Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Film Preparation
3.2. Ultrafast Spectroscopy
3.3. ASE Measurements with Femtosecond Excitation
3.4. Theory and Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vodyanova, O.S.; Kochergin, B.A.; Usoltsev, S.D.; Marfin, Y.S.; Rumyantsev, E.V.; Aleksakhina, E.L.; Tomilova, I.K. BODIPY Dyes in Bio Environment: Spectral Characteristics and Possibilities for Practical Application. J. Photochem. Photobiol. A Chem. 2018, 350, 44–51. [Google Scholar] [CrossRef]
- Poddar, M.; Misra, R. Recent Advances of BODIPY Based Derivatives for Optoelectronic Applications. Coord. Chem. Rev. 2020, 421, 213462. [Google Scholar] [CrossRef]
- Nehra, K.; Dalal, A.; Hooda, A.; Bhagwan, S.; Saini, R.K.; Mari, B.; Kumar, S.; Singh, D. Lanthanides β-diketonate complexes as energy-efficient emissive materials: A review. J. Mol. Struct. 2022, 1249, 131531. [Google Scholar] [CrossRef]
- Dang, S.; Yu, J.B.; Wang, X.F.; Guo, Z.Y.; Sun, L.N.; Deng, R.P.; Feng, J.; Fan, W.Q.; Zhang, H.J. A Study on the NIR-Luminescence Emitted from Ternary Lanthanide [Er(III), Nd(III) and Yb(III)] Complexes Containing Fluorinated-Ligand and 4,5-Diazafluoren-9-One. J. Photochem. Photobiol. A Chem. 2010, 214, 152–160. [Google Scholar] [CrossRef]
- Baysec, S.; Minotto, A.; Klein, P.; Poddi, S.; Zampetti, A.; Allard, S.; Cacialli, F.; Scherf, U. Tetraphenylethylene-BODIPY Aggregation-Induced Emission Luminogens for near-Infrared Polymer Light-Emitting Diodes. Sci. China Chem. 2018, 61, 932–939. [Google Scholar] [CrossRef]
- Squeo, B.M.; Gregoriou, V.G.; Avgeropoulos, A.; Baysec, S.; Allard, S.; Scherf, U.; Chochos, C.L. BODIPY-Based Polymeric Dyes as Emerging Horizon Materials for Biological Sensing and Organic Electronic Applications. Prog. Polym. Sci. 2017, 71, 26–52. [Google Scholar] [CrossRef]
- Talalaev, F.S.; Frolova, L.A.; Bochkov, A.Y.; Babenko, S.D.; Gutsev, L.G.; Aldoshin, S.M.; Traven, V.F.; Troshin, P.A. Efficient OFET-Based Optical Memory and Photodetectors Using a Novel BODIPY Dye. J. Mater. Chem. C Mater. 2023, 11, 742–749. [Google Scholar] [CrossRef]
- Ho, D.; Ozdemir, R.; Kim, H.; Earmme, T.; Usta, H.; Kim, C. BODIPY-Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thin-Film Transistors. ChemPlusChem 2019, 84, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Squeo, B.M.; Ganzer, L.; Virgili, T.; Pasini, M. BODIPY-Based Molecules, a Platform for Photonic and Solar Cells. Molecules 2020, 26, 153. [Google Scholar] [CrossRef]
- Bañuelos, J. BODIPY Dye, the Most Versatile Fluorophore Ever? Chem. Rec. 2016, 16, 335–348. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef] [PubMed]
- Squeo, B.M.; Pasini, M. BODIPY Platform: A Tunable Tool for Green to NIR OLEDs. Supramol. Chem. 2020, 32, 56–70. [Google Scholar] [CrossRef]
- Tao, J.; Sun, D.; Sun, L.; Li, Z.; Fu, B.; Liu, J.; Zhang, L.; Wang, S.; Fang, Y.; Xu, H. Tuning the Photo-Physical Properties of BODIPY Dyes: Effects of 1, 3, 5, 7- Substitution on Their Optical and Electrochemical Behaviours. Dyes Pigments 2019, 168, 166–174. [Google Scholar] [CrossRef]
- Llano, R.S.; Zaballa, E.A.; Bañuelos, J.; Durán, C.F.A.G.; Vázquez, J.L.B.; Cabrera, E.P.; Arbeloa, I.L.; Llano, R.S.; Zaballa, E.A.; Bañuelos, J.; et al. Tailoring the Photophysical Signatures of BODIPY Dyes: Toward Fluorescence Standards across the Visible Spectral Region. In Photochemistry and Photophysics—Fundamentals to Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Mróz, W.; Squeo, B.M.; Vercelli, B.; Botta, C.; Pasini, M. AZABODIPY Aggregates as a Promising Electroluminescent Material for Sustainable NIR OLED Applications. Mater. Adv. 2023, 4, 1702–1710. [Google Scholar] [CrossRef]
- Porzio, W.; Destri, S.; Pasini, M.; Giovanella, U.; Ragazzi, M.; Scavia, G.; Kotowski, D.; Zotti, G.; Vercelli, B. Synthesis and Characterisation of Fluorenone–Thiophene-Based Donor–Acceptor Oligomers: Role of Moiety Sequence upon Packing and Electronic Properties. New J. Chem. 2010, 34, 1961–1973. [Google Scholar] [CrossRef]
- Rihn, S.; Retailleau, P.; Bugsaliewicz, N.; De Nicola, A.; Ziessel, R. Versatile Synthetic Methods for the Engineering of Thiophene-Substituted Bodipy Dyes. Tetrahedron Lett. 2009, 50, 7008–7013. [Google Scholar] [CrossRef]
- Liao, J.; Zhao, H.; Xu, Y.; Cai, Z.; Peng, Z.; Zhang, W.; Zhou, W.; Li, B.; Zong, Q.; Yang, X. Novel D–A–D Type Dyes Based on BODIPY Platform for Solution Processed Organic Solar Cells. Dyes Pigments 2016, 128, 131–140. [Google Scholar] [CrossRef]
- Zampetti, A.; Minotto, A.; Squeo, B.M.; Gregoriou, V.G.; Allard, S.; Scherf, U.; Chochos, C.L.; Cacialli, F. Highly Efficient Solid-State Near-Infrared Organic Light-Emitting Diodes Incorporating A-D-A Dyes Based on α,β-Unsubstituted “BODIPY” Moieties. Sci. Rep. 2017, 7, 1611. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Pandey, U.K.; Athresh, E.U. Regioisomeric Donor–Acceptor–Donor Triads Based on Benzodithiophene and BODIPY with Distinct Optical Properties and Mobilities. RSC Adv. 2016, 6, 73645–73649. [Google Scholar] [CrossRef]
- Leushina, E.A.; Usol’Tsev, I.A.; Bezzubov, S.I.; Moiseeva, A.A.; Terenina, M.V.; Anisimov, A.V.; Taydakov, I.V.; Khoroshutin, A.V. BODIPY Dyes with Thienyl- and Dithienylthio-Substituents—Synthesis, Redox and Fluorescent Properties. Dalton Trans. 2017, 46, 17093–17100. [Google Scholar] [CrossRef]
- Ji, S.; Ge, J.; Escudero, D.; Wang, Z.; Zhao, J.; Jacquemin, D. Molecular Structure-Intersystem Crossing Relationship of Heavy-Atom-Free Bodipy Triplet Photosensitizers. J. Org. Chem. 2015, 80, 5958–5963. [Google Scholar] [CrossRef] [PubMed]
- Ngoy, B.P.; May, A.K.; Mack, J.; Nyokong, T. Optical Limiting and Femtosecond Pump-Probe Transient Absorbance Properties of a 3,5-DistyrylBODIPY Dye. Front. Chem. 2019, 7, 490535. [Google Scholar] [CrossRef]
- Vu, T.T.; Dvorko, M.; Schmidt, E.Y.; Audibert, J.F.; Retailleau, P.; Trofimov, B.A.; Pansu, R.B.; Clavier, G.; Méallet-Renault, R. Understanding the Spectroscopic Properties and Aggregation Process of a New Emitting Boron Dipyrromethene (BODIPY). J. Phys. Chem. C 2013, 117, 5373–5385. [Google Scholar] [CrossRef]
- Virgili, T.; Ganzer, L.; Botta, C.; Squeo, B.M.; Pasini, M. Asymmetric AZA-BODIPY with Optical Gain in the Near-Infrared Region. Molecules 2022, 27, 4538. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.R.; Mobin, S.M.; Ravikanth, M. Boron–Dipyrromethene Based Specific Chemodosimeter for Fluoride Ion. Tetrahedron 2010, 66, 1728–1734. [Google Scholar] [CrossRef]
- Debnath, S.; Singh, S.; Bedi, A.; Krishnamoorthy, K.; Zade, S.S. Synthesis, Optoelectronic, and Transistor Properties of BODIPY- and Cyclopenta[c]Thiophene-Containing π-Conjugated Copolymers. J. Phys. Chem. C 2015, 119, 15859–15867. [Google Scholar] [CrossRef]
- Žvirblis, R.; Maleckaitė, K.; Dodonova-Vaitkūnienė, J.; Jurgutis, D.; Žilėnaitė, R.; Karabanovas, V.; Tumkevičius, S.; Vyšniauskas, A. A Red-Emitting Thiophene-Modified BODIPY Probe for Fluorescence Lifetime-Based Polarity Imaging of Lipid Droplets in Living Cells. J. Mater. Chem. B 2023, 11, 3919–3928. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Kitagawa, D.; Kobatake, S. Solid Emission Color Tuning of Polymers Consisting of BODIPY and Styrene in Various Ratios. Dyes Pigments 2019, 161, 341–346. [Google Scholar] [CrossRef]
- Okada, D.; Nakamura, T.; Braam, D.; Dao, T.D.; Ishii, S.; Nagao, T.; Lorke, A.; Nabeshima, T.; Yamamoto, Y. Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade. ACS Nano 2016, 10, 7058–7063. [Google Scholar] [CrossRef]
- Telegin, F.Y.; Marfin, Y.S. New Insights into Quantifying the Solvatochromism of BODIPY Based Fluorescent Probes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 255, 119683. [Google Scholar] [CrossRef]
- Mróz, M.M.; Perissinotto, S.; Virgili, T.; Gigli, G.; Salerno, M.; Frampton, M.J.; Sforazzini, G.; Anderson, H.L.; Lanzani, G. Laser Action from a Sugar-Threaded Polyrotaxane. Appl. Phys. Lett. 2009, 95, 31108. [Google Scholar] [CrossRef]
- Bolis, S.; Pasini, M.; Virgili, T. A Core Copolymer Approach to Improve the Gain Properties of a Red-Emitting Molecule. Chem. Commun. 2013, 49, 11761–11763. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.; Saitta, A.M.; Gebauer, R.; Baroni, S. Efficient Approach to Time-Dependent Density-Functional Perturbation Theory for Optical Spectroscopy. Phys. Rev. Lett. 2006, 96, 113001. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Hamann, D.R. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 085117. [Google Scholar] [CrossRef]
- van Setten, M.J.; Giantomassi, M.; Bousquet, E.; Verstraete, M.J.; Hamann, D.R.; Gonze, X.; Rignanese, G.M. The PseudoDojo: Training and Grading a 85 Element Optimized Norm-Conserving Pseudopotential Table. Comput. Phys. Commun. 2018, 226, 39–54. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Malcioǧlu, O.B.; Gebauer, R.; Rocca, D.; Baroni, S. TurboTDDFT—A Code for the Simulation of Molecular Spectra Using the Liouville–Lanczos Approach to Time-Dependent Density-Functional Perturbation Theory. Comput. Phys. Commun. 2011, 182, 1744–1754. [Google Scholar] [CrossRef]
- Ge, X.; Binnie, S.J.; Rocca, D.; Gebauer, R.; Baroni, S. TurboTDDFT 2.0—Hybrid Functionals and New Algorithms within Time-Dependent Density-Functional Perturbation Theory. Comput. Phys. Commun. 2014, 185, 2080–2089. [Google Scholar] [CrossRef]
Peak | Wavelength | Transitions |
---|---|---|
1 | 554 nm | H→L (90%), H-5→L (5%) |
2 | 406 nm | H-1→L (70%), H→L + 2 (16%) |
3 | 331 nm | H-7→L (65%), H-6→L (20%), H-8→L (4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Virgili, T.; Ganzer, L.; Squeo, B.M.; Calzolari, A.; Pasini, M. Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule. Molecules 2024, 29, 2625. https://doi.org/10.3390/molecules29112625
Virgili T, Ganzer L, Squeo BM, Calzolari A, Pasini M. Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule. Molecules. 2024; 29(11):2625. https://doi.org/10.3390/molecules29112625
Chicago/Turabian StyleVirgili, Tersilla, Lucia Ganzer, Benedetta Maria Squeo, Arrigo Calzolari, and Mariacecilia Pasini. 2024. "Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule" Molecules 29, no. 11: 2625. https://doi.org/10.3390/molecules29112625
APA StyleVirgili, T., Ganzer, L., Squeo, B. M., Calzolari, A., & Pasini, M. (2024). Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule. Molecules, 29(11), 2625. https://doi.org/10.3390/molecules29112625