M. Programmable and Flexible Fluorochromic Polymer Microarrays for Information Storage. ACS Appl. Mater. Interfaces 2022, 14, 27107–27117. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, P.; Liu, L.; Li, Y.; Zhang, Y.; Wu, T.; Xie, H.; Zhang, C.; Cui, J.; Chen, J. Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern. Chem. Eng. J. 2021, 425, 131557. [Google Scholar] [CrossRef]
- Liao, B.; Long, P.; He, B.; Yi, S.; Ou, B.; Shen, S.; Chen, J. Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. J. Mater. Chem. C 2013, 1, 3716–3721. [Google Scholar] [CrossRef]
- Yu, Q.; Su, X.; Zhang, T.; Zhang, Y.-M.; Li, M.; Liu, Y.; Zhang, S.X.-A. Non-invasive fluorescence switch in polymer films based on spiropyran-photoacid modified TPE. J. Mater. Chem. C 2018, 6, 2113–2122. [Google Scholar] [CrossRef]
- Li, L.; Dong, X.; Li, J.; Wei, J. A short review on NIR-II organic small molecule dyes. Dye. Pigment. 2020, 183, 108756. [Google Scholar] [CrossRef]
- Su, Y.; Yu, B.; Wang, S.; Cong, H.; Shen, Y. NIR-II bioimaging of small organic molecule. Biomaterials 2021, 271, 120717. [Google Scholar] [CrossRef]
- Grimm, J.B.; Lavis, L.D. Caveat fluorophore: An insiders’ guide to small-molecule fluorescent labels. Nat. Methods 2022, 19, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.U.; Kim, T.; Kim, C.; Kim, M.; Park, T. Recent Advances in Structural Design of Efficient Near-Infrared Light-Emitting Organic Small Molecules. Adv. Funct. Mater. 2023, 33, 2208082. [Google Scholar] [CrossRef]
- Lei, Y.; Dai, W.; Li, G.; Zhang, Y.; Huang, X.; Cai, Z.; Dong, Y. Stimulus-Responsive Organic Phosphorescence Materials Based on Small Molecular Host–Guest Doped Systems. J. Phys. Chem. Lett. 2023, 14, 1794–1807. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Y.; Chen, W.; Tan, Y.; Chen, H.; Yin, J. Photodynamic therapy based on organic small molecular fluorescent dyes. Chin. Chem. Lett. 2019, 30, 1689–1703. [Google Scholar] [CrossRef]
- Qi, Y.-L.; Li, Y.-Z.; Tan, M.-J.; Yuan, F.-F.; Murthy, N.; Duan, Y.-T.; Zhu, H.-L.; Yang, S.-Y. Recent advances in organic near-infrared ratiometric small-molecule fluorescent probes. Coord. Chem. Rev. 2023, 486, 215130. [Google Scholar] [CrossRef]
- He, J.; Zhao, H.; Wu, H.; Yang, Y.; Wang, Z.; He, Z.; Jiang, G. Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group. Phys. Chem. Chem. Phys. 2021, 23, 17939–17944. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, Y.; Li, Y.; He, Z.; Chen, Y.; Wang, Z.; Zhao, H.; Jiang, G. Multiple anti-counterfeiting guarantees from simple spiropyran derivatives with solid photochromism and mechanochromism. Cell Rep. Phys. Sci. 2021, 2, 100643. [Google Scholar] [CrossRef]
- Liu, D. A simple fluorescent switch with four states based on benzothiazole-spiropyran for reversible multicolor displays and anti-counterfeiting. New J. Chem. 2022, 46, 19118–19123. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, Z.; Yang, Y.; Hu, L.; Wu, W.; Gao, Y.; Wei, Y.; Zhang, X.; Jiang, G. Time-resolved encryption via photochromic and mechanochromic system based on silane-substituted spiropyran. Chem. Eng. J. 2023, 457, 141293. [Google Scholar] [CrossRef]
- Wu, H.; Wu, W.; Hu, L.; Zhu, J.; Li, Q.; Gao, Y.; Wei, Y.; Jiang, G.; Yang, Y. Time-resolved encryption from a spiropyran derivative: High-contrasted and multi-state mechanochromism, photochromism and thermochromism. Chem. Eng. J. 2023, 469, 143781. [Google Scholar] [CrossRef]
- Wei, S.; Li, Z.; Lu, W.; Liu, H.; Zhang, J.; Chen, T.; Tang, B.Z. Multicolor Fluorescent Polymeric Hydrogels. Angew. Chem. Int. Ed. 2021, 60, 8608–8624. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; He, Y.; Wang, X.; Wu, Z.; Pang, E.; Xu, J.; Wang, J.-a. Recent Advances in Thermally Activated Delayed Fluorescent Polymer—Molecular Designing Strategies. Front. Chem. 2020, 8, 725. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Si, M.; Le, X.; Chen, T. Mimicking Color-Changing Organisms to Enable the Multicolors and Multifunctions of Smart Fluorescent Polymeric Hydrogels. Acc. Chem. Res. 2022, 55, 2291–2303. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Dai, J.; Xu, Z.-Y.; Yang, K.-K.; Wang, Y.-Z. From shape and color memory PCL network to access high security anti-counterfeit material. Polymer 2019, 172, 52–57. [Google Scholar] [CrossRef]
- Yang, T.; Zuo, Y.; Feng, S. Rational design of photo-chromic molecule for constructing polysiloxane-based fluorescent films and anti-counterfeiting. Mater. Des. 2021, 207, 109867. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, J.; Weng, Y.; Fan, Z.; Fan, L.-J. Dynamic Fluorescent Anti-Counterfeiting Labels Based on Conjugated Polymers Confined in Submicron Fibrous Membranes. ACS Appl. Mater. Interfaces 2022, 14, 32510–32521. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, Y.; Jiang, B.; Xi, R.; Zhu, K.; Wang, Y.; Xu, W.; Song, D. Construction of durable and original color constancy photochromic cotton fabrics by a facile esterification strategy. Ind. Crops Prod. 2022, 189, 115783. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Chen, J.; Tian, Y.; Xiang, C.; Liu, W.; Zhou, Z.; Cui, J.; Chen, X. Visible-Light-Driven Photoswitchable Fluorescent Polymers for Photorewritable Pattern, Anti-Counterfeiting, and Information Encryption. Adv. Funct. Mater. 2023, 33, 2303765. [Google Scholar] [CrossRef]
- Thorarinsdottir, A.E.; Harris, T.D. Metal–Organic Framework Magnets. Chem. Rev. 2020, 120, 8716–8789. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wang, K.-Y.; Day, G.S.; Ryder, M.R.; Zhou, H.-C. Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chem. Rev. 2020, 120, 13087–13133. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-S.; Zhang, M.; Zou, R.; Xu, Q. Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, Z.; Wang, J.-X.; Chen, L.; Li, C. A metastable-state photoacid-based metal organic framework with multi-stimuli-responsive chromism. Dye. Pigment. 2022, 203, 110365. [Google Scholar] [CrossRef]
- Zheng, H.-Q.; Yang, Y.; Wang, Z.; Yang, D.; Qian, G.; Cui, Y. Photo-Stimuli-Responsive Dual-Emitting Luminescence of a Spiropyran-Encapsulated Metal-Organic Framework for Dynamic Information Encryption. Adv. Mater. 2023, 35, 202300177. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.; Chen, Y.; Wang, Z.; He, Z.; He, J.; Zhao, H. Dynamic Anticounterfeiting Through Novel Photochromic Spiropyran-Based Switch@Ln-MOF Composites. ACS Appl. Mater. Interfaces 2022, 14, 21330–21339. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Guo, X.; Chen, Y.; Wang, Z.; Hu, L.; Wu, W.; Zhu, J. Achieving Enhanced Photochromism of Spiropyran in Pretreated Nanoporous Lanthanide Metal-Organic Frameworks for Information Storage Applications. ACS Appl. Nano Mater. 2023, 6, 5817–5825. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kaminski Schierle, G.S.; Lei, B.; Liu, Y.; Kaminski, C.F. Fluorescent Nanoparticles for Super-Resolution Imaging. Chem. Rev. 2022, 122, 12495–12543. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, M.; Zhuang, Y.; Liu, S.; Huang, W.; Zhao, Q. Circularly polarized luminescence from organic micro-/nano-structures. Light Sci. Appl. 2021, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Gyanjyoti, A.; Guleria, P.; Awasthi, A.; Singh, K.; Kumar, V. Recent advancement in fluorescent materials for optical sensing of pesticides. Mater. Today Commun. 2023, 34, 105193. [Google Scholar] [CrossRef]
- Ansari, A.A.; Thakur, V.K.; Chen, G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord. Chem. Rev. 2021, 436, 213821. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, R.; Jiang, J.; Wu, T.; Zhang, P.; Zhang, C.; Cui, J.; Chen, J. Preparation and application of multi-wavelength-regulated multi-state photoswitchable fluorescent polymer nanoparticles. Dye. Pigment. 2022, 197, 109919. [Google Scholar] [CrossRef]
- Sanjabi, S.; Rad, J.K.; Salehi-Mobarakeh, H.; Mahdavian, A.R. Preparation of switchable thermo- and photo-responsive polyacrylic nanocapsules containing leuco-dye and spiropyran: Multi-level data encryption and temperature indicator. J. Ind. Eng. Chem. 2023, 119, 647–659. [Google Scholar] [CrossRef]
- Weng, Y.; Hong, Y.; Deng, J.; Cao, S.; Fan, L.-J. Preparation and dynamic color-changing study of fluorescent polymer nanoparticles for individualized and customized anti-counterfeiting application. J. Colloid Interface Sci. 2024, 655, 622–633. [Google Scholar] [CrossRef]
- Lin, R.-B.; Chen, B. Hydrogen-bonded organic frameworks: Chemistry and functions. Chem 2022, 8, 2114–2135. [Google Scholar] [CrossRef]
- He, Z.; Li, Y.; Wu, H.; Yang, Y.; Chen, Y.; Zhu, J.; Li, Q.; Jiang, G. Novel Stimuli-Responsive Spiropyran-Based Switch@HOFs Materials Enable Dynamic Anticounterfeiting. ACS Appl. Mater. Interfaces 2022, 14, 48133–48142. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; He, J.; Hu, L.; Wu, W.; Gao, Y.; Wei, Y. Dynamic Information Encryption Technology by Combining Photochromic Spiropyrans and Carbon Dots. ACS Appl. Opt. Mater. 2023, 1, 1312–1319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Lv, X.; Xia, Y.; Liu, Y. Fluorescent Materials Based on Spiropyran for Advanced Anti-Counterfeiting and Information Encryption. Molecules 2024, 29, 2536. https://doi.org/10.3390/molecules29112536
Ding S, Lv X, Xia Y, Liu Y. Fluorescent Materials Based on Spiropyran for Advanced Anti-Counterfeiting and Information Encryption. Molecules. 2024; 29(11):2536. https://doi.org/10.3390/molecules29112536
Chicago/Turabian StyleDing, Sha, Xin Lv, Yong Xia, and Yuejun Liu. 2024. "Fluorescent Materials Based on Spiropyran for Advanced Anti-Counterfeiting and Information Encryption" Molecules 29, no. 11: 2536. https://doi.org/10.3390/molecules29112536
APA StyleDing, S., Lv, X., Xia, Y., & Liu, Y. (2024). Fluorescent Materials Based on Spiropyran for Advanced Anti-Counterfeiting and Information Encryption. Molecules, 29(11), 2536. https://doi.org/10.3390/molecules29112536