Natural Products with Potential Effects on Hemorrhoids: A Review
Abstract
:1. Introduction
2. Etiology, Classification, and Mechanisms of Natural Products for Hemorrhoids
2.1. Etiology
2.2. Classification and Symptoms
2.3. Main Mechanisms of Natural Products’ Effects on Hemorrhoids
2.3.1. Hemostasis
2.3.2. Anti-Inflammation
AA Pathway
MAPK Pathway
NF-κB Pathway
AP-1 Pathway
2.3.3. Antibacterial
2.3.4. Tissue Regeneration
3. Pharmacological Effects of Bioactive Components from Natural Products
3.1. Polyphenols and Flavonoids
Bioactive Component | Natural Sources | Pharmacological Mechanism | Experimental Species | References |
---|---|---|---|---|
Curcumin | Curcuma longa L. | Inhibition of TNF-α, IL-1β, and IL-6 synthesis and NF-κB activation; promotes tissue repair by participating in tissue remodeling, granulation tissue formation, and collagen deposition processes; inhibits the growth of E. coli; inhibits the production of activated coagulation factor (FXa) and thrombin; has a strong antithrombotic ability. | RAW 264.7 cells/ Mice/E. coli/Review | [29,37,65,66,67] |
Emodin | Rheum officinale | The levels of TNF-α, IL-β, and IL-6 in intestinal tissue were decreased, and COX-2 and mRNA of inflammation expression were inhibited; accelerated wound healing by promoting the synthesis of ECM and growth of granulation tissue; inhibition of E. coli energy metabolism. | Mice/RAW 264.7 cells/E. coli | [68] |
Epigallocatechin gallate | Green tea | In coordination with MSC, it regulates chronic inflammation and promotes skin wound healing; inhibits the expression of CD80, promotes the expression of CD163, and significantly reduces the plasma concentrations of IL-1β, IL-6, IL-8, TNF-α, and MDA; inhibits the growth of E. coli. | Mice/Rats | [58,59,60,61,62] |
Resveratrol | A number of plants | Downregulation of NF-Κb, MAPK, and AP-1 pathway activity; promotes the secretion of EGF, HGF, PDGF, and TGF-β1 growth factors by MSC. | Rats | [69,70,71] |
Genistein | Genista tinctoria L. | Regulates the transforming TGF-β pathway; reduces the level of pro-inflammatory mediators and inhibits the activity of the NF-κB pathway; regulates gut microbiota composition. | Rats/Mice | [72] |
Apigenin | Apium graveolens L and Petroselinum crispum (Mill.) Fuss | Inhibition of DNA gyrase activity inhibits E. coli growth by changing cell membrane permeability; inhibition of COX-2 and iNOS activity and IL-1β and IL-6 synthesis; inhibits the MAPK pathway; promotes platelet aggregation and coagulation pathways. | RAW264.7/E. coli/N/A | [73,74,75] |
Quercetin | Onions, apples, broccoli, and other fruits and vegetables | Inhibits the production of TNF-α, IL-6, and IL-17 and promotes the synthesis of anti-inflammatory cytokine IL-10; effects on the transforming TGF-β pathway; interacts with platelets and promotes platelet coagulation and thrombus formation. | Rats/Review/N/A | [72,75,76] |
Daidzein | Glycine max (Linn.) Merr | Inhibition of bacterial DNA topoisomerase activity and inhibition of bacterial nucleic acid expression; inhibiting the NF-kB pathway and the expression of COX-2 and iNOS; the levels of NO, IL-6, and TNF-α in cells were reduced. | E. coli/RAW 264.7 cells | [73,77] |
Luteolin | Reseda odorata L. | Promotes the synthesis of anti-inflammatory cytokine IL-10 and inhibits the NF-κB and MAPK pathways; disruption of E. coli cell membrane integrity resulted in significant changes in cell morphology; acts on the exogenous coagulation pathway and the endogenous coagulation pathway to promote hemostasis. | Rats/E. coli/N/A | [75,78,79] |
Chrysin | Not mentioned | Inhibition of PL-A2 expression and histamine release; promotes several stages of tissue repair. | Guinea pigs | [80] |
Caffeic acid | Coffee beans | Local vasoconstriction; inhibition of fibrinolytic system; regulates the expression of genes involved in hemostasis and platelet activation; inhibited the activity of COX-2, reduced the synthesis of PGE2, and inhibited the synthesis of IL-8 and IL-1β. | Mice/Humans | [24,81,82] |
Baicalin | Scutellaria baicalensis Georgi | By regulating IKK/IKB/NF-kB pathway, the levels of inflammatory mediators (IL-1β, TNF-α, PGE2, and MDA) in colon tissue were significantly decreased; has a broad-spectrum antibacterial effect. | Rats/Review | [36,83] |
Rutin | Ruta graveolens L. and other plants | Antioxidant activity; reduces the levels of TNF-α, IL-6, COX-2, and IL-1β and inhibits the NF-κB pathway; promotes tissue healing by antioxidation and anti-inflammation. | Rats | [84] |
Isoquercitrin | Sophora japonica L. and other plants | Reduces the expression of pro-inflammatory factors such as IL-6, IL-1β, and TNF-α; promotes the repair of skin injury, which may be related to the regulation of MAPK and JAK2-STAT3 signaling pathways; damages the cell membrane of E. coli and induces apoptosis of E. coli. | Mice/E. coli | [85] |
Tannic acid | GALLA CHINENSIS and other plants | Inhibition of energy metabolism in E. coli; inhibits il-1β-induced expressions of IL-6, TNF-α, NO, and PGE2 in cells. | E. coli/Rats | [86,87] |
3.2. Terpenoids
Bioactive Component | Natural Sources | Pharmacological Mechanism | Experimental Species | References |
---|---|---|---|---|
Total saponins of achyranthes bidens | Achyranthes bidentata Bl. | Reduces the permeability of local capillaries; enhances the secretion of cortical hormones in the adrenal cortex and has obvious anti-inflammatory activity. | Rats | [91] |
Soapnut Saponin | Sapindus mukorossi Saponin. and Sapindus mukurossi Gaertn | The infiltration of inflammatory cells in inflammatory tissues was inhibited, and the levels of TNF-α and IL-6 were significantly reduced; E. coli growth was inhibited at a concentration of 5 mg/mL. | Mice/E. coli | [92,93] |
Paeoniflorin | Paeonia lactiflora Pall. | The levels of iNOS, TNF-α, and IL-1β were down-regulated, and the levels of IL-10 and TGF-β were up-regulated; regulates the conversion of M1 macrophages to M2 macrophages, thereby promoting wound healing. | Mice | [94] |
Ginsenoside CK and Ginsenoside RD | Panax ginseng C. A. Mey. | Inhibits the production of PGE2 and the activation of COX-2; inhibition of E. coli energy metabolism. | Rats/mice/E. coli | [95,96] |
Compound Glycyrrhizin | Glycyrrhiza uralensis Fisch. | The levels of IL-1β and TNF-α were significantly inhibited; inhibits the expression of COX-2 and iNOS and decreases the content of MDA, NO, and PGE2; promotes tissue repair by regulating macrophage responses in the inflammatory microenvironment; E. coli toxin inhibitors. | Mice/E. coli | [88,89,90] |
Astragaloside IV | Astragalus membranaceus (Fisch.) Bunge | Inhibits the production of proinflammatory cytokines, inhibits the activation of NF-κB, and induces the production of anti-inflammatory cytokines; exhibits tissue repair capacity by promoting keratinocyte migration and promoting collagen synthesis. | Review/Rats | [97,98] |
Gentiopicroside | Gentiana lutea L. | Promotes epithelial re-formation, granulation tissue growth, and collagen synthesis; the levels of MDA and IL-1β, TNF-α, IL-6, IL-17, and their related mRNA were significantly inhibited. | Rats | [99,100] |
Asiatic Acid | Centella asiatica (L.) Urb. | Inhibits the release of pro-inflammatory factors (IL-17, IL-17F, IL-6, and TNF-α, etc.) in injured tissues, promotes the proliferation of fibroblasts, promotes the synthesis of EMC and collagen, and inhibits the growth of Staphylococcus aureus, E. coli, and other bacteria; promotes wound healing through multiple pathways. | Review | [101] |
Stevioside | Stevia rebaudiana | Reduces the synthesis of TNF-α, IL-1β, and IL-6 and inhibits NF-κB in vitro, and inhibits NF-κB and MAPK pathway in vivo; in vitro, the growth of E. coli was significantly inhibited. | Mice/E. coli | [102] |
Sodium Aescinate | Aesculus chinensis Bunge | Significantly decreased the level of TNF-α and increased the level of IL-10; it also significantly increased the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); promotes tissue healing through anti-inflammatory and antioxidant effects. | Rats | [103] |
Ginkgolide A | Ginkgo biloba L. | The activity of COX-2 was inhibited, the level of NO was reduced, and the expression of TNF-α, IL-6, and IL-1β was inhibited; effectively inhibits E. coli and other bacteria. | Mouse peritoneal macrophages/RAW264.7 cells/E. coli, etc./differentiated THP-1 cells | [104,105] |
Ginkgolide B | The secretion levels of IL-1β, IL-6, and TNF-α were significantly decreased, the expression level of NO was decreased, and the activities of iNOS and COX-2 were inhibited; effectively inhibiting E. coli and other bacteria. | The murine microglial cell line BV2/Staphylococcus aureus/E. coli/Klebsiella pneumonia, etc. | [105,106] | |
Andrographolide | Andrographis paniculata (Burm.f.) Wall. ex Nees in Wallich | Inhibition of TRLs, such as inhibition of TLR3 or TLR4 agonist-induced NF-κB activation and COX-2 expression; in vitro antibacterial experiments showed that it could inhibit the growth of perianal pathogenic bacteria. | RAW264.7 cells/Staphylococcus aureus/E. coli/Klebsiella pneumonia, etc. | [107,108] |
Menthol | Mentha | At different stages of wound healing, it suppresses the levels of TNF-α and IL-6 by reducing the mRNA expression of inflammatory factors and increases the expression of IL-10, reduces MPO activity, stimulates cell proliferation, and promotes granulation tissue formation; inhibits the formation of E. coli pili and reduces the virulence of E. coli. | Rats/E. coli, etc. | [109,110,111] |
3.3. Polysaccharides
Bioactive Component | Natural Sources | Pharmacological Mechanism | Experimental Species | References |
---|---|---|---|---|
Bletilla striata polysaccharide | Bletilla striata (Thunb.) Reichb.f. | Promotes blood coagulation by promoting platelet aggregation and enhancing the function of coagulation system; increased secretion of TGF-β1 promotes tissue healing. | Review/Rats | [115,116] |
Astragalus Polysacharin | Scutellaria baicalensis Georgi | The content levels of TNF-α and IL-1β were reduced; inhibits the growth of E. coli and Staphylococcus aureus. | Rats/E. coli/Staphylococcus aureus | [117,118] |
Acanthopanax polysaccharide | Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. | Decreases the levels of IL-1β and TNF-α; has a protective effect on intestinal mucosal injury by up-regulating the mRNA expression of epidermal growth factor and its receptor gene. | Mice | [119,120] |
Chitosan | Biological crustacean | Inhibition of bacteria by charge action, metal chelation, gene binding; providing suitable environment for beneficial microorganisms to promote tissue healing; promoting platelet aggregation and promoting red blood cell aggregation; Anti-inflammatory properties. | Rats/Humans | [112,113] |
Lycium barbarum polysaccharide | Lycium chinense Miller | Inhibition of E. coli growth; inhibition of M1-type macrophage differentiation and production of IL-1β and TNF-α | E. coli/RAW 264.7 cells | [118,121] |
Momordica charantia polysaccharide | Momordica charantia L. | Inhibition of E. coli growth; inhibition of the NF-κB signaling pathway; it also up-regulates the level of IL-10 and decreases the levels of TNF-α, IL-1β, and IL-6. | E. coli/Mice | [122,123] |
Ulvan Polysaccharides | Ulva lactuca Linnaeus, 1753 | Inhibits the activity of COX-2, iNOS, and the MAPK pathway; it regulates the NF-κB pathway and inhibits the synthesis of interleukin, tumor necrosis factor, and NO; has hemostatic biological activity; changes the permeability of E. coli cell walls and inhibits the reproduction of E. coli by binding to DNA. | Review/E. coli | [124,125] |
Lentinan | Lentinula edode | Inhibits the expression of TNF-α, IL-1β, and IL-6; regulate the composition of intestinal flora and improve intestinal health. | Weaned piglets | [126] |
Ganoderma lucidum Polysaccharide | Ganoderma lucidum (Curtis) P. Karst. | Inhibits macrophage infiltration; decreases the expression of IL-1β, iNOS, and COX-2 by inhibiting the activation of the MAPK pathway; regulates the proportion and function of intestinal microbiota and protects the intestinal mucosa. | Mice/RAW 264.7 cells | [127] |
Fucoidan, FPS | Brown algae and echinoderms | Stimulates the production of GFs, promotes cell proliferation and differentiation, and enhances collagen synthesis; inhibits the production of inflammatory factors and inhibits the activation of pro-inflammatory signaling pathways; has a heparin-like effect; intravenous administration of 5 mg/kg in mice had an antithrombotic effect without increasing clotting time (may have effects on thrombotic hemorrhoids). | Humans/Mice | [128,129] |
3.4. Other Types
Bioactive Component | Categories | Natural Sources | Pharmacological Mechanism | Experimental Species | References |
---|---|---|---|---|---|
Galectin-1 | Peptides and proteins | Vertebrate animals | Regulation of the Smad3/NOX4 signaling pathway in myofibroblasts induces myofibroblast activation, migration, and proliferation; promotes ECM synthesis through the PI3K/Akt pathway; reduces proinflammatory cytokine levels in plasma and mucosal tissues. | Rats | [130,131,132] |
Chlorogenic acid | Phenylpropionic acids | Solanum melongena L. | Significantly reduces the level of TNF-α, VEGF, and capillary permeability in the mucosa; may have hemorrhoid improvement effect. | Rats | [56] |
Tetrandrine | Alkaloids | Stephania tetrandra S. Moore | Increases cAMP concentration in inflammatory cells and inhibits PL-A2 activation; regulation of the PI3K/AKT signaling pathway promotes tissue generation, by inhibiting apoptosis, and reduces inflammatory response. | Rats | [133,134] |
Tanshinone IIA | phenanthraquinones | Salvia miltiorrhiza Bunge | Significantly inhibits the levels of TNF-α, IL-1β, and IL-6 and inhibits the activation of NF-κB; inhibits platelet activation and thrombosis by regulating Akt/ERK and cSrc/RhoA signaling pathways (may have effects on thrombotic hemorrhoids.) | Humans/Mice | [135,136] |
Allicin | organic sulfur compound | Allium sativum L. | Inhibits the expression of P38 and JNK inflammatory pathways and NF-κB nuclear factor; through multiple inhibitory effects, it inhibits sulfhydryl-dependent enzyme systems of various perianal pathogens including E. coli. | Rats/E. coli, etc. | [137,138] |
Psoralen | Coumarins | Ficus carica L. and Psoralea corylifolia Linn. | Hemostatic effect; inhibits the TLR4/NF-κB signaling pathway, thereby inhibiting the expression of TNF-α and ILs. | Review/ Human periodontal ligament cells | [24,139] |
Esculin | Coumarins | Fraxinus chinensis Roxb. | The activity of the TLR/NF-κB pathway was inhibited, and the expression of TNF-α, ILs, COX-2, iNOS and other inflammatory mediators was reduced; the MIC was 20 mg·mL−1 for Staphylococcus aureus and 10 mg·mL−1 for E. coli. | Mice/Staphylococcus aureus/E. coli | [140,141] |
Esculetin | Coumarins | Inhibition of the expression of E. coli curli genes and motility genes reduces the production of pili, and inhibition of the expression of the Shiga-like toxin gene stx2 reduces the virulence of E. coli; inhibits the production of proinflammatory cytokines, inflammatory mediators, and inhibits the NF-κB pathway. | E. coli/RAW264.7 cells/Rats | [142] | |
Berberine | Alkaloids | Coptis chinensis Franch. | Inhibits the effect of E. coli toxin and can inhibit Staphylococcus aureus in vitro; reduces intestinal injury induced by LPS by inhibiting the NF-κB and MAPK pathways and inhibiting COX-2 activity. | E. coli/Staphylococcus aureus/Review | [143,144] |
Matrine | Alkaloids | Sophora flavescens Aiton | By inhibiting the NF-κB pathway, it inhibits the synthesis of pro-inflammatory factors TNF-α and IL-1β and inhibits the expression of COX-2 and iNOS, thereby reducing capillary vascular permeability and pain; inhibits the growth of bacteria such as Staphylococcus aureus and E. coli; the inhibitory mechanism may be the inhibition of biofilm formation. | Mice/Staphylococcus aureus/E. coli | [145] |
4. Clinical Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamana, T. Japanese Practice Guidelines for Anal Disorders II. Anal fistula. J. Anus Rectum Colon 2018, 2, 103–109. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, H.-X.; Sui, N. Common anorectal diseases among urban residents in China. Chin. J. Public. Health 2016, 32, 1293–1296. [Google Scholar]
- Yang, J.Y.; Peery, A.F.; Lund, J.L.; Pate, V.; Sandler, R.S. Burden and Cost of Outpatient Hemorrhoids in the United States Employer-Insured Population, 2014. Am. J. Gastroenterol. 2019, 114, 798–803. [Google Scholar] [CrossRef]
- Yamana, T. Japanese Practice Guidelines for Anal Disorders I. Hemorrhoids. J. Anus Rectum Colon 2017, 1, 89–99. [Google Scholar] [CrossRef]
- Lohsiriwat, V. Hemorrhoids: From basic pathophysiology to clinical management. World J. Gastroenterol. 2012, 18, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Sandler, R.S.; Peery, A.F. Rethinking What We Know About Hemorrhoids. Clin. Gastroenterol. Hepatol. 2019, 17, 8–15. [Google Scholar] [CrossRef]
- van Tol, R.R.; Kleijnen, J.; Watson, A.J.M.; Jongen, J.; Altomare, D.F.; Qvist, N.; Higuero, T.; Muris, J.W.M.; Breukink, S.O. European Society of ColoProctology: Guideline for haemorrhoidal disease. Color. Dis. 2020, 22, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.R.; Lee-Kong, S.A.; Migaly, J.; Feingold, D.L.; Steele, S.R. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Hemorrhoids. Dis. Colon Rectum 2018, 61, 284–292. [Google Scholar] [CrossRef]
- Dehdari, S.; Hajimehdipoor, H.; Esmaeili, S.; Choopani, R.; Mortazavi, S.A. Traditional and modern aspects of hemorrhoid treatment in Iran: A review. J. Integr. Med. 2018, 16, 90–98. [Google Scholar] [CrossRef]
- Xilin, T.; Yu, L.; Fu, H. Schenbaatar. Research progress of clinical treatment of hemorrhoids. J. Baotou Med. Coll. 2022, 38, 85–87+96. (In Chinese) [Google Scholar]
- Gurel, E.; Ustunova, S.; Ergin, B.; Tan, N.; Caner, M.; Tortum, O.; Demirci-Tansel, C. Herbal haemorrhoidal cream for haemorrhoids. Chin. J. Physiol. 2013, 56, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Cirocco, W.C. Reprint of: Why are hemorrhoids symptomatic? the pathophysiology and etiology of hemorrhoids. Semin. Colon Rectal Surg. 2018, 29, 160–166. [Google Scholar] [CrossRef]
- Ekici, U.; Kartal, A.; Ferhatoglu, M.F. Association Between Hemorrhoids and Lower Extremity Chronic Venous Insufficiency. Cureus 2019, 11, e4502. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sheng, L.; Dai, G.; Shan, X.; Zhu, C.; Li, C. Expression of il-17, il-6 and tnf-α in patients with hemorrhoids. Pharm. Clin. Res. 2016, 24, 201–204. [Google Scholar]
- Li, Y.; Xia, S.; Jiang, X.; Feng, C.; Gong, S.; Ma, J.; Fang, Z.; Yin, J.; Yin, Y. Gut Microbiota and Diarrhea: An Updated Review. Front. Cell. Infect. Microbiol. 2021, 11, 625210. [Google Scholar] [CrossRef] [PubMed]
- Sahnan, K.; Adegbola, S.O.; Tozer, P.J.; Watfah, J.; Phillips, R.K. Perianal abscess. BMJ 2017, 356, j475. [Google Scholar] [CrossRef] [PubMed]
- Luo Youpin, Z.W.; Liu, N. Analysis of the relational risk factors and the clinic character of hemorrhoids. Second People’s Hosp. Yibin City 2010, 14, 777–779. (In Chinese) [Google Scholar]
- Vazquez, J.C. Constipation, haemorrhoids, and heartburn in pregnancy. BMJ Clin. Evid. 2010, 2010, 1411. [Google Scholar]
- Altomare, D.F.; Giannini, I. Pharmacological treatment of hemorrhoids: A narrative review. Expert Opin. Pharmacother. 2013, 14, 2343–2349. [Google Scholar] [CrossRef]
- Rivadeneira, D.E.; Steele, S.R.; Ternent, C.; Chalasani, S.; Buie, W.D.; Rafferty, J.L. Practice parameters for the management of hemorrhoids (revised 2010). Dis. Colon Rectum 2011, 54, 1059–1064. [Google Scholar] [CrossRef]
- Haas, P.A.; Haas, G.P.; Schmaltz, S.; Fox, T.A., Jr. The prevalence of hemorrhoids. Dis. Colon Rectum 1983, 26, 435–439. [Google Scholar] [CrossRef]
- China Society of Integrated Traditional Chinese and Western Medicine. Guidelines for the diagnosis and treatment of hemorrhoids in China. J. Color. Anal. Surg. 2020, 26, 519–533. (In Chinese) [Google Scholar]
- Huang, H.; Gu, Y.; Ji, L.; Li, Y.; Xu, S.; Guo, T.; Xu, M. A new mixed surgical treatment for grades iii and iv hemorrhoids: Modified selective hemorrhoidectomy combined with complete anal epithelial retention. Arq. Bras. Cir. Dig. 2021, 34, e1594. [Google Scholar] [CrossRef]
- He, X.; Fan, P.; Li, M.; Zhang, Q.; Jia, Z.; Zhang, R. Advances in study of traditional Chinese hemostyptic drugs and related mechanisms. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 217–221. [Google Scholar]
- Mu, K.; Liu, Y.; Liu, G.; Ran, F.; Zhou, L.; Wu, Y.; Peng, L.; Shao, M.; Li, C.; Zhang, Y. A review of hemostatic chemical components and their mechanisms in traditional Chinese medicine and ethnic medicine. J. Ethnopharmacol. 2023, 307, 116200. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Gao, Z.; Mu, J.; Lian, H.; Meng, Z. Gelatin/calcium chloride electrospun nanofibers for rapid hemostasis. Biomater. Sci. 2023, 11, 2158–2166. [Google Scholar] [CrossRef]
- Lohsiriwat, V. Approach to hemorrhoids. Curr. Gastroenterol. Rep. 2013, 15, 332. [Google Scholar] [CrossRef]
- Serra, R.; Gallelli, L.; Grande, R.; Amato, B.; De Caridi, G.; Sammarco, G.; Ferrari, F.; Butrico, L.; Gallo, G.; Rizzuto, A.; et al. Hemorrhoids and matrix metalloproteinases: A multicenter study on the predictive role of biomarkers. Surgery 2016, 159, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des. Dev. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Zou Tangbin, L.J. Advance in anti-inflammation effect of traditional Chinese medicine and its mechanism. J. Tradit. Chin. Vet. 2006, 25, 23–25. (In Chinese) [Google Scholar]
- Romaguera, V.P.; Sancho-Muriel, J.; Alvarez-Sarrdo, E.; Millan, M.; Garcia-Granero, A.; Frasson, M. Postoperative Complications in Hemorrhoidal Disease and Special Conditions. Rev. Recent Clin. Trials 2021, 16, 67–74. [Google Scholar] [CrossRef]
- Bender, F.; Eckerth, L.; Fritzenwanker, M.; Liese, J.; Askevold, I.; Imirzalioglu, C.; Padberg, W.; Hecker, A.; Reichert, M. Drug resistant bacteria in perianal abscesses are frequent and relevant. Sci. Rep. 2022, 12, 14866. [Google Scholar] [CrossRef]
- Liu, C.K.; Liu, C.P.; Leung, C.H.; Sun, F.J. Clinical and microbiological analysis of adult perianal abscess. J. Microbiol. Immunol. Infect. 2011, 44, 204–208. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Yun, D.G.; Lee, D.G. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 2016, 100, 5505–5514. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Wan, X.; Chen, Y.; Geng, F.; Sheng, Y.; Wang, F.; Guo, J. Narrative review of the mechanism of natural products and scar formation in wound repair. Ann. Transl. Med. 2022, 10, 236. [Google Scholar] [CrossRef]
- Xue-ping, C.; Jiang-lin, Z.; Fu-liang, H. Effect and Mechanism of Propolis on Promoting Wound (Burn) Healing: A Review. Nat. Prod. Res. Dev. 2015, 27, 1991. [Google Scholar]
- Niu, D. Effect of Ma Yinglong Shexiang hemorrhoids cream combined with pearl powder on the pain and complications of severe pressure ulcer patients. Medicine 2021, 100, e26767. [Google Scholar] [CrossRef]
- Shi, S.Y.; Zhou, Q.; He, Z.Q.; Shen, Z.F.; Zhang, W.X.; Zhang, D.; Xu, C.B.; Geng, J.; Wu, B.S.; Chen, Y.G. Traditional Chinese medicine (Liang-Xue-Di-Huang Decoction) for hemorrhoid hemorrhage: Study Protocol Clinical Trial (SPIRIT Compliant). Medicine 2020, 99, e19720. [Google Scholar] [CrossRef]
- Zagriadskiĭ, E.A.; Bogomazov, A.M.; Golovko, E.B. Conservative Treatment of Hemorrhoids: Results of an Observational Multicenter Study. Adv. Ther. 2018, 35, 1979–1992. [Google Scholar] [CrossRef]
- Mehdi, Z.; Fatemeh, P.; Roja, R.; Fatemeh, H.; Hamid Reza, S.; Jafar, N.; Mohammad Hosein, F. Efficacy and safety of Hemoheal cream in patients with hemorrhoids: A randomized double-blind placebo controlled clinical trial. J. Tradit. Chin. Med. 2021, 41, 301–307. [Google Scholar]
- Liu, M.; Li, Z.; Feng, M.; Tian, J.; Cui, Q. Effects of fig leaf extract on animal models of hemorrhoids and inflammation. China J. Tradit. Chin. Med. Pharm. 2021, 36, 1667–1670. (In Chinese) [Google Scholar]
- Feng, X. 25 Cases of Hemorrhoids Treated with Fig Leaves. J. Extern. Ther. Tradit. Chin. Med. 2003, 12, 7. (In Chinese) [Google Scholar]
- Haiyan, W.; Bing-bo, L.; Ai-xin, G.; Hai-e, G.; Xianlu, Y. Clinical observation of fig leaf fumigation combined with acupuncture in 45 patients with hemorrhoids. Chin. J. Basic Med. Tradit. Chin. Med. 2013, 2013, 1181–1183. [Google Scholar]
- Nan, J.; Guo, P.; Xiao, Z. Treatment of 52 cases of hemorrhoids by acupuncture combined with fumigation of FIG leaves. Henan Tradit. Chin. Med. 2011, 31, 182–183. (In Chinese) [Google Scholar]
- Zhao Juntai, Z.C. FIG leaves outside treatment of hemorrhoids. Shandong J. Tradit. Chin. Med. 2005, 07, 425. (In Chinese) [Google Scholar]
- Panthong, A.; Supraditaporn, W.; Kanjanapothi, D.; Taesotikul, T.; Reutrakul, V. Analgesic, anti-inflammatory and venotonic effects of Cissus quadrangularis Linn. J. Ethnopharmacol. 2007, 110, 264–270. [Google Scholar] [CrossRef]
- Apaydin Yildirim, B.; Aydin, T.; Kordali, S.; Yildirim, S.; Cakir, A.; Yildirim, F. Antihemorrhoidal activity of organic acids of Capsella bursa-pastoris on croton oil-induced hemorrhoid in rats. J. Food Biochem. 2020, 44, e13343. [Google Scholar] [CrossRef]
- Dey, Y.N.; Wanjari, M.M.; Kumar, D.; Lomash, V.; Jadhav, A.D. Curative effect of Amorphophallus paeoniifolius tuber on experimental hemorrhoids in rats. J. Ethnopharmacol. 2016, 192, 183–191. [Google Scholar] [CrossRef]
- Corsale, I.; Carrieri, P.; Martellucci, J.; Piccolomini, A.; Verre, L.; Rigutini, M.; Panicucci, S. Flavonoid mixture (diosmin, troxerutin, rutin, hesperidin, quercetin) in the treatment of I-III degree hemorroidal disease: A double-blind multicenter prospective comparative study. Int. J. Color. Dis. 2018, 33, 1595–1600. [Google Scholar] [CrossRef]
- Dönmez, C.; Yalçın, F.N.; Boyacıoğlu, Ö.; Korkusuz, P.; Akkol, E.K.; Nemutlu, E.; Balaban, Y.H.; Çalışkan, U.K. From nutrition to medicine: Assessing hemorrhoid healing activity of Solanum melongena L. via in vivo experimental models and its major chemicals. J. Ethnopharmacol. 2020, 261, 113143. [Google Scholar] [CrossRef]
- Porwal, A.; Kundu, G.C.; Bhagwat, G.; Butti, R. Polyherbal formulation Anoac-H suppresses the expression of RANTES and VEGF for the management of bleeding hemorrhoids and fistula. Mol. Med. Rep. 2021, 24, 736. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Shi, T.; Yu, H.; Bi, J.; Chen, G. Epigallocatechin-3-gallate augments therapeutic effects of mesenchymal stem cells in skin wound healing. Clin. Exp. Pharmacol. Physiol. 2016, 43, 1115–1124. [Google Scholar] [CrossRef]
- Chen, S.A.; Chen, H.M.; Yao, Y.D.; Hung, C.F.; Tu, C.S.; Liang, Y.J. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur. J. Pharm. Sci. 2012, 47, 875–883. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, J.H.; Li, T.S.; Wang, S.H.; Yao, C.H.; Chung, W.Y.; Ko, T.H. Dressing with epigallocatechin gallate nanoparticles for wound regeneration. Wound Repair. Regen. 2016, 24, 287–301. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, S.; Li, T.; Li, N.; Han, D.; Zhang, B.; Xu, Z.Z.; Zhang, S.; Pang, J.; Wang, S.; et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 2021, 9, 184. [Google Scholar] [CrossRef]
- Azambuja, J.H.; Mancuso, R.I.; Via, F.I.D.; Torello, C.O.; Saad, S.T.O. Protective effect of green tea and epigallocatechin-3-gallate in a LPS-induced systemic inflammation model. J. Nutr. Biochem. 2022, 101, 108920. [Google Scholar] [CrossRef]
- Nakasone, N.; Higa, N.; Toma, C.; Ogura, Y.; Suzuki, T.; Yamashiro, T. Epigallocatechin gallate inhibits the type III secretion system of Gram-negative enteropathogenic bacteria under model conditions. FEMS Microbiol. Lett. 2017, 364, fnx111. [Google Scholar] [CrossRef]
- Picciariello, A.; Rinaldi, M.; Grossi, U.; Verre, L.; De Fazio, M.; Dezi, A.; Tomasicchio, G.; Altomare, D.F.; Gallo, G. Management and Treatment of External Hemorrhoidal Thrombosis. Front. Surg. 2022, 9, 898850. [Google Scholar] [CrossRef]
- Tan, R.Z.; Liu, J.; Zhang, Y.Y.; Wang, H.L.; Li, J.C.; Liu, Y.H.; Zhong, X.; Zhang, Y.W.; Yan, Y.; Lan, H.Y.; et al. Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine 2019, 52, 284–294. [Google Scholar] [CrossRef]
- Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci. 2014, 116, 1–7. [Google Scholar] [CrossRef]
- Keihanian, F.; Saeidinia, A.; Bagheri, R.K.; Johnston, T.P.; Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell. Physiol. 2018, 233, 4497–4511. [Google Scholar] [CrossRef]
- Li, X.; Shan, C.; Wu, Z.; Yu, H.; Yang, A.; Tan, B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway. Inflamm. Res. 2020, 69, 365–373. [Google Scholar] [CrossRef]
- Gowd, V.; Kanika; Jori, C.; Chaudhary, A.A.; Rudayni, H.A.; Rashid, S.; Khan, R. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J. Nutr. Biochem. 2022, 109, 109101. [Google Scholar] [CrossRef]
- Gokce, E.H.; Tuncay Tanrıverdi, S.; Eroglu, I.; Tsapis, N.; Gokce, G.; Tekmen, I.; Fattal, E.; Ozer, O. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur. J. Pharm. Biopharm. 2017, 119, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Prakoeswa, C.R.S.; Rindiastuti, Y.; Wirohadidjojo, Y.W.; Komaratih, E.; Nurwasis; Dinaryati, A.; Lestari, N.M.I.; Rantam, F.A. Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine 2021, 90, 153636. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z.; Mei, X.; Xu, Y.; Feng, Z. Advances in antibacterial action and mechanism of flavonoids. Jiangsu Agric. Sci. 2023, 51, 1–8. (In Chinese) [Google Scholar]
- Park, C.H.; Min, S.Y.; Yu, H.W.; Kim, K.; Kim, S.; Lee, H.J.; Kim, J.H.; Park, Y.J. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int. J. Mol. Sci. 2020, 21, 4620. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, J.; Yang, Y.; Yang, Y.; Kang, X.; Ye, Y.; Li, X.; Wu, Y.; Xiao, J.; Li, L.; et al. Research on the hemostasis and coagulation effects of Callicarpa nudiflora based on the spectrum-effect relationship. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Piao, M.; Song, Y. Dietary Quercetin Increases Colonic Microbial Diversity and Attenuates Colitis Severity in Citrobacter rodentium-Infected Mice. Front. Microbiol. 2019, 10, 1092. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, X.; Cheang, W.S. Isoflavones daidzin and daidzein inhibit lipopolysaccharide-induced inflammation in RAW264.7 macrophages. Chin. Med. 2022, 17, 95. [Google Scholar] [CrossRef]
- Li, B.; Du, P.; Du, Y.; Zhao, D.; Cai, Y.; Yang, Q.; Guo, Z. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci. 2021, 269, 119008. [Google Scholar] [CrossRef]
- Qian, W.; Fu, Y.; Liu, M.; Zhang, J.; Wang, W.; Li, J.; Zeng, Q.; Wang, T.; Li, Y. Mechanisms of Action of Luteolin Against Single- and Dual-Species of Escherichia coli and Enterobacter cloacae and Its Antibiofilm Activities. Appl. Biochem. Biotechnol. 2021, 193, 1397–1414. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.M.; Kim, C.J. Flavones derived from nature attenuate the immediate and late-phase asthmatic responses to aerosolized-ovalbumin exposure in conscious guinea pigs. Inflamm. Res. 2014, 63, 53–60. [Google Scholar] [CrossRef]
- Deng, J.; Xiong, L.; Ding, Y.; Cai, Y.; Chen, Z.; Fan, F.; Luo, S.; Hu, Y. Platelet RNA sequencing reveals profile of caffeic acid affecting hemostasis in mice. Res. Pract. Thromb. Haemost. 2024, 8, 102349. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Zieliński, H.; Laparra-Llopis, J.M.; Szawara-Nowak, D.; Honke, J.; Giménez-Bastida, J.A. Caffeic Acid Modulates Processes Associated with Intestinal Inflammation. Nutrients 2021, 13, 554. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Cheng, J.; Zhu, S.; Zhao, J.; Ye, Q.; Xu, Y.; Dong, H.; Zheng, X. Regulating effect of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis. Int. Immunopharmacol. 2019, 73, 193–200. [Google Scholar] [CrossRef]
- Muvhulawa, N.; Dludla, P.V.; Ziqubu, K.; Mthembu, S.X.H.; Mthiyane, F.; Nkambule, B.B.; Mazibuko-Mbeje, S.E. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol. Res. 2022, 178, 106163. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Y.; Yao, Y.; Ru, G.; Lan, C.; Li, L.; Huang, T. Protective effect of isoquercitrin on UVB-induced injury in HaCaT cells and mice skin through anti-inflammatory, antioxidant, and regulation of MAPK and JAK2-STAT3 pathways. Photochem. Photobiol. 2024. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Zhang, X.R.; Li, T.N.; Zeng, Y.J.; Wang, J.; Huang, Q.W. Galla Chinensis, a Traditional Chinese Medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology. J. Ethnopharmacol. 2021, 278, 114247. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.R.; Jeong, Y.J.; Lee, J.W.; Jhun, J.; Na, H.S.; Cho, K.H.; Kim, S.J.; Cho, M.L.; Heo, T.H. Tannic acid, an IL-1β-direct binding compound, ameliorates IL-1β-induced inflammation and cartilage degradation by hindering IL-1β-IL-1R1 interaction. PLoS ONE 2023, 18, e0281834. [Google Scholar] [CrossRef]
- Ni, Y.F.; Kuai, J.K.; Lu, Z.F.; Yang, G.D.; Fu, H.Y.; Wang, J.; Tian, F.; Yan, X.L.; Zhao, Y.C.; Wang, Y.J.; et al. Glycyrrhizin treatment is associated with attenuation of lipopolysaccharide-induced acute lung injury by inhibiting cyclooxygenase-2 and inducible nitric oxide synthase expression. J. Surg. Res. 2011, 165, e29–e35. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zheng, Y.; Jin, J.; Wu, X.; Xu, K.; Dai, M.; Niu, Q.; Zheng, H.; He, X.; Shen, J. Immunoregulation in Diabetic Wound Repair with a Photoenhanced Glycyrrhizic Acid Hydrogel Scaffold. Adv. Mater. 2022, 34, e2200521. [Google Scholar] [CrossRef]
- Chen, J.C.; Ho, T.Y.; Chang, Y.S.; Wu, S.L.; Li, C.C.; Hsiang, C.Y. Identification of Escherichia coli enterotoxin inhibitors from traditional medicinal herbs by in silico, in vitro, and in vivo analyses. J. Ethnopharmacol. 2009, 121, 372–378. [Google Scholar] [CrossRef]
- Yang, L.; Yan, M.; Wu, L.; Jiang, H.; Shu, Z.; Yang, D.; Yang, B.; Wang, Q.; Kuang, X. Anti-inflammatory Effect of Split Fractions of Radix Achyranthis Bidentatae. Inf. Tradit. Chin. Med. 2016, 33, 8–11. (In Chinese) [Google Scholar]
- Li, F.; Huo, G.; Ye, Y.; Chen, M. Extraction, Type and Pharmacological Activities of Sapindus mukorossi Saponin. Nat. Prod. Res. Dev. 2012, 24, 158–164+181. (In Chinese) [Google Scholar]
- Zhu, C.; Hu, R.; Kong, Q.; Ren, T.; Zhou, C. Study on Bacteriostasis Activity and Disinfection Function of the Sapindus mukurossi Gaertn Crude Extract. J. Anhui Agric. Sci. 2014, 42, 12081–12082+12086. (In Chinese) [Google Scholar]
- Yang, H.; Song, L.; Sun, B.; Chu, D.; Yang, L.; Li, M.; Li, H.; Dai, Y.; Yu, Z.; Guo, J. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater. Today Bio 2021, 12, 100139. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Si, M.; Wang, Y.; Liu, L.; Zhang, Y.; Zhou, A.; Wei, W. Ginsenoside metabolite compound K exerts anti-inflammatory and analgesic effects via downregulating COX2. Inflammopharmacology 2019, 27, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, H.; Fan, X.; Xiao, X.; Fu, P. Effect of Ginsenosides Rg1, Rb1 and Rd on Biothermal Activity of Escherichia coli. In Proceedings of the 2008 Academic Annual Meeting of Chinese Pharmaceutical Association and the Eighth Chinese Pharmacist Week, Shijiazhuang, China, October 2008. [Google Scholar]
- Zhang, J.; Wu, C.; Gao, L.; Du, G.; Qin, X. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. Adv. Pharmacol. 2020, 87, 89–112. [Google Scholar] [PubMed]
- Chen, X.; Peng, L.H.; Li, N.; Li, Q.M.; Li, P.; Fung, K.P.; Leung, P.C.; Gao, J.Q. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo. J. Ethnopharmacol. 2012, 139, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Almukainzi, M.; El-Masry, T.A.; Negm, W.A.; Elekhnawy, E.; Saleh, A.; Sayed, A.E.; Khattab, M.A.; Abdelkader, D.H. Gentiopicroside PLGA Nanospheres: Fabrication, in vitro Characterization, Antimicrobial Action, and in vivo Effect for Enhancing Wound Healing in Diabetic Rats. Int. J. Nanomed. 2022, 17, 1203–1225. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, H.; Wang, Y.; Wan, Z.; Luo, S.; Zhao, Z.; Liu, J.; Wu, X.; Li, X.; Li, X. Therapeutic effects of gentiopicroside on adjuvant-induced arthritis by inhibiting inflammation and oxidative stress in rats. Int. Immunopharmacol. 2019, 76, 105840. [Google Scholar] [CrossRef]
- Diniz, L.R.L.; Calado, L.L.; Duarte, A.B.S.; de Sousa, D.P. Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites 2023, 13, 276. [Google Scholar] [CrossRef]
- Kasti, A.N.; Nikolaki, M.D.; Synodinou, K.D.; Katsas, K.N.; Petsis, K.; Lambrinou, S.; Pyrousis, I.A.; Triantafyllou, K. The Effects of Stevia Consumption on Gut Bacteria: Friend or Foe? Microorganisms 2022, 10, 744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cao, G.; Sha, L.; Wang, D.; Liu, M. The Efficacy of Sodium Aescinate on Cutaneous Wound Healing in Diabetic Rats. Inflammation 2015, 38, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Quispe, C.; Jamaddar, S.; Hossain, R.; Ray, P.; Mondal, M.; Abdulwanis Mohamed, Z.; Sani Jaafaru, M.; Salehi, B.; Islam, M.T.; et al. Therapeutic promises of ginkgolide A: A literature-based review. Biomed. Pharmacother. 2020, 132, 110908. [Google Scholar] [CrossRef] [PubMed]
- Boonkaew, T.; Camper, N.D. Biological activities of Ginkgo extracts. Phytomedicine 2005, 12, 318–323. [Google Scholar] [CrossRef]
- Sun, M.; Sheng, Y.; Zhu, Y. Ginkgolide B alleviates the inflammatory response and attenuates the activation of LPS-induced BV2 cells in vitro and in vivo. Exp. Ther. Med. 2021, 21, 586. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Shim, H.J.; Shin, H.M.; Lee, Y.J.; Nam, H.; Kim, S.Y.; Youn, H.S. Andrographolide suppresses TRIF-dependent signaling of toll-like receptors by targeting TBK1. Int. Immunopharmacol. 2018, 57, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Arifullah, M.; Namsa, N.D.; Mandal, M.; Chiruvella, K.K.; Vikrama, P.; Gopal, G.R. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees. Asian Pac. J. Trop. Biomed. 2013, 3, 604–610; discussion 609–610. [Google Scholar] [CrossRef] [PubMed]
- Rozza, A.L.; Meira de Faria, F.; Souza Brito, A.R.; Pellizzon, C.H. The gastroprotective effect of menthol: Involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS ONE 2014, 9, e86686. [Google Scholar] [CrossRef]
- Rozza, A.L.; Beserra, F.P.; Vieira, A.J.; Oliveira de Souza, E.; Hussni, C.A.; Martinez, E.R.M.; Nóbrega, R.H.; Pellizzon, C.H. The Use of Menthol in Skin Wound Healing-Anti-Inflammatory Potential, Antioxidant Defense System Stimulation and Increased Epithelialization. Pharmaceutics 2021, 13, 1902. [Google Scholar] [CrossRef] [PubMed]
- Landau, E.; Shapira, R. Effects of subinhibitory concentrations of menthol on adaptation, morphological, and gene expression changes in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 5361–5367. [Google Scholar] [CrossRef]
- Wang, C.H.; Cherng, J.H.; Liu, C.C.; Fang, T.J.; Hong, Z.J.; Chang, S.J.; Fan, G.Y.; Hsu, S.D. Procoagulant and Antimicrobial Effects of Chitosan in Wound Healing. Int. J. Mol. Sci. 2021, 22, 7067. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.I.; Ahmad, R.; Khan, M.S.; Kant, R.; Shahid, S.; Gautam, L.; Hasan, G.M.; Hassan, M.I. Chitin and its derivatives: Structural properties and biomedical applications. Int. J. Biol. Macromol. 2020, 164, 526–539. [Google Scholar] [CrossRef]
- Li, P.; Poon, Y.F.; Li, W.; Zhu, H.Y.; Yeap, S.H.; Cao, Y.; Qi, X.; Zhou, C.; Lamrani, M.; Beuerman, R.W.; et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011, 10, 149–156. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Fang, J.; Zhao, Z.; Huang, L.; Guo, H.; Zheng, X. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol. 2017, 195, 20–38. [Google Scholar] [CrossRef]
- Bulei, W. Effect of White and Polysaccharide Hydrogel on Skin Wound Healing. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2021. [Google Scholar]
- Jiang, J.B.; Qiu, J.D.; Yang, L.H.; He, J.P.; Smith, G.W.; Li, H.Q. Therapeutic effects of astragalus polysaccharides on inflammation and synovial apoptosis in rats with adjuvant-induced arthritis. Int. J. Rheum. Dis. 2010, 13, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Y.; Jiang, G.; Ding, Y.; Xu, F.; Wang, Q. Study on the Antibacterial Activity of Lycium Barbarum Polysaccharide and Astragalus Polysaccharide. J. Prog. Mod. Biomed. 2012, 26, 5061–5063. (In Chinese) [Google Scholar]
- Han, J.; Xu, Y.; Yang, D.; Yu, N.; Bai, Z.; Bian, L. Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice. Asian-Australas. J. Anim. Sci. 2016, 29, 134–141. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, L.-Y.; Mao, D.; ZY, D.; Zhang, X.-J.; Zhai, X.-N.; An, B.-S.; Liu, S.-M. Modulation effect of Acanthopanax senticosus polysaccharides through inflammatory cytokines in protecting immunological liver-injured mice. China J. Chin. Mater. Medica 2019, 44, 2947–2952. [Google Scholar]
- Ding, H.; Wang, J.J.; Zhang, X.Y.; Yin, L.; Feng, T. Lycium barbarum Polysaccharide Antagonizes LPS-Induced Inflammation by Altering the Glycolysis and Differentiation of Macrophages by Triggering the Degradation of PKM2. Biol. Pharm. Bull. 2021, 44, 379–388. [Google Scholar] [CrossRef]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, Q. Momordica charantia polysaccharides alleviate diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and barrier via NF-κB pathway. Allergol. Immunopathol. 2022, 50, 62–70. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Rodríguez-Coello, A.; Latire, T.; Bourgougnon, N.; Torres, M.D.; Buján, M.; Muíños, A.; Muiños, A.; Meijide-Faílde, R.; Blanco, F.J.; et al. Anti-inflammatory potential of ulvan. Int. J. Biol. Macromol. 2023, 253 Pt 4, 126936. [Google Scholar] [CrossRef]
- Sulastri, E.; Zubair, M.S.; Lesmana, R.; Mohammed, A.F.A.; Wathoni, N. Development and Characterization of Ulvan Polysaccharides-Based Hydrogel Films for Potential Wound Dressing Applications. Drug Des. Dev. Ther. 2021, 15, 4213–4226. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Wang, L.; Yu, C.; Zhang, G.; Zhu, H.; Wang, C.; Zhao, S.; Hu, C.A.; Liu, Y. Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide. Food Funct. 2019, 10, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Guo, D.; Fang, L.; Sang, T.; Wu, J.; Guo, C.; Wang, Y.; Wang, Y.; Chen, C.; Chen, J.; et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr. Polym. 2021, 267, 118231. [Google Scholar] [CrossRef]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef] [PubMed]
- Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S. Therapies from Fucoidan: An Update. Mar. Drugs 2015, 13, 5920–5946. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Chen, J.S.; Wu, M.H.; Hsieh, I.S.; Liang, C.H.; Hsu, C.L.; Hong, T.M.; Chen, Y.L. Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J. Investig. Dermatol. 2015, 135, 258–268. [Google Scholar] [CrossRef]
- Hermenean, A.; Oatis, D.; Herman, H.; Ciceu, A.; D’Amico, G.; Trotta, M.C. Galectin 1-A Key Player between Tissue Repair and Fibrosis. Int. J. Mol. Sci. 2022, 23, 5548. [Google Scholar] [CrossRef]
- Santucci, L.; Fiorucci, S.; Rubinstein, N.; Mencarelli, A.; Palazzetti, B.; Federici, B.; Rabinovich, G.A.; Morelli, A. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 2003, 124, 1381–1394. [Google Scholar] [CrossRef]
- Zhang, L.-Z.; He, H.-M.; Li, X.-F.; Lu, J.-S.; Huang, Y.-H. Relationship between effect of tetrandrine on pleurisy and cAMP of inflammatory neutrophiles. Chin. Pharmacol. Bull. 2003, 19, 791–795. (In Chinese) [Google Scholar]
- Wang, K.; Deng, J.; Yang, J.; Wang, A.; Ye, M.; Chen, Q.; Chen, G.; Lin, D. Tetrandrine promotes the survival of the random skin flap via the PI3K/AKT signaling pathway. Phytother. Res. 2024, 38, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xin, G.; Zhou, Q.; Yu, X.; Feng, L.; Wen, A.; Zhang, K.; Wen, T.; Zhou, X.; Wu, Q.; et al. Elucidating the distinctive regulatory effects and mechanisms of active compounds in Salvia miltiorrhiza Bunge via network pharmacology: Unveiling their roles in the modulation of platelet activation and thrombus formation. Toxicol. Appl. Pharmacol. 2024, 484, 116871. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhou, G.; Liu, J.; Song, J.; Zhang, Z.; Huang, Q.; Wei, F. Tanshinone I and Tanshinone IIA/B attenuate LPS-induced mastitis via regulating the NF-κB. Biomed. Pharmacother. 2021, 137, 111353. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lun, W.; Zhao, X.; Lei, S.; Guo, Y.; Ma, J.; Zhi, F. Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells. Mediat. Inflamm. 2015, 2015, 434692. [Google Scholar] [CrossRef] [PubMed]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, J.; Li, X.; Hu, Y.; Liao, Y.; Zhou, W.; Song, Z. Anti-inflammatory activity of psoralen in human periodontal ligament cells via estrogen receptor signaling pathway. Sci. Rep. 2021, 11, 8754. [Google Scholar] [CrossRef] [PubMed]
- Tianzhu, Z.; Shumin, W. Esculin Inhibits the Inflammation of LPS-Induced Acute Lung Injury in Mice Via Regulation of TLR/NF-κB Pathways. Inflammation 2015, 38, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Wang Lina, F.Z. Study on Vitro Bacteriostasis and Stability of Three Traditional Chinese Medicine Extracts. J. Xuchang Univ. 2022, 41, 64–67. (In Chinese) [Google Scholar]
- Zhang, L.; Xie, Q.; Li, X. Esculetin: A review of its pharmacology and pharmacokinetics. Phytother. Res. 2022, 36, 279–298. [Google Scholar] [CrossRef]
- Alibi, S.; Crespo, D.; Navas, J. Plant-Derivatives Small Molecules with Antibacterial Activity. Antibiotics 2021, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Izadparast, F.; Riahi-Zajani, B.; Yarmohammadi, F.; Hayes, A.W.; Karimi, G. Protective effect of berberine against LPS-induced injury in the intestine: A review. Cell Cycle 2022, 21, 2365–2378. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Jia, L.Y.; Rong, Z.; Zhou, X.; Cao, L.Q.; Li, A.H.; Guo, M.; Jin, J.; Wang, Y.D.; Huang, L.; et al. Research Advances on Matrine. Front. Chem. 2022, 10, 867318. [Google Scholar] [CrossRef] [PubMed]
- Huihua, C. Observation and Mechanism Analysis of Mayinglong Musk Hemorrhoid Suppository in the Treatment of Acute Hemorrhoid Attack. In Proceedings of the Ninth National Academic Conference of Colorectal Professional Committee of Chinese Association of Integrated Traditional Chinese and Western Medicine, Shanghai, China, February 2003; Shanghai University of Traditional Chinese Medicine Press: Shanghai, China, 2003. [Google Scholar]
- Wang, H.; Shi, M.; Liu, W.; Zhao, J.; Yang, X. Experimental Study Musk hemorrhoid suppository in Anti-inflammation Analgesic Effect. Acta Acad. Med. Hubei 1998, 19, 31–33. (In Chinese) [Google Scholar]
- Thanakosai, W.; Phuwapraisirisan, P. First identification of α-glucosidase inhibitors from okra (Abelmoschus esculentus) seeds. Nat. Prod. Commun. 2013, 8, 1085–1088. [Google Scholar] [CrossRef]
Degree I | Accompanied by hematochezia, dripping blood. After defecation, the bleeding stopped. The hemorrhoid did not come out of the anus. |
Degree II | It is often accompanied by hematochezia and prolapse of the hemorrhoid from the anus, which can recover spontaneously after defecation. |
Degree III | Occasionally accompanied by hematochezia. Defecation, standing for a long time, weight-bearing, and a series of behaviors that increase intra-abdominal pressure can make the hemorrhoid come out and need to be restored with hand assistance. |
Degree IV | Occasionally accompanied by hematochezia. The hemorrhoid cannot recover or automatic prolapse after the recovery. It may be accompanied by mucosal ulceration in the anal dentate line area, infection, vascular exposure, and severe pain. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Ren, T.; Li, R.; Yu, Z.; Wang, Y.; Zhang, X.; Qin, Z.; Li, J.; Hu, J.; Luo, C. Natural Products with Potential Effects on Hemorrhoids: A Review. Molecules 2024, 29, 2673. https://doi.org/10.3390/molecules29112673
Liang Y, Ren T, Li R, Yu Z, Wang Y, Zhang X, Qin Z, Li J, Hu J, Luo C. Natural Products with Potential Effects on Hemorrhoids: A Review. Molecules. 2024; 29(11):2673. https://doi.org/10.3390/molecules29112673
Chicago/Turabian StyleLiang, Yicheng, Tankun Ren, Ruyi Li, Zhonghui Yu, Yu Wang, Xin Zhang, Zonglin Qin, Jinlong Li, Jing Hu, and Chuanhong Luo. 2024. "Natural Products with Potential Effects on Hemorrhoids: A Review" Molecules 29, no. 11: 2673. https://doi.org/10.3390/molecules29112673
APA StyleLiang, Y., Ren, T., Li, R., Yu, Z., Wang, Y., Zhang, X., Qin, Z., Li, J., Hu, J., & Luo, C. (2024). Natural Products with Potential Effects on Hemorrhoids: A Review. Molecules, 29(11), 2673. https://doi.org/10.3390/molecules29112673