Mechanochemical Synthesis of MOF-303 and Its CO2 Adsorption at Ambient Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterization
2.2. CO2 Adsorption
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of MOFs
3.2.1. Mechanochemical Synthesis of MOF-303
3.2.2. Solvothermal Synthesis of MOF-303
3.2.3. Mechanochemical Synthesis of ZIF-8
3.2.4. Solvothermal Synthesis of ZIF-8
3.2.5. Mechanochemical Synthesis of CuBTC
3.2.6. Solvothermal Synthesis of CuBTC
3.3. Measurements and Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghanbari, T.; Abnisa, F.; Daud, W.M.A.W. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 2020, 707, 135090. [Google Scholar] [CrossRef]
- Reddy, M.S.B.; Ponnamma, D.; Sadasivuni, K.K.; Kumar, B.; Abdullah, A.M. Carbon dioxide adsorption based on porous materials. RSC Adv. 2021, 11, 12658. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.Ö.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424. [Google Scholar] [CrossRef] [PubMed]
- Kökçam-Demir, Ü.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: Design and applications. Chem. Soc. Rev. 2020, 49, 2751. [Google Scholar] [CrossRef] [PubMed]
- Fathieh, F.; Kalmutzki, M.J.; Kapustin, E.A.; Waller, P.J.; Yang, J.; Yaghi, O.M. Practical water production from desert air. Sci. Adv. 2018, 4, eaat3198. [Google Scholar] [CrossRef]
- Hanikel, N.; Prévot, M.S.; Fathieh, F.; Kapustin, E.A.; Lyu, H.; Wang, H.; Diercks, N.J.; Glover, T.G.; Yaghi, O.M. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 2019, 5, 1699. [Google Scholar] [CrossRef]
- Kim, H.; Rao, S.R.; LaPotin, A.; Lee, S.; Wang, E.N. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting. Int. J. Heat Mass Transf. 2020, 161, 120253. [Google Scholar] [CrossRef]
- Hanikel, N.; Pei, X.; Chheda, S.; Lyu, H.; Jeong, W.; Sauer, J.; Gagliardi, L.; Yaghi, O.M. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021, 374, 454. [Google Scholar] [CrossRef]
- Bilal, M.; Sultan, M.; Morosuk, T.; Den, W.; Sajjad, U.; Aslam, M.M.A.; Shahzad, M.W.; Farooq, M. Adsorption-based atmospheric water harvesting: A review of adsorbents and systems. Int. Commun. Heat Mass Transf. 2022, 133, 105961. [Google Scholar] [CrossRef]
- Ma, A.; Cong, H.; Deng, H. Multivariate MOF for optimizing atmospheric water harvesting. Green Energy Environ. 2022, 7, 575. [Google Scholar] [CrossRef]
- Zheng, Z.; Hanikel, N.; Lyu, H.; Yaghi, O.M. Broadly tunable atmospheric water harvesting in multivariate metal–organic frameworks. J. Am. Chem. Soc. 2022, 144, 22669. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Nguyen, H.L.; Hanikel, N.; Li, K.K.-Y.; Zhou, Z.; Ma, T.; Yaghi, O.M. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 2023, 18, 136. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, F.-F.; Gu, X.-W.; Shao, K.; Wu, E.; Qian, G. Immobilization of Lewis basic nitrogen sites into a chemically stable metal–organic framework for benchmark water-sorption-driven heat allocations. Adv. Sci. 2022, 9, 2105556. [Google Scholar] [CrossRef] [PubMed]
- Chheda, S.; Jeong, W.; Hanikel, N.; Gagliardi, L.; Siepmann, J.I. Monte Carlo simulations of water adsorption in aluminum oxide rod-based metal–organic frameworks. J. Phys. Chem. C 2023, 127, 7837. [Google Scholar] [CrossRef]
- Torres-Herrera, U.; Ballesteros-Rivas, M.F.; Varela-Guerrero, V.; Balmaseda, J. Water harvesting by molecular sieves using self-sustained continuous flow. Transp. Porous Media 2023, 149, 479. [Google Scholar] [CrossRef]
- Luo, F.; Liang, X.; Chen, W.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. High-efficient and scalable solar-driven MOF-based water collection unit: From module design to concrete implementation. Chem. Eng. J. 2023, 465, 142891. [Google Scholar] [CrossRef]
- Lu, F.-F.; Gu, X.-W.; Wu, E.; Li, B.; Qian, G. Systematic evaluation of water adsorption in isoreticular UiO-type metal–organic frameworks. J. Mater. Chem. A 2023, 11, 1246. [Google Scholar] [CrossRef]
- Lassitter, T.; Hanikel, N.; Coyle, D.J.; Hossain, M.I.; Lipinski, B.; O’Brien, M.; Hall, D.B.; Hastings, J.; Borja, J.; O’Neil, T.; et al. Mass transfer in atmospheric water harvesting systems. Chem. Eng. Sci. 2024, 285, 119430. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, Z.; Tang, Y.; Deng, F.; Du, S.; Wang, R. Study of the scale-up effect on the water sorption performance of MOF materials. ACS Mater. A 2023, 3, 43. [Google Scholar] [CrossRef]
- Zheng, Z.; Alawadhi, A.H.; Chheda, S.; Neumann, S.E.; Rampal, N.; Liu, S.; Nguyen, H.L.; Lin, Y.-H.; Rong, Z.; Siepmann, J.I.; et al. Shaping the water-harvesting behavior of metal–organic frameworks aided by fine-tuned GPT models. J. Am. Chem. Soc. 2023, 145, 28284. [Google Scholar] [CrossRef]
- Ahrestani, Z.; Sadeghzadeh, S.; Emrooz, H.B.M. An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply. RSC Adv. 2023, 13, 10273. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shi, K.; Zhai, L.; Wang, Z.; Wang, H.; Zhao, Y.; Wang, J. Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Sep. Purif. Technol. 2023, 307, 122725. [Google Scholar] [CrossRef]
- Obeso, J.L.; Martínez-Ahumada, E.; López-Olvera, A.; Ortiz-Landeros, J.; Lara-García, H.A.; Balmaseda, J.; López-Morales, S.; Sánchez-González, E.; Solis-Ibarra, D.; Leyva, C.; et al. MOF-303 as an effective adsorbent to clean CH4: SO2 capture and detection. ACS Appl. Energy Mater. 2023, 6, 9084. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Zhang, X.-G.; Xia, Q.; Wang, H.; Wang, C.; Wang, Y.; He, H.; Zhao, Y.; Wang, J. Tailoring multiple sites of metal–organic frameworks for highly efficient and reversible ammonia adsorption. ACS Appl. Mater. Interfaces 2021, 13, 56025. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chai, K.; Kang, C.; Krishna, R.; Zhang, Z. Commensurate stacking within confined ultramicropores boosting acetylene storage capacity and separation efficiency. Nano Res. 2023, 16, 7742. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.; Yang, J.; Sun, T.; Rungtaweevoranit, B.; Lyu, H.; Zhang, Y.-B.; Yaghi, O.M. Docking of CuI and AgI in metal–organic frameworks for adsorption and separation of xenon. Angew. Chem. Int. Ed. 2021, 60, 3417. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-Y.; Wang, T.-Y.; Zou, C.; Chen, J.-J.; Lin, L.-C.; Kang, D.-Y. Highly-selective MOF-303 membrane for alcohol dehydration. J. Membr. Sci. 2022, 661, 120879. [Google Scholar] [CrossRef]
- Koo, W.-T.; Hong, Y.; Joung, D.; Kim, C. Surface hydration of fibrous filters by using water-absorbing metal–organic frameworks for efficient ultrafine particulate matter removal. Chem. Eng. J. 2022, 446, 136710. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Xiao, S.; Xue, W.; Zhao, X.; Yang, Q. A β-ray irradiation resistant MOF-based trap for efficient capture of Th(IV) ion. Sep. Purif. Technol. 2022, 297, 121517. [Google Scholar] [CrossRef]
- Wang, X.; Long, H.; Li, L.; Zhan, L.; Zhang, X.; Cui, H.; Shen, J. Efficiently selective extraction of iron (III) in an aluminum-based metal–organic framework with native N adsorption sites. Appl. Organomet. Chem. 2022, 36, e6758. [Google Scholar] [CrossRef]
- Cong, S.; Yuan, Y.; Wang, J.; Wang, Z.; Kapteijn, F.; Liu, X. Highly water-permeable metal–organic framework MOF-303 membranes for desalination. J. Am. Chem. Soc. 2021, 143, 20055. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Pei, L.; Zhao, X.; Zhang, X.; Huang, H. Synergistic dual-pyrazol sites of metal-organic framework for efficient separation and recovery of transition metals from wastewater. Chem. Eng. J. 2021, 410, 128431. [Google Scholar] [CrossRef]
- Obeso, J.L.; Viltres, H.; Flores, C.V.; López-Olvera, A.; Rajabzadeh, A.R.; Srinivasan, S.; Ibarra, I.A.; Leyva, C. Al(III)-based MOFs adsorbent for pollution remediation: Insights into selective adsorption of sodium diclofenac. J. Environ. Chem. Eng. 2023, 11, 109872. [Google Scholar] [CrossRef]
- Yin, X.; He, Y.; He, T.; Li, H.; Wu, J.; Zhou, L.; Li, S.; Li, C. A durable MOF-303-coated stainless steel mesh with robust anti-oil-fouling performance for multifunctional oil/water separation. Colloids Surf. Physicochem. Eng. Asp. 2023, 657, 130515. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, J.; Tian, S.; Li, S.; He, Y.; Zhang, S.; Sun, T. Fabrication of PVDF@MOF-303 membrane with Mortise-Tenon structure by the polyphenol analogue-assisted growth strategy for oil-water separation and heavy metal adsorption. Prog. Org. Coat. 2024, 187, 108115. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Kim, D.; Park, J.Y.; Yoon, J.W.; Lee, S.-K.; Lee, J.S.; Jo, D.; Cho, K.H.; Lee, U.-H. Separation of high-purity C2H2 from binary C2H2/CO2 using robust Al-based MOFs comprising nitrogen-containing heterocyclic dicarboxylate. ACS Appl. Mater. Interfaces 2024, 16, 1342. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.-M.; Yu, C.; Liu, M.; Lin, C.; Zhao, B.; Wu, H.; Zhou, W.; Chen, B.; Hu, J. Construction of negative electrostatic pore environments in a scalable, stable and low-cost metal-organic framework for one-step ethylene purification from ternary mixtures. Angew. Chem. 2023, 135, e202309108. [Google Scholar] [CrossRef]
- Xian, S.; Peng, J.; Pandey, H.; Graham, W.; Yu, L.; Wang, H.; Tan, K.; Thonhauser, T.; Li, J. Simultaneous removal of C2H2 and C2H6 for C2H4 purification by robust MOFs featuring a high density of heteroatoms. J. Mater. Chem. A 2023, 11, 21401. [Google Scholar] [CrossRef]
- Chen, K.; Ni, L.; Guo, X.; Xiao, C.; Yang, Y.; Zhou, Y.; Zhu, Z.; Qi, J.; Li, J. Introducing pyrazole-based MOF to polymer of intrinsic microporosity for mixed matrix membranes with enhanced CO2/CH4 separation performance. J. Membr. Sci. 2023, 688, 122110. [Google Scholar] [CrossRef]
- Xian, S.; Peng, J.; Pandey, H.; Thonhauser, T.; Wang, H.; Li, J. Robust metal–organic frameworks with high industrial applicability in efficient recovery of C3H8 and C2H6 from natural gas upgrading. Engineering 2023, 23, 56. [Google Scholar] [CrossRef]
- Kim, H.; Jee, S.; Park, J.; Jung, M.; Muhammad, R.; Choi, K.; Oh, H. High D2/H2 selectivity performance in MOF-303 under ambient pressure for potential industrial applications. Sep. Purif. Technol. 2023, 325, 124660. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, W.; Xue, W.; Zhu, H.; Zheng, M.; Huang, H.; Zhong, C. Construction of π back donation active site in metal-organic framework for dense packing of C2H2 and efficient C2H2/CO2 separation. Sep. Purif. Technol. 2023, 322, 124345. [Google Scholar] [CrossRef]
- Hu, F.-H.; Chi, L.-T.; Syu, G.-B.; Yu, T.-Y.; Lin, M.-P.; Chen, J.-J.; Yu, W.-Y.; Kang, D.-Y. Mixed-linker MOF-303 membranes for pervaporation. J. Membr. Sci. Lett. 2023, 3, 100053. [Google Scholar] [CrossRef]
- Shen, Q.; Cong, S.; Zhu, J.; Zhang, Y.; He, R.; Yi, S.; Zhang, Y. Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J. Membr. Sci. 2022, 664, 121107. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Zhang, J.; Gao, Y.; Zhang, W. Cu-loaded MOF-303 for iodine adsorption: The roles of Cu species and pyrazole ligands. Appl. Surf. Sci. 2023, 619, 156819. [Google Scholar] [CrossRef]
- Pan, B.; Wang, J.; Yao, C.; Zhang, S.; Wu, R.; Zeng, H.; Wang, D.; Wu, C. In situ growth of MOF-303 membranes onto porous anodic aluminum oxide substrates for harvesting salinity-gradient energy. ACS Appl. Mater. Interfaces 2023, 15, 59463. [Google Scholar] [CrossRef]
- Wu, Y.; Tong, Y.; Liang, H.; Peng, J.; Gu, X.-K.; Ding, M. Pd nanoparticles encapsulated in MOF boosts selective hydrogenation of biomass derived compound under mild conditions. Chem. Eng. J. 2023, 460, 141779. [Google Scholar] [CrossRef]
- Rouhani, F.; Ayedi, M.; Safari, N. Dual nature brilliant adsorbent engineering by converting an Al-based MOF to defect rich quasi-MOF. Sep. Purif. Technol. 2024, 331, 125611. [Google Scholar] [CrossRef]
- Wang, W.; Xue, W.; Yang, F.; Li, J.; Nie, L.; Huang, H.; Zhong, C. Ligand polarity regulated metal–support charge transfer over Pd@MOFs for direct H2O2 synthesis: A structure–property relationship study. Ind. Eng. Chem. Res. 2023, 62, 11840. [Google Scholar] [CrossRef]
- Li, K.; Ge, S.; Wei, X.; Zou, W.; Wang, X.; Qian, Q.; Gao, B.; Dong, L. Asymmetric ligands of a metal–organic framework on enhanced photocatalytic CO2 reduction. Inorg. Chem. 2023, 62, 15824. [Google Scholar] [CrossRef]
- Wickramaratne, N.P.; Jaroniec, M. Activated carbon spheres for CO2 adsorption. ACS Appl. Mater. Interfaces 2013, 5, 1849. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.-R.; Zhang, R.; Zhang, J.; Luo, H.-B.; Liu, Y.; Zou, Y.; Ren, X.-M. Microwave-assisted rapid synthesis of nanoscale MOF-303 for hydrogel composites with superior proton conduction at ambient-humidity conditions. ACS Appl. Energy Mater. 2021, 4, 14681. [Google Scholar] [CrossRef]
- Pichon, A.; Lazuen-Garay, A.; James, S.L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8, 211. [Google Scholar] [CrossRef]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Mechanochemistry: Toward green synthesis of metal–organic frameworks. Mater. Today 2021, 46, 109. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Lei, P.; Yang, Z.; Zhang, Z. Synthesis of Ca-based metal–organic frameworks from carbide slag for CO2 adsorption. Sep. Purif. Technol. 2024, 335, 126247. [Google Scholar] [CrossRef]
- Wei, F.; Zheng, T.; Ren, Q.; Chen, H.; Peng, J.; Ma, Y.; Liu, Z.; Liang, Z.; Chen, D. Preparation of metal–organic frameworks by microwave-assisted ball milling for the removal of CR from wastewater. Green Process. Synth. 2022, 11, 595. [Google Scholar] [CrossRef]
- D’Amato, R.; Bondi, R.; Moghdad, I.; Marmottini, F.; McPherson, M.J.; Naïli, H.; Taddei, M.; Costantino, F. “Shake ‘n Bake” Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks. Inorg. Chem. 2021, 60, 14294. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, D.; Wei, F.; Liang, Z. Synthesis of Cu-BTC metal-organic framework by ultrasonic wave-assisted ball milling with enhanced Congo Red removal property. Chem. Select 2018, 3, 11435. [Google Scholar] [CrossRef]
- Zhang, R.; Tao, C.-A.; Chen, R.; Wu, L.; Zou, X.; Wang, J. Ultrafast synthesis of Ni-MOF in one minute by ball milling. Nanomaterials 2018, 8, 1067. [Google Scholar] [CrossRef]
- An, H.-T.; Zhang, X.; Dong, C.; Lu, M.-Y.; Li, R.; Xie, Y.; Xie, L.-H.; Li, J.-R. Seed-aided green synthesis of metal-organic frameworks in water. Green Chem. Eng. 2023, 4, 64. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Huang, Y. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 2017, 321, 711. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Bernardo, I.D.; Lowe, A.; Nisbet, D.R.; Tsuzuki, T. Green full conversion of ZnO nanopowders to well-dispersed zeolitic imidazolate framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption. Cryst. Growth Des. 2020, 20, 2761. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Gonçalves, A.A.S.; Jaroniec, M. Effect of metal–ligand ratio on the CO2 adsorption properties of Cu–BTC metal–organic frameworks. RSC Adv. 2018, 8, 35551. [Google Scholar] [CrossRef]
- Lv, X.; Zeng, W.; Yang, Z.; Yang, Y.; Wang, Y.; Lei, Z.; Liu, J.; Chen, D. Fabrication of ZIF-8@Polyphosphazene core-shell structure and its efficient synergism with ammonium polyphosphate in flame-retarding epoxy resin. Polym. Adv. Technol. 2020, 31, 997. [Google Scholar] [CrossRef]
- Duan, C.; Huo, J.; Li, F.; Yang, M.; Xi, H. Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy. J. Mater. Sci. 2018, 53, 16276. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051. [Google Scholar] [CrossRef]
- Szczęśniak, B.; Phuriragpitikhon, J.; Choma, J.; Jaroniec, M. Mechanochemical synthesis of three-component graphene oxide/ordered mesoporous carbon/metal-organic framework composites. J. Colloid Interface Sci. 2020, 577, 163. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, T.; Simanova, K.; Saini, R.; Zelenkova, G.; Nehra, S.P.; Sharma, A.; Almasi, M. Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine. Sci. Rep. 2022, 12, 17366. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Tao, Z.; Yang, C.; Hanif, A.; Li, L.; Tsang, D.C.W.; Gu, Q.; Shang, J. Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. J. Chem. Eng. 2020, 393, 124666. [Google Scholar] [CrossRef]
- Castillo, J.M.; Vlugt, T.J.H.; Calero, S. Understanding water adsorption in Cu−BTC metal−organic frameworks. J. Phys. Chem. C 2008, 112, 15934. [Google Scholar] [CrossRef]
- Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Li, J.; Xia, Y.; Gao, M.; Zhang, X.; Huang, L.-H. A novel hydrophilic MOFs-303-functionalized magnetic probe for the highly efficient analysis of N-linked glycopeptides. J. Mater. Chem. B 2022, 10, 2011. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Nunn, W.T.; Lemaire, P.C.; Lin, Y.; Dickey, M.D.; Oldham, C.J.; Walls, H.J.; Peterson, G.W.; Losego, M.D.; Parsons, G.N. Facile conversion of hydroxy double salts to metal–organic frameworks using metal oxide particles and atomic layer deposition thin-film templates. J. Am. Chem. Soc. 2015, 137, 13756. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309. [Google Scholar] [CrossRef]
- Jagiello, J.; Olivier, J.P. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 2013, 55, 70. [Google Scholar] [CrossRef]
- Jaroniec, M.; Choma, J. Characterization of activated carbons by distribution functions of adsorption potential and micropore dimension. Mater. Chem. Phys. 1987, 18, 103. [Google Scholar] [CrossRef]
Sample | SSA [m2/g] | Vt [cm3/g] | Vmicro [cm3/g] | Vultra [cm3/g] |
---|---|---|---|---|
MOF-303_B | 1180 | 0.58 | 0.58 | 0.54 |
MOF-303_B (2 h ball milling) | 204 | 0.44 | 0.09 | 0.06 |
MOF-303_B (3 h ball milling) | 24 | 0.01 | 0.01 | 0.01 |
MOF-303_B (300 rpm) | 479 | 0.23 | 0.23 | 0.18 |
MOF-303_B (24 h purification) | 713 | 0.44 | 0.36 | 0.08 |
MOF-303_B (2 h purification) | 446 | 0.69 | 0.19 | 0.14 |
MOF-303_L ZIF-8_B | 994 | 0.68 | 0.48 | 0.40 |
1609 | 0.83 | 0.70 | 0.10 | |
ZIF-8_L | 1260 | 0.97 | 0.50 | 0 |
CuBTC_B | 1638 | 0.84 | 0.76 | 0.69 |
CuBTC_L | 1809 | 0.93 | 0.81 | 0.77 |
Sample | CO2 Adsorption [mmol/g] | |
---|---|---|
25 °C, 1 bar | 0 °C, 1 bar | |
MOF-303_B | 5.5 | 9.5 |
MOF-303_L | 4.9 | 8.0 |
ZIF-8_B | 0.8 | 1.5 |
ZIF-8_L | 0.7 | 1.2 |
CuBTC_B | 4.9 | 9.1 |
CuBTC_L | 5.5 | 9.6 |
Synthesis Method | SSA [m2/g] | Vt [cm3/g] | Application | Ref. |
---|---|---|---|---|
Ball milling | 1180 | 0.60 | CO2 adsorption: 5.5 mmol/g (25 °C, 1 bar) 9.5 mmol/g (0 °C, 1 bar) | This work |
Solvothermal | 1529 | 0.55 | CO2 adsorption: 5.1 mmol/g (25 °C, 1 bar) | [22] |
1372 | 0.52 | Atmospheric water harvesting | [11] | |
1355 | 0.52 | Atmospheric water harvesting | [8] | |
1343 | - | Xenon adsorption | [26] | |
1342 | Atmospheric water harvesting | [12] | ||
1292 | - | Ammonia adsorption | [24] | |
1119 | - | Atmospheric water harvesting | [6] | |
1046 | - | Fe3+ adsorption | [30] | |
989 | - | Atmospheric water harvesting | [5] | |
910 | - | Transition metals adsorption | [32] | |
887 | - | Desalination | [31] | |
Reflux | 1392 | 0.52 | Atmospheric water harvesting | [11] |
1384 | - | Atmospheric water harvesting | [12] | |
1374 | 0.52 | Atmospheric water harvesting | [11] | |
Microwave | 1343 | - | C2H2 adsorption | [25] |
1307 | Atmospheric water harvesting | [12] | ||
658 | - | Proton conduction material | [52] | |
Vessel | 1380 | Atmospheric water harvesting | [12] | |
In situ growth on polymeric nanofibers | 426 | - | Particulate matter adsorption | [28] |
Other/non-stated | 1212 | 0.58 | SO2 adsorption | [23] |
917 (MIL-160(Al)/MOF-303) | 0.44 | Atmospheric water harvesting | [16] | |
845 (GO@Fe3O4@MOF-303) | - | - | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Mechanochemical Synthesis of MOF-303 and Its CO2 Adsorption at Ambient Conditions. Molecules 2024, 29, 2698. https://doi.org/10.3390/molecules29112698
Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Mechanochemical Synthesis of MOF-303 and Its CO2 Adsorption at Ambient Conditions. Molecules. 2024; 29(11):2698. https://doi.org/10.3390/molecules29112698
Chicago/Turabian StyleGłowniak, Sylwia, Barbara Szczęśniak, Jerzy Choma, and Mietek Jaroniec. 2024. "Mechanochemical Synthesis of MOF-303 and Its CO2 Adsorption at Ambient Conditions" Molecules 29, no. 11: 2698. https://doi.org/10.3390/molecules29112698
APA StyleGłowniak, S., Szczęśniak, B., Choma, J., & Jaroniec, M. (2024). Mechanochemical Synthesis of MOF-303 and Its CO2 Adsorption at Ambient Conditions. Molecules, 29(11), 2698. https://doi.org/10.3390/molecules29112698