Uncovering the Chemical Composition and Biological Potentials of Bupleurum lancifolium Hornem. from Jordan
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Constituents of the Hydrodistilled Essential Oil (HDEO)
Chemical Constituents of the BLM and BLB Fractions from B. lancifolium
2.2. Total Flavonoid (TFC) and Phenol (TPC) Contents and Antioxidant Activity
2.3. Antibacterial, AChE Inhibition, and Cytotoxic Activity Assays
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Hydrodistillation of Essential Oil
3.4. Extraction and Isolation
- α-Spinasteryl (M1)
- Fraction BLM-II-2 offered a white solid after being washed with methanol. Compound M1 was identified as α-spinasteryl on the basis of a careful inspection of its spectral data (Figures S2–S4) [41]. IR (KBr) ν (cm−1): 3439 (OH), 1459(C=C). Rf = 0.70 (40% MeOH/CF) and 0.42 (20% EtOAc/hex). 1H–NMR (CDCl3) δ ppm: 3.63 (1H, m, H-3), 5.04 (1H, m, H-22), 5.16 (1H, dd, J = 8.64, 15.12, H-23), and 5.18 (1H, dd, J = 8.64, 15.12, H-7). 13C–NMR (CDCl3) δ ppm: methyls: (12.06, C-18), (12.27, C-29), (19.00, C-19), (21.11, C-27), (21.39, C-26), and (23.02, C-21); methenes: 21.55 (C-11), 25.41 (C-15), 29.64 (C-16), 29.71 (C-6), 31.48 (C-2), 31.88 (C-25), 37.14 (C-1), 37.99 (C-12), and 40.85 (C-4); methine carbons: 28.53 (C28)), 39.46 (C-20), 40.26 (C-5), 49.44 (C-9), 51.26 (C-24), 55.13 (C17), 55.89 (C-14), 71.07 (C-3), 117.47 (C7), 129.43 (C23), 138.19 (C-22), and 138.19 (C-22); quaternary carbons: 34.22 (C-10), 29.64 (C-16),43.29 (C-13), and 139.58 (C-8). HRESIMS m/z = 413.37614 [M + H]+ (calcd. for [C29H48O]+: 412.3705).
- Ethyl arachidate (M2)
- A solid was collected from the fraction BLM-II-3. This solid was purified with distilled methanol multiple times to obtain a pure white precipitate that was identified as ethyl arachidate based on its spectral data (Figures S5–S8) [41].
- IR (KBr) ν (cm−1): 1717 (C=O group), 1113–1288 (C–O group), 1472 (CH2 bending), and 2917 and 2849 (C–H stretching). Rf = 0.43 (10% EtOAc/hex) and 0.14 (100 % CF). 1H-NMR (CDCl3) δ ppm: 0.88 (3H, t, J = 6.52, 7.04 Hz, H-20, and H-2’), 1.43 (32H, m, H-4-H19), 1.59 (2H, m, H-3), 2.27 (2H, m, H-2), 4.01 (2H, m, H1’). 13C-NMR (CDCl3) δ ppm: methyls: 14.15 (C-20, C-2’); methenes: 25.04–31.94 (C-3-C-19), 34.44 (C-2), 64.42 (OCH2, C-1’), and 174.08 (C=O, C-1). EI-MS: M+ (m/z) 340.3128 (C22H44O2).
- Ethyl myristate (M3)
- Compound M3 was obtained from the fraction BLMII-1. The obtained solid was purified upon washing several times with distilled methanol, affording ethyl myristate as a pure white solid. (Figures S9–S12) [42,43].
- IR (KBr) ν (cm−1): 1966 (C=O group), 1116–1246 (C–O group), 1463 (CH2 bending), and 2917 and 2848 (C–H stretching). Rf = 0.5 (10% EtOAc/hex.) and 0.65 (100% CF). 1H-NMR (CDCl3) δ ppm: 0.88 (3H, t, J = 6.64Hz, H-14), 1.25 (20H, br s, H4-H13), 1.61 (2H, m, H-3), 2.33 (2H, t, J = 8.64 Hz, H-2), and 4.11 (2H, q, J = 7.12, H-1’). 13C-NMR (CDCl3) δ (ppm): 14.13 (CH3, C-14), 14.25 (CH2, C-2), 22.70 (CH2, C-13), 29.07–32.77 (CH2, C-4-C12), 25.73 (CH, C-3), 34.33 (CH2, C-2), 60.21(OCH2, C-1’), and 174.0 (C=O, C-1). EI-MS M+ (m/z): 256.2317 (C16H32O2).
- Quercetin-3-O-β-d-glucopyranosyl-(1-4”)-α-L-rhamnopyranosyl (B1)
- Treatment of the subfraction BLB-III-4 with distilled methanol resulted in the precipitation of a pure light-yellow-colored solid. Careful investigation of the spectral data led to the identification of this compound as quercetin-3-O-β-d-glucopyranosyl-(1-4”)-α-L-rhamnopyranosyl (Figures S13–S16) [44].
- IR (KBr) ν (cm−1): 1657 (C=O), 3425 (OH), and 1573, 1505 (aromatic nucleus). Rf = 0.43 (40% MeOH/CF) and 0.1 (30% EtOAc/hexane). 1H-NMR (DMSO-d6) δ ppm: 6.19 (1H, d, J = 1.96, H-6), 6.38 (1H, d, J = 1.96, H-8), 6.85 (1H, d, J = 8.2, H-5’), and 7.55 (1H, d, J = 2.2, H-6’); 1st sugar moiety: 3.04 (1H, m, H-4“), 3.22 (1H, m, H-3”), 3.28 (1H, m, H-2”), 3.30 (1H, m, H-5”), and 3.71 (1H, d, J = 10.2 H-6”); 5.35 (1H, d, J = 7.4, H-1”); 2nd sugar mioety: 0.99 (3H, d, J = 6.2 Hz, H-6‴), 3.07 (1H, M, H-4‴), 3.25 (2H, m, H-2‴,5‴), 3.39 (1H, m, H-3‴), and 4.38 (1H, bs, 5.6, H-1‴); 13C-NMR (DMSO-d6) δ ppm: 93.6 (C-8), 98.7 (C-6), 103.9 (C-10), 115.2 (C-2’), 116.2 (C-5’), 121.1 (C-6’), 121.5 (C-1’), 133.3 (C-3), 144.7 (C-4’), 148.4 (C-3’), 156.4 (C-2), 156.5 (C-9), 161.2 (C-5), 164.2 (C-7), and 177.3 (C-4); 1st sugar moiety: 66.9 (C-6”), 70.0 (C-4”), 74.0 (C-2”), 75.9 (C-5”), 76.40 (C-3”), and 101.2 (C-1”); 2nd sugar moiety: 17.7 (C-6‴), 68.2 (C-5‴), 70.3 (C-2‴), 70.5 (C-3‴), 71.8 (C-4‴), and 100.7 (C-1‴). UV/Vis: UV λmax (MeOH) nm: 359.51 (band I) and 268.62 (band II); +NaOMe: 402.53 (band I) and 272.52 (band II); +AlCl3: 430.76 (Band Ia), 302 (Band IIa), and 272.52 (Band IIb); +HCl: 393.95 (Band Ia), 301 (Band IIa), and 268.62 (Band IIb). HRESIMS m/z = 611.1546 [M + H]+ (calcd. for [C27H30O16]+: 610.1534).
- Isorhamnetin-3-O-β-d-glucopyranosyl-(1-4”)-α-L-rhamnopyranosyl (B2)
- Treatment of the subfraction BLB-II-2 with distilled methanol resulted in the precipitation of pure light-yellow-colored solid. Careful investigation of the spectral data led the identification of this compound as isorhamnetin-3-O-β-d-glucopyranosyl-(1-4”)-α-L-rhamnopyranosyl (Figures S17–S20) [44].
- IR (KBr) ν (cm−1): 1657 (C=O), 3425 (OH groups), 1573, and 1505 (aromatic nucleus). Rf = 0.43 (40%MeOH/CF) and 0.1(30%EtOAc/hexane). 1H-NMR (DMSO-d6) δ ppm: 6.19 (1H, d, J = 2.0, H-6), 6.42 (1H, d, J = 2.0, H-8), 6.92 (1H, d, J = 8.5, H-5’), 7.52 (1H, dd, J = 8.5, 2.0, H-6’), and 7.86 (1H, d, J = 2.2, H-2’); 1st sugar moiety: 3.04 (1H, m, H-4”), 3.22 (1H, m, H-2”), 3.28 (1H, m, H-3”), 3.27 (1H, m, H-5”), and 3.35 (1H, d, J = 10.2 H-6”); 5.43 (1H, d, J = 17.8, H-1”); 2nd sugar moiety: 0.98 (3H, d, J = 6.2 Hz, H-6‴), 3.04 (1H, M, H-4‴), 3.24 (2H, m, H-5‴), 3.26 (2H, m, H-2‴), 3.32 (1H, m, H-3‴), and 4.41 (1H, d, J = 1.0 Hz, H-1‴); 13C-NMR (DMSO-d6) δ ppm: 93.8 (C-8), 98.8 (C-6), 103.9 (C-10), 113.2 (C-2′), 115.2 (C-5′), 122.2 (C-6’), 121.0 (C-1’), 132.9 (C-3), 146.7 (C-4’), 149.4 (C-3’), 156.4 (C-2), 156.5 (C-9), 161.1 (C-5), 164.4 (C-7), and 177.2 (C-4); 1st sugar moiety: 66.8 (C-6”), 70.0 (C-4”), 74.2 (C-2”), 75.9 (C-5”), 76.3 (C-3”), and 101.1 (C-1”); 2nd sugar moiety: 17.7 (C-6‴), 68.3 (C-5‴), 70.3 (C-2‴), 70.5 (C-3‴), 71.7 (C-4‴), and 100.9 (C-1‴). UV/Vis: UV λmax (MeOH) nm: 359.51 (band I) and 268.62 (band II); +NaOMe: 402.53 (band I) and 272.52 (band II); +AlCl3: 430.76 (band Ia), 302 (band IIa), and 272.52 (band IIb); +HCl: 393.95 (band Ia), 301 (band IIa), and 268.62 (band IIb). HRESIMS m/z = 625.1702 [M + H]+ (calcd. for [C28H32O16]+: 624.1690).
3.5. Determination of Total Flavonoid (TFC) and Phenol (TPC) Contents
3.6. Determination of Antioxidant Activity
3.7. Evaluation of Biological Activities
3.7.1. Antibacterial Activity
3.7.2. In Vitro Cytotoxicity Assay
3.7.3. Acetylcholinesterase (AChE) Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimenov, M.G.; Leonov, M.V. The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South-West Asian taxa. Turk. J. Bot. 2004, 28, 139–145. [Google Scholar]
- Burtt, B.L. Umbelliferae of Southern Africa: An introduction and annotated check-list. Edinb. J. Bot. 1991, 48, 133–282. [Google Scholar] [CrossRef]
- Yaniv, Z.; Bachrach, U. Handbook of Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Al-Eisawi, D.M.H. List of Jordan Vascular Plants; Editeur Inconnu: Munchen, Germany, 1982. [Google Scholar]
- Minami, M. Seasonal variation on growth and saikosaponins concentration of Bupleurum falcatum L. Yakugaku Zasshi 1995, 115, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Benito, P.B.; Martínez, M.A.; Sen, A.S.; Gómez, A.S.; Matellano, L.F.; Contreras, S.S.; Lanza, A.D. In vivo and in vitro anti-inflammatory activity of saikosaponins. Life Sci. 1998, 63, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Motoo, Y.; Sawabu, N. Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines. Cancer Lett. 1994, 86, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N. An Illustrated Chinese Materia Medica; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- World Health Organization. World Health Organization Monographs on Selected Medicinal Plants; WHO: Geneva, Switzerland, 1999; Volume 2. [Google Scholar]
- World Health Organization. Medicinal Plants in the Republic of Korea: Information on 150 Commonly Used Medicinal Plants; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Lin, M.; Zhang, W.; Su, J. Toxic polyacetylenes in the genus Bupleurum (Apiaceae)—Distribution, toxicity, molecular mechanism and analysis. J. Ethnopharmacol. 2016, 193, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.Y.; Zou, Y.F.; Chen, X.F. Traditional use, pharmacology, toxicology, and quality control of species in genus Bupleurum L. Chin. Herb. Med. 2013, 5, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Bilia, A.R.; Bertoli, A.; Morelli, I.; Marsili, A. Phenylpropanoids from Bupleurum fruticosum. J. Nat. Prod. 1995, 58, 112–116. [Google Scholar] [CrossRef]
- Massanet, G.M.; Guerra, F.M.; Jorge, Z.D.; Casalvázquez, L.G. Phenylpropanoids from Bupleurum fruticosum. Phytochemistry 1997, 44, 173–177. [Google Scholar] [CrossRef]
- Pan, S.L. (Ed.) Bupleurum Species: Scientific Evaluation and Clinical Applications; CRC Press: Boca Raton, FL, USA, 2006; p. 111. [Google Scholar]
- Ashour, M.L.; Wink, M. Genus Bupleurum: A review of its phytochemistry, pharmacology and modes of action. J. Pharm. Pharmacol. 2011, 63, 305–321. [Google Scholar] [CrossRef]
- Achouri, A.; Derbré, S.; Medjroubi, K.; Laouer, H.; Séraphin, D.; Akkal, S. Two new triterpenoid saponins from the leaves of Bupleurum lancifolium (Apiaceae). Nat. Prod. Res. 2017, 31, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Saraçoğlu, H.T.; Mehtap, A.K.I.N.; Demirci, B.; Basker, K.H.C. Chemical composition and antibacterial activity of essential oils from different parts of endemic Bupleurum L. species. Ank. Üniversitesi Vet. Fakültesi Derg. 2012, 59, 265–270. [Google Scholar] [CrossRef]
- Saraçoğlu, H.T.; Zengin, G.; Akin, M.; Aktumsek, A. A comparative study on the fatty acid composition of the oils from five Bupleurum species collected from Turkey. Turk. J. Biol. 2012, 36, 527–532. [Google Scholar] [CrossRef]
- Shafaghat, A. Antioxidant, antimicrobial activities and fatty acid components of leaf and seed of Bupleurum lancifolium Hornem. J. Med. Plant Res. 2011, 5, 3758–3762. [Google Scholar]
- Samanta, A.; Das, G.; Das, S.K. Roles of flavonoids in plants. Carbon 2011, 100, 12–35. [Google Scholar]
- Bencheraiet, R.; Kabouche, A.; Kabouche, Z.; Touzani, R.; Jay, M. Flavonol 3-O-glycosides from three Algerian Bupleurum species. Rec. Nat. Prod. 2012, 6, 171–174. [Google Scholar]
- Zhang, H.Y.; Gao, Y.; Lai, P.X. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of essential oil from Premna microphylla Turczaninow. Molecules 2017, 22, 381. [Google Scholar] [CrossRef] [PubMed]
- Paz, C.; Von Dossow, D.; Tiznado, V.; Suarez, S.; Cukiernik, F.D.; Baggio, R.A. dihydro-β-agarofuran sesquiterpene from Maytenus boaria. Acta Crystallogr. Sect. C Struct. Chem. 2017, 73, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Akin, M.; Alataş, Z.; Saraçoğlu, H.T. Bupleurum lancifolium Hornem.’un Antibakteriyel Etkisinin İncelenmesi. KSU J. Agric Nat. 2023, 26, 487–892. [Google Scholar] [CrossRef]
- Wink, M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr. Drug Metab. 2008, 9, 996–1009. [Google Scholar] [CrossRef]
- Gong, G.; Guan, Y.Y.; Zhang, Z.L.; Rahman, K.; Wang, S.J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef] [PubMed]
- Jeon, G.C.; Park, M.S.; Yoon, D.Y.; Shin, C.H.; Sin, H.S.; Um, S.J. Antitumor activity of spinasterol isolated from Pueraria roots. Exp. Mol. Med. 2005, 37, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, Y.S.; Mahadevan, K.M.; Manjunatha, H.; Satyanarayana, N.D. Antiproliferative, apoptotic and antimutagenic activity of isolated compounds from Polyalthia cerasoides seeds. Phytomedicine 2010, 17, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Sedky, N.K.; El Gammal, Z.H.; Wahba, A.E.; Mosad, E.; Waly, Z.Y.; El-Fallal, A.A.; Arafa, R.K.; El-Badri, N. The molecular basis of cytotoxicity of α-spinasterol from Ganoderma resinaceum: Induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines. J. Cell. Biochem. 2018, 119, 3892–3902. [Google Scholar] [CrossRef] [PubMed]
- Lawal, B.A.; Udobre, A.; Elufioye, T.O.; Ahmadu, A.A.; Olanipekun, B. Novel cholinesterase inhibitory effect of α-spinasterol isolated from the leaves of Acacia auriculiformis A. CUNN Ex. Benth (Fabaceae). Trop. J. Pharm. Res. 2020, 19, 1473–1479. [Google Scholar] [CrossRef]
- Alarcón-Enos, J.; Muñoz-Núñez, E.; Gutiérrez, M.; Quiroz-Carreño, S.; Pastene-Navarrete, E.; Cespedes, A.C. Dyhidro-β-agarofurans natural and synthetic as acetylcholinesterase and COX inhibitors: Interaction with the peripheral anionic site (AChE-PAS), and anti-inflammatory potentials. J. Enzym. Ihib. Med. Chem. 2022, 37, 1845–1856. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, J.; Astudillo, L.; Gutierrez, M. Inhibition of acetylcholinesterase activity by dihydro-β-agarofuran sesquiterpenes isolated from Chilean Celastraceae. Z. Naturforsch. C. 2008, 63, 853–856. [Google Scholar] [CrossRef] [PubMed]
- Eldeen, I.M.; Habsah, M.; Tan, W.; Siong, J.Y.; Yosie, A.; Tengku-Muhammad, T.S. Cyclooxygenase, 5-lipoxygenase and acetylcholinesterase inhibitory effects of fractions containing, α-guaiene and oil isolated from the root of Xylocarpus moluccensis. Res. J. Med. Plant 2016, 10, 286–294. [Google Scholar] [CrossRef]
- Ishola, I.O.; Osele, M.O.; Chijioke, M.C.; Adeyemi, O.O. Isorhamnetin enhanced cortico-hippocampal learning and memory capability in mice with scopolamine-induced amnesia: Role of antioxidant defense, cholinergic and BDNF signaling. Brain Res. 2019, 1712, 188–196. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Akobirshoeva, A.; Zilfikarov, I.N.; Vennos, C. Isorhamnetin and quercetin derivatives as anti-acetylcholinesterase principles of marigold (Calendula officinalis) flowers and preparations. Int. J. Mol. Sci. 2017, 18, 1685. [Google Scholar] [CrossRef]
- Al-Humaidi, J.Y.; Al-Qudah, M.A.; Al-Saleem, M.S.; Alotaibi, S.M. Antioxidant activity and chemical composition of essential oils of selected Cleome species growing in Saudi Arabia. JJC 2019, 14, 6256–6266. [Google Scholar]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Al-Jaber, H.I.; Tashtoush, H.I.; Lahham, J.N. Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Al-Dalahmeh, Y.; Almahmoud, S.A.J.; Al-Bataineh, N.; Alghzawi, T.A.; Alhamzani, A.G.; Al-Mutairi, A.A.; Al-Qudah, M.A. Scrophularia peyronii Post. from Jordan: Chemical composition of essential oil and phytochemical profiling of crude extracts and their in vitro antioxidant activity. Life 2023, 13, 1404. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, J.; Wang, T.; Zhao, L.; Ye, G.; Shi, F.; Li, Y.; Tang, H.; Dong, T.; Zhou, X.; et al. A novel method for synthesis of α-spinasterol and its antibacterial activities in combination with ceftiofur. Fitoterapia 2017, 119, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Sokeng, S.D.; Talla, E.; Sakava, P.; Fokam Tagne, M.A.; Henoumont, C.; Sophie, L.; Mbafor, J.T.; Tchuenguem Fohouo, F.N. Anti-inflammatory and analgesic effect of arachic acid ethyl ester isolated from propolis. Biomed Res. Int. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.M.; Lourenço, N.M.; Afonso, C.A. Separation of secondary alcohols via enzymatic kinetic resolution using fatty esters as reusable acylating agents. Tetrahedron Asymmetry 2010, 21, 952–956. [Google Scholar] [CrossRef]
- Refaat, J.; Abdel-Lateff, A.; Kamel, M.S.; Ali, A.A.; Ramadan, M.A.; Okino, T.; Nagata, Y. Antifouling alkaloids from Crinum augustum (Amaryllidaceae). Pharmacogn. Res. 2009, 1, 43–52. [Google Scholar]
- Al-Zereini, W.A.; Al-Trawneh, I.N.; Al-Qudah, M.A.; TumAllah, H.M.; Abudayeh, Z.H.; Hijazin, T. Antibacterial, antioxidant, and cytotoxic activities of Syzygium aromaticum (L.) Merr. & Perry essential oil with identification of its chemical constituents. Z. Naturforsch. C 2023, 78, 105–112. [Google Scholar]
- Al-Qaralleh, O.S.; Al-Zereini, W.A.; Al-Mustafa, A.H. Antibacterial, antioxidant and neuroprotective activities of crude extract from the endophytic fungus Fusarium sp. isolate OQ-Fus-2-F from Euphorbia sp. plant. JPPRes 2021, 9, 755–765. [Google Scholar] [CrossRef]
No. | Rt | KI a | KILit. | Compound | Type | % A b | Mode of Identification |
---|---|---|---|---|---|---|---|
1 | 4.045 | 800 | 800 | n-Octane | AC | 0.11 | MS c, KI, CoI d |
2 | 5.788 | 885 | 895 | (4Z)-Heptenal | AC | 0.19 | MS, KI |
3 | 6.869 | 927 | 926 | Tricyclene | MH | 0.37 | MS, KI |
4 | 8.132 | 971 | 975 | Sabinene | MH | 0.05 | MS, KI |
5 | 8.634 | 988 | 979 | β-Pinene | MH | 0.06 | MS, KI |
6 | 10.331 | 1034 | 1029 | β-Phellandrene | MH | 0.76 | MS, KI, CoI |
7 | 13.034 | 110 | 1100 | Undecane | AC | 0.16 | MS, KI |
8 | 23.32 | 1335 | 1338 | δ-Elemene | SH | 0.29 | MS, KI, CoI |
9 | 25.24 | 1379 | 1376 | α-Copaene | SH | 0.45 | MS, KI |
10 | 25.582 | 1387 | 1388 | β-Bourbonene | SH | 0.07 | MS, KI |
11 | 25.781 | 1392 | 1388 | β-Cubebene | SH | 0.81 | MS, KI |
12 | 26.986 | 1420 | 1418 | Ethyl-(2E)-decanoate | EC | 0.83 | MS, KI |
13 | 27.553 | 1438 | 1439 | α-Guaiene | SH | 14.11 | MS, KI, CoI |
14 | 27.708 | 1438 | 1441 | Aromadendrene | SH | 0.64 | MS, KI |
15 | 27.911 | 1443 | 1444 | Guaia-6,9-diene | SH | 0.06 | MS, KI, CoI |
16 | 28.212 | 1450 | 1460 | allo-Aromadendrene | SH | 0.23 | MS, KI |
17 | 28.497 | 1457 | 1463 | cis-Cadina-1(6),4-diene | SH | 0.33 | MS, KI, CoI |
18 | 28.724 | 1462 | 1472 | Dauca-5,8-diene | SH | 1.47 | MS, KI |
19 | 30.086 | 1495 | 1496 | Valencene | SH | 13.28 | MS, KI |
20 | 30.358 | 1502 | 1503 | β-Dihydro agarofuran | OS | 23.50 | MS, KI |
21 | 30.534 | 1506 | 1502 | γ-Patchoulene | SH | 23.79 | MS, KI |
22 | 30.827 | 1514 | 1522 | 7-epi-α-Selinene | SH | 8.98 | MS, KI |
23 | 30.891 | 1515 | 1509 | Germacrene A | SH | 1.24 | MS, KI |
24 | 31.083 | 1520 | 1512 | δ-Amorphene | SH | 0.22 | MS, KI |
25 | 31.231 | 1524 | 1529 | Zonarene | SH | 0.46 | MS, KI |
26 | 31.437 | 1529 | 1523 | δ-Cadinene | SH | 1.82 | MS, KI, CoI |
27 | 31.535 | 1532 | 1534 | trans-Cadina-1,4-diene | SH | 0.05 | MS, KI |
28 | 31.888 | 1540 | 1538 | α-Cadinene | SH | 0.05 | MS, KI |
29 | 32.037 | 1544 | 1535 | 10-epi-Cubebol | OS | 0.06 | MS, KI |
30 | 33.912 | 1592 | 1595 | cis-dihydro-Mayurone | OS | 0.91 | MS, KI |
31 | 36.093 | 1650 | 1640 | epi-α-Cadinol | OS | 0.08 | MS, KI |
32 | 36.193 | 1643 | α-Muurolol | OS | 0.25 | MS, KI, CoI | |
33 | 36.652 | 1664 | 1663 | 7-epi-α-Eudesmol | OS | 0.48 | MS, KI |
34 | 36.9 | 1671 | 1669 | (E)-10,11-Dihydroatlantone | OS | 0.05 | MS, KI |
35 | 37.219 | 1680 | 1670 | 14-Hydroxy-9-epi-(E)-caryophyllene | OS | 0.12 | MS, KI |
36 | 38.978 | 1728 | 1723 | Methyl-tetradecanoate | EC | 0.11 | MS, KI |
37 | 39.624 | 1746 | 1741 | Mint sulfide | Other | 0.11 | MS, KI |
38 | 42.937 | 1841 | 1868 | (E)-β-Santalol acetate | OS | 1.45 | MS, KI |
39 | 43.134 | 1846 | 1860 | (Z,Z)-Farnesyl acetone | OS | 0.38 | MS, RI |
40 | 44.269 | 1880 | 1900 | dihydro-Columellarin | OS | 0.08 | MS, KI |
41 | 44.935 | 1899 | 1901 | epi-Laurenene | DH | 0.19 | MS, KI |
42 | 45.906 | 1929 | 1931 | Beyerene | DH | 0.27 | MS, KI |
43 | 49.684 | 2046 | 2036 | (Z)-Falcarinol | AC | 0.11 | MS, KI |
45 | 51.178 | 2092 | 2085 | Methyl linoleate | EC | 0.20 | MS, KI |
46 | 51.378 | 2098 | 2133 | Linoleic acid | EC | 0.28 | MS, KI, CoI |
47 | 57.138 | 2275 | 2189 | 1-Docosene | AC | 0.09 | MS, KI |
48 | 62.515 | 2441 | 2332 | Methyl daniellate | OD | 0.18 | MS, KI |
Total identified | 99.76 |
Extract/Reference | TPC | TFC | IC50 (µg/mL) | |
---|---|---|---|---|
DPPH• | ABTS•+ | |||
HDEO | - | - | 45.4 ± 0.50 | 41.0 ± 0.70 |
BLM | 790.76 ± 1.86 | 150.61 ± 2.50 | 11.3 ± 0.20 | 18.0 ± 0.35 |
BLB | 849.46 ± 4.37 | 405.23 ± 1.47 | 8.0 ± 0.79 | 10.0 ± 0.54 |
Ascorbic acid | - | - | 1.58 ± 0.03 | 1.78 ± 0.06 |
α-Tocopherol | - | - | 1.79 ± 0.01 | 2.33 ± 0.01 |
Sample | IC50 (µg/mL) | ||
---|---|---|---|
MDA MB-231 | Fibroblast | Vero | |
BLM | 44.7 ± 1.3 a | 50.8 ± 2.1 a | 106.9 ± 2.5 b |
Daunorubicin | 2.3 ± 0.2 * | 0.5 ± 0.1 * | 6.2 ± 1.7 * |
Sample | % Inhibition | IC50 | |
---|---|---|---|
µg/mL | |||
100 | 300 | ||
HDEO | 66.1 ± 4.1 | 72.3 ± 7.3 | 43.8 ± 2.7 a |
BLB | 21.1 ± 2.0 | 62.9 ± 4.1 | 217.9 ± 5.3 b |
BLM | 39.4 ± 2.4 | 73.5 ± 3.4 | 139.1 ± 5.6 c |
Galantamine | - | - | 6.4 ± 2.1 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bataineh, N.; Abu-Orabi, S.T.; Shannag, S.B.; Al-Jaber, H.I.; Bataineh, T.T.; Al-Zereini, W.A.; Al-Qudah, M.A. Uncovering the Chemical Composition and Biological Potentials of Bupleurum lancifolium Hornem. from Jordan. Molecules 2024, 29, 2730. https://doi.org/10.3390/molecules29122730
Al-Bataineh N, Abu-Orabi ST, Shannag SB, Al-Jaber HI, Bataineh TT, Al-Zereini WA, Al-Qudah MA. Uncovering the Chemical Composition and Biological Potentials of Bupleurum lancifolium Hornem. from Jordan. Molecules. 2024; 29(12):2730. https://doi.org/10.3390/molecules29122730
Chicago/Turabian StyleAl-Bataineh, Nezar, Sultan T. Abu-Orabi, Suhair B. Shannag, Hala I. Al-Jaber, Tareq T. Bataineh, Wael A. Al-Zereini, and Mahmoud A. Al-Qudah. 2024. "Uncovering the Chemical Composition and Biological Potentials of Bupleurum lancifolium Hornem. from Jordan" Molecules 29, no. 12: 2730. https://doi.org/10.3390/molecules29122730
APA StyleAl-Bataineh, N., Abu-Orabi, S. T., Shannag, S. B., Al-Jaber, H. I., Bataineh, T. T., Al-Zereini, W. A., & Al-Qudah, M. A. (2024). Uncovering the Chemical Composition and Biological Potentials of Bupleurum lancifolium Hornem. from Jordan. Molecules, 29(12), 2730. https://doi.org/10.3390/molecules29122730