Chemical and Energetic Characterization of the Wood of Prosopis laevigata: Chemical and Thermogravimetric Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Primary Constitution of the Wood: Chemical and TGA-DTG Methods
2.2. Thermal Decomposition Process (TGA) and Deconvoluted (DTG)
2.3. Higher Heating Value (HHV)
HHV using calorimetric pump [43] | 20.16 (±0.25) a |
HHV = 17.9017 + 0.07444 (L) + 0.0661 (E) [44] | 21.07 (±0.06) a |
HHV = 354.3 (FC) + 170.8 (VM) [45] | 21.06 (±0.07) a |
HHV = 0.335 (C) +1.423 (H) − 0.154 (O) − 0.145 (N) [46] | 18.23 (±0.92) b |
Parameter | Magnitude | Calculated Value | Technical Parameters Limit [47] | Typical Variation for Hardwood Woods [41] |
---|---|---|---|---|
Energetic properties | ||||
Moisture | % | 7.36 (±0.15) | ≤10 | NS |
Ashes | % | 1.77 (±0.07) | ≤1.5 | 0.2–1.0 |
Calorific value | MJ/kg | 20.1 (±0.25) | 16.3–19 | 18.4–19.2 |
Elementary analysis | ||||
Carbon | % | 46.4 (±0.42) | - | 48–52 |
Hydrogen | % | 6.79 (±0.15) | - | 5.9–6.5 |
Oxygen | % | 46.43 (±0.38) | - | 41–45 |
Nitrogen | % | 0.3 (±0.12) | ≤0.5 | ˂ 0.1–0.5 |
Sulfur | % | 0.05 (±0.01) | ˂0.03 | ˂0.01–0.05 |
Ash microanalysis (parts per million, ppm) | ||||
K | mg/kg | 182,962.57 | - | 500–1500 |
Ca | mg/kg | 122,616.47 | - | 800–20000 |
Na | mg/kg | 11,042.69 | - | 10–200 |
Sr | mg/kg | 3174.39 | - | NS |
S | mg/kg | 1265.70 | - | NS |
Mg | mg/kg | 972.01 | - | 100–400 |
P | mg/kg | 649.19 | - | 50–200 |
Ba | mg/kg | 106.76 | - | NS |
B | mg/kg | 84.35 | - | NS |
Si | mg/kg | 69.56 | - | 100–200 |
Fe | mg/kg | 53.47 | - | 10–100 |
Cu | mg/kg | 44.28 | - | 0.5–10 |
Al | mg/kg | 35.98 | - | ˂10–50 |
Li | mg/kg | 32.40 | - | NS |
Mn | mg/kg | 23.72 | - | 83 |
Zn | mg/kg | 16.37 | ≤10.0 | 5–100 |
Ni | mg/kg | 7.70 | ≤10.0 | ˂0.1–10 |
Cr | mg/kg | 4.48 | ≤10.0 | 0.2–10 |
2.4. Elemental Analysis
2.5. Microanalysis of Ash
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
3. Materials and Methods
3.1. Collection and Preparation of the Study Material
3.2. Primary Constitution and Proximate Analysis by Chemical Methods
3.2.1. Primary Analysis by the Chemical Method
3.2.2. Proximate Analysis by Gravimetric Methods
3.3. Thermogravimetric (TGA) and Differential (DTG) Analyses
3.3.1. Proximate Analysis by TGA
3.3.2. Primary Constitution: Deconvolution of the DTG
3.4. Calorific Value Higher Than (HHV)
3.5. Elemental Analysis
3.6. Microanalysis of Ash
3.7. Fourier Transform Infrared Spectroscopy (FT-IR)
3.8. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garatuza-Payan, J.; Argentel-Martinez, L.; Yepez, E.A.; Arredondo, T. Initial response of phenology and yield components of wheat (Triticum durum L.; CIRNO C2008) under experimental warming field conditions in the Yaqui Valley. Peer J. 2018, 6, e5064. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.P.; Muñoz, E.J.; Laguna, R.R.; Zárate, R.R. Distribución potencial de Prosopis laevigata (Humb. et Bonpl. ex Willd.) MC Johnst. en el estado de Hidalgo, México. Rev. Mex. Cienc. For. 2021, 12, 71–87. [Google Scholar] [CrossRef]
- Saucedo, J.C.R.; Caciano, R.T.; Nuñez, L.M.V.; Pérez, G.S.; Serna, R.R. Importancia de las Poblaciones de Mezquite en el Norte-Centro de México; CENID-RASPA, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias: Durango, México, 2011; pp. 1–21. [Google Scholar]
- Rodríguez-Sauceda, E.N.; Argentel-Martínez, L.; Morales-Coronado, D. Water regime and gas exchange of Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst. in two semi-arid ecosystems in southern Sonora. Rev. Chapingo Ser. Cienc. For. Y Ambiente 2019, 25, 107–121. [Google Scholar] [CrossRef]
- Carrillo, A.; Mayer, I.; Koch, G.; Hapla, F. Wood anatomical characteristics and chemical composition of Prosopis laevigata grown in the Northeast of Mexico. IAWA J. 2008, 29, 25–34. [Google Scholar] [CrossRef]
- Martínez-Pérez, R.; Pedraza-Bucio, F.E.; Orihuela-Equihua, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Calorific value and inorganic material of ten Mexican wood species. Wood Res. 2015, 60, 281–292. [Google Scholar]
- Salazar-Herrera, F.; Pintor-Ibarra, L.F.; Musule, R.; Nava-Berumen, C.A.; Alvarado-Flores, J.J.; González-Ortega, N.; Rutiaga-Quiñones, J.G. Chemical and Energetic Properties of Seven Species of the Fabaceae Family. South-East Eur. For. 2023, 14, 215–224. [Google Scholar] [CrossRef]
- Quiñones-Reveles, M.A.; Ruiz-García, V.M.; Ramos-Vargas, S.; Vargas-Larreta, B.; Masera-Cerutti, O.; Ngangyo-Heya, M.; Carrillo-Parra, A. Assessment of pellets from three forest species: From raw material to end use. Forests 2021, 12, 447. [Google Scholar] [CrossRef]
- Espinosa-Negrín, A.M.; López-González, L.M.; Casdelo-Gutiérrez, N.L. Pretratamientos aplicados a biomasas lignocelulósicas: Una revisión de los principales métodos analíticos utilizados para su evaluación. Rev. Cuba. Quím. 2022, 34, 87–110. [Google Scholar]
- Masera, O.; Sacramento Rivero, J.C. Promoting a sustainable energy transition in Mexico: The role of solid biofuels. BioEnergy Res. 2022, 15, 1691–1693. [Google Scholar] [CrossRef]
- Segura, F.; Echeverri, R.; Patiño Ll, A.C.; Mejía, A.I. Descripción y discusión acerca de los métodos de análisis de fibray of the valor nutricional de forrajes y alimentos para animales. Vitae 2007, 14, 72–81. [Google Scholar]
- Saldarriaga, J.F.; Aguado, R.; Pablos, A.; Amutio, M.; Olazar, M.; Bilbao, J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel 2015, 140, 744–751. [Google Scholar] [CrossRef]
- Rego, F.; Dias, A.P.S.; Casquilho, M.; Rosa, F.C.; Rodrigues, A. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass Bioenergy 2019, 122, 375–380. [Google Scholar] [CrossRef]
- Rodríguez-Romero, L.A.; Gutiérrez-Antonio, C.; García-Trejo, J.F.; Feregrino-Pérez, A.A. Estudio comparativo de modelos matemáticos para predecir el poder calorífico de residuos agrícolas mexicanos. TecnoLógicas 2022, 25, e2142. [Google Scholar] [CrossRef]
- Flores, J.J.A.; Vera, J.V.A.; Rodríguez, M.L.Á.; Quiñones, J.G.R.; Espino, J.V.; Martínez, S.J.G.; Ríos, E.T.; Aguado, R.Z. Kinetic, thermodynamic, FT-IR, and primary constitution analysis of Sargassum spp. from Mexico: Potential for hydrogen generation. Int. J. Hydrogen Energy 2022, 47, 30107–30127. [Google Scholar] [CrossRef]
- Kim, H.; Yu, S.; Kim, M.; Ryu, C. Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model. Energy 2022, 254, 124446. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry: Fundamentals and Applications; Academic Press, Inc.: London, UK, 1981; pp. 87–102. [Google Scholar]
- Fengel, D.; Wegener, G. Wood Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1984; pp. 66–222. [Google Scholar]
- Pintor-Ibarra, L.F.; Méndez-Zetina, F.D.; Rutiaga-Quiñones, J.G.; Alvarado-Flores, J.J. Capítulo 5: Caracterización proximal de los biocombustibles sólidos. In Aplicaciones Energéticas de la Biomasa: Perspectivas para la Caracterización Local de Biocombustibles Sólidos; Universidad Intercultural Indígena de Michoacán: Pátzcuaro, México, 2023; pp. 87–116. [Google Scholar]
- Pintor-Ibarra, L.F.; Carrillo-Parra, A.; Herrera-Bucio, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Physical and chemical properties of timber byproducts from Pinus leiophylla, P. montezumae and P. pseudostrobus for a bioenergetic use. Wood Res. 2017, 62, 849–861. [Google Scholar]
- Martínez-Gómez, O.; Pintor-Ibarra, L.F.; Rutiaga-Quiñones, J.G.; Corona-Terán, J. Chemical Composition and Energy Evaluation of Abies spp. and Pinus spp. Sawdust Collected as a Byproduct of the Primary Wood Sawing. South-East Eur. For. 2022, 13, 89–96. [Google Scholar] [CrossRef]
- Carrillo-Parra, A.; Ngangyo-Heya, M.; Colín-Urieta, S.; Foroughbakhch Pournavab, R.; Rutiaga-Quiñones, J.G.; Correa-Méndez, F. Physical, mechanical and energy characterization of wood pellets obtained from three common tropical species. Peer J. 2018, 6, e5504. [Google Scholar] [CrossRef]
- López-Sosa, L.B.; Alvarado-Flores, J.J.; Corral-Huacuz, J.C.; Aguilera-Mandujano, A.; Rodríguez-Martínez, R.E.; Guevara-Martínez, S.J.; Alcaraz-Vera, J.V.; Rutiaga-Quiñones, J.G.; Zárate-Medina, J.; Ávalos-Rodríguez, M.L.; et al. A prospective study of the exploitation of pelagic Sargassum spp. as a solid biofuel energy source. Appl. Sci. 2020, 10, 8706. [Google Scholar] [CrossRef]
- Cruz-Montelongo, C.D.L.; Herrera-Gamboa, J.; Ortiz-Sánchez, I.A.; Ríos-Saucedo, J.C.; Rosales-Serna, R.; Carrillo-Parra, A. Caracterización energética of the carbon vegetal producido en el Norte-Centro de México. Madera Bosques 2020, 26, e2621971. [Google Scholar] [CrossRef]
- Ríos-Saucedo, J.C.; Rosales-Serna, R.; Jiménez-Ocampo, R.; Domínguez-Martínez, P.A.; Carrillo-Parra, A.; Valenzuela-Nuñez, L.M. Calidad de pélets a partir de biomasa de ocho especies dendroenergéticas de crecimiento rápido. Agrociencia 2021, 55, 557–568. [Google Scholar]
- Rutiaga-Quiñones, J.G.; Pintor-Ibarra, L.F.; Orihuela-Equihua, R.; González-Ortega, N.; Ramírez-Ramírez, M.A.; Carrillo-Avila, N.; Carrillo-Parra, A.; Navarrete-García, M.A.; Ruiz-Aquino, F.; Rangel-Méndez, J.R.; et al. Characterization of Mexican waste biomass relative to energy generation. BioResources 2020, 15, 8529–8553. [Google Scholar] [CrossRef]
- Ruiz-Aquino, F.; Jiménez-Mendoza, M.E.; Santiago-García, W.; Suárez-Mota, M.E.; Aquino-Vásquez, C.; Rutiaga-Quiñones, J.G. Energy Properties of 22 Timber Species from Oaxaca, Mexico. South-East Eur. For. 2022, 13, 107–113. [Google Scholar] [CrossRef]
- Ong, H.C.; Chen, W.H.; Singh, Y.; Gan, Y.Y.; Chen, C.Y.; Show, P.L. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach. Energy Convers. Manag. 2020, 209, 112634. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers. Manag. 2015, 89, 251–259. [Google Scholar] [CrossRef]
- Granados, D.A.; Ruiz, R.A.; Vega, L.Y.; Chejne, F. Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy 2017, 139, 818–827. [Google Scholar] [CrossRef]
- Zhang, C.; Ho, S.H.; Chen, W.H.; Xie, Y.; Liu, Z.; Chang, J.S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energy 2018, 220, 598–604. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 2006, 20, 388–393. [Google Scholar] [CrossRef]
- Sebio-Puñal, T.; Naya, S.; López-Beceiro, J.; Tarrío-Saavedra, J.; Artiaga, R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 2012, 109, 1163–1167. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353. [Google Scholar]
- UNE-EN ISO 16559; Biocombustibles Sólidos, Terminología, Definiciones y Descripciones. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2015.
- Moya, R.; Tenorio, C. Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass Bioenergy 2013, 56, 14–21. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Grachev, A.N.; Makarov, A.A.; Zabelkin, S.A.; Emel’yanenko, V.N.; Musin, T.R.; Gerasimov, A.V.; Nurgaliev, D.K. Thermal analysis and calorimetric study of the combustion of hydrolytic wood lignin and products of its pyrolysis. Chem. Technol. Fuels Oils 2015, 51, 140–145. [Google Scholar] [CrossRef]
- Uceda Castillo, M.E. Determinación of the poder calorífico de 20 especies forestales of the Amazonía Peruana. Rev. For. Perú 1984, 12, 1–15. [Google Scholar]
- Ngangyo-Heya, M.; Foroughbahchk-Pournavab, R.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Zelinski, V.; Pintor-Ibarra, L.F. Calorific value and chemical composition of five Semi-Arid Mexican tree species. Forests 2016, 7, 58. [Google Scholar] [CrossRef]
- Demirbaş, A.; Demirbaş, A.H. Estimating the calorific values of lignocellulosic fuels. Energy Explor. Exploit. 2004, 22, 135–143. [Google Scholar] [CrossRef]
- UNE-EN ISO 17225-1; Biocombustibles Sólidos. Especificaciones y Clases de Combustibles. Parte 1: Requisitos Generales. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2014.
- Gutiérrez-Acosta, J.M.; Orihuela-Equihua, R.; Pintor-Ibarra, L.F.; González-Ortega, N.; Hernández-Solís, J.J.; Ruíz-Aquino, F.; Navarrete-García, M.A.; Rutiaga-Quiñones, J.G. On the basic chemical composition of selected biomass types from four regions of Mexico, for bioenergetic purposes. BioResources 2021, 16, 5694–5705. [Google Scholar] [CrossRef]
- UNE-EN ISO 18125; Biocombustibles Sólidos. Determinación of the Poder Calorífico. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2018.
- White, R.H. Effect of lignin content and extractives on the higher heating value of Wood. Wood Fiber Sci. 1987, 19, 446–452. [Google Scholar]
- Cordero, T.; Márquez, F.; Rodríguez-Mirasol, J.; Rodríguez, J.J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- UNE-EN 14961-1; Especificaciones y Clases de Combustibles. Parte 1: Requisitos Generales. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2011.
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- Palamanit, A.; Khongphakdi, P.; Tirawanichakul, Y.; Phusunti, N. Investigation of yields and qualities of pyrolysis products obtained from oil palm biomass using an agitated bed pyrolysis reactor. Biofuel Res. J. 2019, 6, 1065–1079. [Google Scholar] [CrossRef]
- Ali, L.; Ahmed Baloch, K.; Palamanit, A.; Raza, S.A.; Laohaprapanon, S.; Techato, K. Physicochemical Characterisation and the Prospects of Biofuel Production from Rubberwood Sawdust and Sewage Sludge. Sustainability 2021, 13, 5942. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels-significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. The Pellet Handbook, 1st ed.; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Telmo, C.; Luousada, K.; Moreira, N. Proximate analysis, backwards stepwise regression between gross caloric value, ultimate and chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Saravanapriya, G.; Shreelavaniya, R. Characterization of Prosopis juliflora and its products as a potential feedstock for energy generation. Pharma Innov. 2023, 12, 1673–1678. [Google Scholar]
- Michell, A.; Higgins, H. Infrared Spectroscopy in Australian Forest Products Research; CSIRO Forestry and Forest Products: Melbourne, Australia, 2002; p. 60. [Google Scholar]
- Carrillo, F.; Colom, X.; Sunol, J.J.; Saurina, J. Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Bodirlau, R.; Teaca, C.A. Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Rom. J. Phys. 2009, 54, 93–104. [Google Scholar]
- Lopez-Velazquez, M.A.; Santes, V.; Balmaseda, J.; Torres-Garcia, E. Pyrolysis of orange waste: A thermo-kinetic study. J. Anal. Appl. Pyrolysis 2013, 99, 170–177. [Google Scholar] [CrossRef]
- Pucetaite, M. Archaeological Wood from the Swedish Warship Vasa Studied by Infrared Microscopy; Lund University Press: Lund, Sweden, 2012. [Google Scholar]
- Scholz, G.; Windeisen, E.; Liebner, F.; Bäucker, E.; Bues, C.T. Wood anatomical features and chemical composition of Prosopis kuntzei from the Paraguayan Chaco. IAWA J. 2010, 31, 39–52. [Google Scholar] [CrossRef]
- Ona, T.; Ito, K.; Shibata, M.; Ootake, Y.; Ohshima, J.; Yokota, S.; Yoshizawa, N.; Sonoda, T. In Situ Determination of Proportion of Cell Types in Wood by Fourier Transform Raman Spectroscopy. Anal. Biochem. 1999, 268, 43–48. [Google Scholar] [CrossRef]
- Moosavi Nejad, S.M.; Madhoushi, M.; Rasouli, D.; Vakili, M. Nondestructive evaluation of wood chemical compounds used in Gorgan historical building via FT-IR spectroscopy. J. Wood For. Sci. Technol. 2017, 23, 313–328. [Google Scholar] [CrossRef]
- Moosavinejad, S.M.; Madhoushi, M.; Vakili, M.; Rasouli, D. Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy. Maderas Cienc. Tecnol. 2019, 21, 381–392. [Google Scholar] [CrossRef]
- Yamauchi, S.; Iijima, Y.; Doi, S. Spectrochemical characterization by FT-Raman spectroscopy of wood heat-treated at low temperatures: Japanese larch and beech. J. Wood Sci. 2005, 51, 498–506. [Google Scholar] [CrossRef]
- ASTM E11-20; Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. ASTM International: West Conshohocken, PA, USA, 2020.
- TAPPI T264 cm-97; Preparation of Wood for Chemical Analysis. TAPPI Press: Atlanta, GA, USA, 2000.
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Jaramillo, D.T.; Vélez, S.P.M.; Díaz, J.C.Q. Evaluación de pretratamientos químicos sobre materiales lignocelulósicos. Ingeniare Rev. Chil. Ing. 2017, 25, 733–743. [Google Scholar] [CrossRef]
- ASTM D4442-20; Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D1102-84; Standard Test Method for Ash in Wood. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM E872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2013.
- Heya, M.N.; Hernández, A.L.R.; Pournavab, R.F.; Pintor, L.F.I.; Díaz-Jiménez, L.; Heya, M.S.; Cruz, L.R.S.; Parra, A.C. Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya illinoensis) Pericarp Wastes of Different Particle Sizes. Molecules 2022, 27, 1035. [Google Scholar] [CrossRef]
- ASTM D5142-90; Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures. ASTM International: West Conshohocken, PA, USA, 1998.
- Rotz, L.; Giazzi, G. Characterization of Pharmaceutical Products by the Thermo Scientific FLASH 2000 Elemental Analyzer; Thermo Fischer Scientific: Milan, Italy, 2012. [Google Scholar]
- Ghetti, P.; Ricca, L.; Angelini, L. Thermal analysis of biomass and corresponding pyrolysis products. Fuel 1996, 75, 565–573. [Google Scholar] [CrossRef]
- Arcibar-Orozco, J.A.; Josue, D.B.; Hurtado, J.C.R.; Méndez, J.R.R. Influence of iron content, surface area and charge distribution in the arsenicremoval by activated carbons. Chem. Eng. J. 2014, 249, 201–209. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
Parameter | Chemical Analysis * | TGA-DTG Analysis * | ||
---|---|---|---|---|
Average (%) | SD (±) | Average (%) | SD (±) | |
Hemicelluloses | 7.36 | 0.15 | 8.74 | 0.22 |
Cellulose | 48.28 | 1.0 | 46.08 | 0.25 |
Lignin | 30.57 | 0.74 | 32.44 | 0.40 |
Extractives | 13.53 | 0.12 | 12.72 | 0.73 |
Moisture | 2.03 | 0.14 | 4.96 | 0.11 |
Ashes | 1.77 | 0.07 | 1.90 | 0.01 |
Volatile material | 75.16 | 0.13 | 74.14 | 0.16 |
Fixed carbon | 23.05 | 0.36 | 18.93 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintor-Ibarra, L.F.; Alvarado-Flores, J.J.; Rutiaga-Quiñones, J.G.; Alcaraz-Vera, J.V.; Ávalos-Rodríguez, M.L.; Moreno-Anguiano, O. Chemical and Energetic Characterization of the Wood of Prosopis laevigata: Chemical and Thermogravimetric Methods. Molecules 2024, 29, 2587. https://doi.org/10.3390/molecules29112587
Pintor-Ibarra LF, Alvarado-Flores JJ, Rutiaga-Quiñones JG, Alcaraz-Vera JV, Ávalos-Rodríguez ML, Moreno-Anguiano O. Chemical and Energetic Characterization of the Wood of Prosopis laevigata: Chemical and Thermogravimetric Methods. Molecules. 2024; 29(11):2587. https://doi.org/10.3390/molecules29112587
Chicago/Turabian StylePintor-Ibarra, Luis Fernando, José Juan Alvarado-Flores, José Guadalupe Rutiaga-Quiñones, Jorge Víctor Alcaraz-Vera, María Liliana Ávalos-Rodríguez, and Oswaldo Moreno-Anguiano. 2024. "Chemical and Energetic Characterization of the Wood of Prosopis laevigata: Chemical and Thermogravimetric Methods" Molecules 29, no. 11: 2587. https://doi.org/10.3390/molecules29112587
APA StylePintor-Ibarra, L. F., Alvarado-Flores, J. J., Rutiaga-Quiñones, J. G., Alcaraz-Vera, J. V., Ávalos-Rodríguez, M. L., & Moreno-Anguiano, O. (2024). Chemical and Energetic Characterization of the Wood of Prosopis laevigata: Chemical and Thermogravimetric Methods. Molecules, 29(11), 2587. https://doi.org/10.3390/molecules29112587