Poly(2-(dimethylamino)ethyl methacrylate)-Grafted Amphiphilic Block Copolymer Micelles Co-Loaded with Quercetin and DNA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Cationic Amphiphilic Graft Copolymer MPEG-b-(PC-g-PDMAEMA)
2.2. Self-Association of MPEG-b-(PC-g-PDMAEMA) Amphiphilic Graft Copolymer
2.3. Drug-Loading and In Vitro Release Studies
2.4. Micelleplexes Formation between the Quercetin-Loaded Cationic Micelles (M/Que) and DNA
2.5. In Vitro Metabolic Activity Assessment of HepG2 Cells Treated with Empty or Quercetin-Loaded Micelles and Micelleplexes
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of Azide End-Functionalized Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA-N3)
3.3. Synthesis of Amphiphilic Polycationic Graft Copolymer MPEG-b-(PC-g-PDMAEMA)
3.4. Preparation of Micelles
3.5. Critical Micelle Concentration (CMC) Determination
3.6. Drug-Loading Procedure
3.7. In Vitro Quercetin Release Profiles
3.8. Micelleplexes Formation
3.9. Ethidium Bromide Displacement Assay
3.10. MTT Test
3.11. Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, Y.; Kim, S. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Harun-Or-Rashid, M.; Aktar, M.; Hossain, M.; Sarkar, N.; Islam, M.; Arafat, M.; Bhowmik, S.; Yusa, S.-I. Recent advances in micro- and nano-drug delivery systems based on natural and synthetic biomaterials. Polymers 2023, 15, 4563. [Google Scholar] [CrossRef] [PubMed]
- Palmiero, U.; Sponchioni, M.; Manfredini, N.; Maraldi, M.; Moscatelli, D. Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polym. Chem. 2018, 9, 4084–4099. [Google Scholar] [CrossRef]
- Krishnan, A.; Roy, S.; Menon, S. Amphiphilic block copolymers: From synthesis including living polymerization methods to applications in drug delivery. Eur. Polym. J. 2022, 172, 111224. [Google Scholar] [CrossRef]
- Kaur, J.; Saxena, M.; Rishi, N. An overview of recent advances in biomedical applications of click chemistry. Bioconjugate Chem. 2021, 32, 1455–1471. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Cho, W.; Ansariesfahani, A.; Tarharoudi, R.; Malekisarvar, H.; Sari, S.; Bloukh, S.; Edis, Z.; Amin, M.; Gleghorn, J.; et al. An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers 2022, 14, 2868. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Ali, A.; Fatima, M.; Apurva, N.; Kumar, A.; Sumi, M.; Sattar, R.; Mahajan, B.; Saluja, S. Ligand decorated biodegradable nanomedicine in the treatment of cancer. Pharmacol. Res. 2021, 167, 105544. [Google Scholar] [CrossRef] [PubMed]
- Aghda, N.; Dabbaghianamiri, M.; Tunnell, J.; Betancourt, T. Design of smart nanomedicines for effective cancer treatment. Int. J. Pharm. 2022, 621, 121791. [Google Scholar] [CrossRef] [PubMed]
- Figueiras, A.; Domingues, C.; Jarak, I.; Santos, A.; Parra, A.; Pais, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Kabanov, A.; Cabral, H.; et al. New advances in biomedical application of polymeric micelles. Pharmaceutics 2022, 14, 1700. [Google Scholar] [CrossRef]
- Guzmán Rodríguez, A.; Sablón Carrazana, M.; Rodríguez Tanty, C.; Malessy, M.; Fuentes, G.; Cruz, L. Smart polymeric micelles for anticancer hydrophobic drugs. Cancers 2023, 15, 4. [Google Scholar] [CrossRef]
- Zheng, Y.; Oz, Y.; Gu, Y.; Ahamad, N.; Shariati, K.; Chevalier, J.; Kapur, D.; Annabi, A. Rational design of polymeric micelles for targeted therapeutic delivery. Nano Today 2024, 55, 102147. [Google Scholar] [CrossRef]
- El Jundi, A.; Buwalda, S.; Bakkour, Y.; Garric, X.; Nottelet, B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv. Colloid Interface Sci. 2020, 283, 102213. [Google Scholar] [CrossRef]
- Uchida, S.; Lau, C.; Oba, M.; Miyata, K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv. Drug Deliv. Rev. 2023, 199, 114972. [Google Scholar] [CrossRef] [PubMed]
- Navarro, G.; Pan, J.; Torchilin, V. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol. Pharm. 2015, 12, 301–313. [Google Scholar] [CrossRef]
- Pereira-Silva, M.; Jarak, I.; Alvarez-Lorenzo, K.; Concheiro, A.; Santosa, A.; Veiga, F.; Figueiras, A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J. Control. Release 2020, 323, 442–462. [Google Scholar] [CrossRef] [PubMed]
- Amjad, M.; Kesharwani, P.; Amin, M.; Iyer, A. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog. Polym. Sci. 2017, 64, 154–181. [Google Scholar] [CrossRef]
- Jiang, Y.; Lodge, T.; Reineke, T. Packaging pDNA by polymeric ABC micelles simultaneously achieves colloidal stability and structural control. J. Am. Chem. Soc. 2018, 140, 11101–11111. [Google Scholar] [CrossRef]
- Pugsley, C.; Isaac, R.; Warren, N.; Cayre, O. Linear ABC amphiphilic triblock copolymers for complexation and protection of dsRNA. Polym. Chem. 2022, 13, 5707–5717. [Google Scholar] [CrossRef]
- Guo, S.; Qiao, Y.; Wang, W.; He, H.; Deng, L.; Xing, J.; Xu, J.; Liang, X.-J.; Dong, A. Poly(ε-caprolactone)-graft-poly(2-(N,N-dimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery. J. Mater. Chem. 2010, 20, 6935–6941. [Google Scholar] [CrossRef]
- Gaspar, V.; Gonçalves, C.; de Melo-Diogo, D.; Costa, E.; Queiroz, J.; Pichon, C.; Sousa, F.; Correia, I. Poly(2-ethyl-2-oxazoline)–PLA-g–PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics. J. Control. Release 2014, 189, 90–104. [Google Scholar] [CrossRef]
- Lin, W.; Yao, N.; Li, H.; Hanson, S.; Han, W.; Wang, C.; Zhang, L. Co-delivery of imiquimod and plasmid DNA via an amphiphilic pH-responsive star polymer that forms unimolecular micelles in water. Polymers 2016, 8, 397. [Google Scholar] [CrossRef] [PubMed]
- Dalal, R.; Kumar, R.; Ohnsorg, M.; Brown, M.; Reineke, T. Cationic bottlebrush polymers outperform linear polycation analogues for pDNA delivery and gene expression. ACS Macro Lett. 2021, 10, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ong, Z.; Wiradharma, N.; Attia, A.; Yang, Y.-Y. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv. Healthc. Mater. 2012, 1, 373–392. [Google Scholar] [CrossRef]
- Pereira, P.; Barreira, M.; Queiroz, J.; Veiga, F.; Sousa, F.; Figueiras, A. Smart micelleplexes as a new therapeutic approach for RNA delivery. Expert Opin. Drug Deliv. 2017, 14, 353–371. [Google Scholar] [CrossRef] [PubMed]
- Creixell, M.; Peppas, N. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today 2012, 7, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Mambet, C.; Chivu-Economescu, M.; Matei, L.; Stoian, M.; Bleotu, C. Strategies to overcome multi-drug resistance in cancer cells: The contribution of siRNA and nanotechnologies. Curr. Org. Chem. 2016, 20, 2971–2982. [Google Scholar] [CrossRef]
- Hao, Y.; He, J.; Li, S.; Liu, J.; Zhang, M.; Ni, P. Synthesis of acid-cleavable and fluorescent amphiphilic block copolymer as a combined delivery vector of DNA and doxorubicin. J. Mater. Chem. B 2014, 2, 4237–4249. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, Y.; Chen, Z.; Xie, S.; Luo, X.; Li, X. Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomater. 2017, 49, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-M.; Du, J.-Z.; Yao, Y.-D.; Mao, C.-Q.; Dou, S.; Huang, S.-Y.; Zhang, P.-Z.; Leong, K.; Song, E.-W.; Wang, J. Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano 2011, 5, 1483–1494. [Google Scholar] [CrossRef]
- Yu, H.; Zou, Z.; Wang, Y.; Huang, X.; Huang, G.; Sumer, B.; Boothman, D.; Gao, J. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS Nano 2011, 5, 9246–9255. [Google Scholar] [CrossRef]
- Yu, H.; Guo, C.; Feng, B.; Liu, J.; Chen, X.; Wang, D.; Teng, L.; Li, Y.; Yin, Q.; Zhang, Z.; et al. Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-Kappa B targeted treatment of metastatic breast cancer. Theranostics 2016, 6, 14–27. [Google Scholar] [CrossRef]
- Gao, J.; Chen, L.; Qi, R.; Zhou, Z.; Deng, Z.; Shi, J.; Qin, T.; Zhao, S.; Qian, Y.; Shen, J. Simultaneous delivery of gene and chemotherapeutics via copolymeric micellar nanoparticles to overcome multiple drug resistance to promote synergistic tumor suppression. J. Biomater. Appl. 2019, 34, 130–140. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Yang, C.-Y.; Peng, C.-L.; Wei, M.-F.; Chen, K.-C.; Yao, C.-J.; Shieh, M.-J. A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 2016, 86, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Martinez, E.; Flores-Hernández, F.; Salazar-Montes, A.; Nario-Chaidez, H.; Hernández-Ortega, L. Quercetin, a flavonoid with great pharmacological capacity. Molecules 2024, 29, 1000. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Saitani, E.-M.; Valsami, G.; Pippa, N.; Skaltsa, H. Recent advances in nanoformulations for quercetin delivery. Pharmaceutics 2023, 15, 1656. [Google Scholar] [CrossRef]
- Han, L.; Lu, K.; Zhou, S.; Qi, B.; Li, Y. Co-delivery of insulin and quercetin in W/O/W double emulsions stabilized by different hydrophilic emulsifiers. Food Chem. 2022, 369, 130918. [Google Scholar] [CrossRef] [PubMed]
- Capini, C.; Jaturanpinyo, M.; Chang, H.-I.; Mutalik, S.; McNally, A.; Street, S.; Steptoe, R.; O’Sullivan, B.; Davies, N.; Thomas, R. Antigen-speci|c suppression of infammatory arthritis using liposomes. J. Immunol. 2009, 182, 3556–3565. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, E.; Liang, Z.; Zhao, Y.; Zhang, S.; Xu, H.; Wang, H.; Shu, X.; Kang, X.; Sun, L.; et al. Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J. Drug Deliv. Sci. Technol. 2019, 54, 101316. [Google Scholar] [CrossRef]
- Hemati, M.; Haghiralsadat, F.; Yazdian, F.; Jafari, F.; Moradi, A.; Malekpour-Dehkordi, Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1295–1311. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; Gu, Z.; Chen, Z.; Li, H.; Cheng, Z.; Li, H.; Zou, L. Co-delivery of microRNA-150 and quercetin by lipid nanoparticles (LNPs) for the targeted treatment of age-related macular degeneration (AMD). J. Control. Release 2023, 355, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Cai, X.; Fan, Y.; Jin, M.; Xie, Y.; Jing, Z.; Zang, X.; Han, Y. Codelivery of Que and BCL-2 siRNA with lipid–copolymer hybrid nanocomplexes for efficient tumor regression. ACS Biomater. Sci. Eng. 2023, 9, 4805–4820. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, R.; Grancharov, G.; Doumanov, J.; Mladenova, K.; Petrova, S.; Dimitrov, I. Green synthesis and the evaluation of a functional amphiphilic block copolymer as a micellar curcumin delivery system. Int. J. Mol. Sci. 2023, 24, 10588. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, R.; Dimitrov, I.; Ivanova, D.; Ilieva, Y.; Tashev, A.; Zaharieva, M.; Angelov, G.; Najdenski, H. Polycarbonate-based copolymer micelles as biodegradable carriers of anticancer podophyllotoxin or juniper extracts. J. Funct. Biomater. 2024, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, R.; Mladenova, K.; Petrova, S.; Doumanov, J.; Dimitrov, I. Solvent-free synthesis of multifunctional block copolymer and formation of DNA and drug nanocarriers. Nanomaterials 2023, 13, 2936. [Google Scholar] [CrossRef] [PubMed]
- Mespouille, L.; Vachaudez, M.; Suriano, F.; Gerbaux, P.; Van Camp, V.; Coulembier, C.; Degée, P.; Flammang, R.; Du Prez, F.; Dubois, P. Controlled synthesis of amphiphilic block copolymers based on polyester and poly(amino methacrylate): Comprehensive study of reaction mechanisms. React. Funct. Polym. 2008, 68, 990–1003. [Google Scholar] [CrossRef]
- Dian, L.; Yu, E.; Chen, X.; Wen, X.; Zhang, Z.; Qin, L.; Wang, Q.; Li, G.; Wu, C. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res. Lett. 2014, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Poniris, M.; Wilson, M. pDMAEMA is internalised by endocytosis but does not physically disrupt endosomes. J. Control. Release 2004, 96, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Sapino, S.; Ugazio, E.; Gastaldi, L.; Miletto, I.; Berlier, G.; Zonari, D.; Oliaro-Bosso, S. Mesoporous silica as topical nanocarriers for quercetin: Characterization and in vitro studies. Eur. J. Pharm. Biopharm. 2015, 89, 116–125. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Precursors | Cationic Amphiphilic Graft Copolymer | ||||||||
---|---|---|---|---|---|---|---|---|---|
Code | t-DPn a | DPn b | Mn b (g mol−1) | ÐM c | Code | t-DGn d | DGn b | Mn b (g mol−1) | ÐM c |
MPEG-b-PC | - | - | 9800 | 1.24 | MPEG-b-(PC-g-PDMAEMA) | 14 | 12 | 85,400 | 1.22 |
PDMAEMA-N3 | 30 | 40 | 6300 | 1.27 |
Nanoaggregates (Code) | CMC a (mg mL−1) | d b (nm) | PdI b | ζ b (mV) | DLE c (%) | DLC c (%) |
---|---|---|---|---|---|---|
Empty Micelles (M) | 0.032 | 157.91 ± 2.42 | 0.221 | 20.08 ± 3.73 | - | - |
Drug-Loaded Micelles (M/Que) | - | 126.88 ± 2.26 | 0.312 | 21.42 ± 4.10 | 93 | 8.5 |
Micelleplexes (MP 10:1) | - | 91.80 ± 1.49 | 0.173 | 21.64 ± 1.65 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinova, R.; Videv, P.; Petrova, S.; Doumanov, J.; Dimitrov, I. Poly(2-(dimethylamino)ethyl methacrylate)-Grafted Amphiphilic Block Copolymer Micelles Co-Loaded with Quercetin and DNA. Molecules 2024, 29, 2540. https://doi.org/10.3390/molecules29112540
Kalinova R, Videv P, Petrova S, Doumanov J, Dimitrov I. Poly(2-(dimethylamino)ethyl methacrylate)-Grafted Amphiphilic Block Copolymer Micelles Co-Loaded with Quercetin and DNA. Molecules. 2024; 29(11):2540. https://doi.org/10.3390/molecules29112540
Chicago/Turabian StyleKalinova, Radostina, Pavel Videv, Svetla Petrova, Jordan Doumanov, and Ivaylo Dimitrov. 2024. "Poly(2-(dimethylamino)ethyl methacrylate)-Grafted Amphiphilic Block Copolymer Micelles Co-Loaded with Quercetin and DNA" Molecules 29, no. 11: 2540. https://doi.org/10.3390/molecules29112540
APA StyleKalinova, R., Videv, P., Petrova, S., Doumanov, J., & Dimitrov, I. (2024). Poly(2-(dimethylamino)ethyl methacrylate)-Grafted Amphiphilic Block Copolymer Micelles Co-Loaded with Quercetin and DNA. Molecules, 29(11), 2540. https://doi.org/10.3390/molecules29112540