Health-Related Composition and Bioactivity of an Agave Sap/Prickly Pear Juice Beverage
Abstract
:1. Introduction
2. Results
2.1. Composition of AS, PPJ, and the Beverage
HPLC Quantification of the Monomers and Oligomers of the Carbohydrates of the AS, PPJ, and Beverage
2.2. Potential Health-Promoting Compounds of the AS, PPJ, and Combined Beverage
2.2.1. Content of Total Bioactive Compounds in the AS, PPJ, and Beverage
2.2.2. Antioxidant Capacity
2.2.3. Glycemic Regulatory Properties
2.3. In Vitro Gut Fermentation
2.3.1. Gas Production
2.3.2. Variation in pH
2.3.3. Short-Chain Fatty Acid Production
3. Discussion
3.1. Composition of the AS, PPJ, and Beverage
3.1.1. HPLC Quantification of the Monomers and Oligomers of the Carbohydrates of AS, PPJ, and Beverage
3.1.2. Content of Total Bioactive Compounds in AS, PPJ, and Beverage
3.2. Potential Health-Promoting Compounds of the AS, PPJ, and Combined Beverage
3.2.1. Antioxidant Capacity
3.2.2. Glycemic Regulatory Properties
3.2.3. Interactions of Bioactive Compounds
3.3. In Vitro Gut Fermentation
3.3.1. Gas Production
3.3.2. Variation in pH
3.3.3. Short-Chain Fatty Acid Production
4. Materials and Methods
4.1. Collection
4.2. Composition
4.3. Free Carbohydrate Quantification
4.4. Bioactive Compounds Analysis of the AS, PPJ, and Beverage
4.4.1. Total Phenolic Compounds and Flavonoids
4.4.2. Identification and Quantification of Individual Bioactive Compounds
4.5. Health-Related Biofunctionality
4.5.1. Antioxidant Capacity
4.5.2. Glycemic Index
4.5.3. Enzymatic Inhibition of Carbohydrases
4.6. In Vitro Gut Fermentation
Quantification of Fermentation By-Products
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazir, M.; Arif, S.; Khan, R.S.; Nazir, W.; Khalid, N.; Maqsood, S. Opportunities and challenges for functional and medicinal beverages: Current and future trends. Trends Food Sci. Technol. 2019, 88, 513–526. [Google Scholar] [CrossRef]
- Li, X.; Siddique, K.H.M. Future Smart Food: Harnessing the potential of neglected and underutilized species for Zero Hunger. Matern. Child. Nutr. 2020, 16 (Suppl. S3), e13008. [Google Scholar] [CrossRef]
- Ursell, L.K.; Haiser, H.J.; Van Treuren, W.; Garg, N.; Reddivari, L.; Vanamala, J.; Dorrestein, P.C.; Turnbaugh, P.J.; Knight, R. The intestinal metabolome: An intersection between microbiota and host. Gastroenterology 2014, 146, 1470–1476. [Google Scholar] [CrossRef]
- Van Loo, J.; Cummings, J.; Delzenne, N.; Englyst, H.; Franck, A.; Hopkins, M.; Kok, N.; Macfarlane, G.; Newton, D.; Quigley, M.; et al. Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 1999, 81, 121–132. [Google Scholar]
- Tungland, B. Direct Physiological Effects on Local Gi and Indirect Systemic Effects of Prebiotic Fructan Treatment, and its Role in Disease Prevention and Therapy. In Human Microbiota in Health and Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 155–196. [Google Scholar] [CrossRef]
- Wang, B.; Yao, M.; Lv, L.; Ling, Z.; Li, L. The human microbiota in health and disease. Engineering 2017, 3, 71–82. [Google Scholar] [CrossRef]
- Tungland, B. Short-Chain Fatty Acid Production and Functional Aspects on Host Metabolism. In Human Microbiota in Health and Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 37–106. [Google Scholar] [CrossRef]
- Cani, P.D.; Everard, A.; Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 2013, 13, 935–940. [Google Scholar] [CrossRef]
- Wang, M.; Wichienchot, S.; He, X.; Fu, X.; Huang, Q.; Zhang, B. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 2019, 88, 1–9. [Google Scholar] [CrossRef]
- Alvarado-Jasso, G.M.; Camacho-Díaz, B.H.; Arenas Ocampo, M.L.; Jiménez-Ferrer, J.E.; Mora-Escobedo, R.; Osorio-Díaz, P. Prebiotic effects of a mixture of agavins and green banana flour in a mouse model of obesity. J. Funct. Foods. 2020, 64, 103685. [Google Scholar] [CrossRef]
- Ortiz-Basurto, R.I.; Pourcelly, G.; Doco, T.; Williams, P.; Dormer, M.; Belleville, M.P. Analysis of the main components of the aguamiel produced by the maguey-pulquero (Agave mapisaga) throughout the harvest period. J. Agric. Food Chem. 2008, 56, 3682–3687. [Google Scholar] [CrossRef]
- Moreno-Vilet, L.; Camacho-Ruiz, R.M.; Portales-Pérez, D.P. Prebiotic Agave Fructans and Immune Aspects. In Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 165–179. [Google Scholar] [CrossRef]
- Márquez-Berber, S.R.; Torcuato-Calderón, C.; Almaguer-Vargas, G.; Colinas-León, M.T.; Gardezi, A.K. El sistema productivo del nopal tunero (Opuntia albicarpa y O. megacantha) en axapusco, Estado de México. Problemática y alternativas. Rev. Chapingo Ser. Hortic. 2012, 18, 81–93. [Google Scholar]
- Daniloski, D.; D’Cunha, N.M.; Speer, H.; McKune, A.J.; Alexopoulos, N.; Panagiotakos, D.B.; Petkoska, A.T.; Naumovski, N. Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. Food Biosci. 2022, 47, 101665. [Google Scholar] [CrossRef]
- Ondarza, M.A. Cactus Mucilages: Nutritional, Health Benefits and Clinical Trials. J. Med. Biol. Sci. Res. 2016, 2, 87–103. [Google Scholar]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef]
- Qelliny, M.; Aly, U.; Elgarhy, O.; Khaled, K. Colon Drug Delivery Systems for the Treatment of Inflammatory Bowel Disease. J. Adv. Biomed. Pharm. Sci. 2019, 2, 164–184. [Google Scholar] [CrossRef]
- Chen, G.; Li, C.; Chen, K. Fructooligosaccharides: A review on their mechanisms of action and effects. Stud. Nat. Prod. Chem. 2016, 48, 209–229. [Google Scholar]
- Macfarlane, G.T.; McBain, A.J. The Human Colonic Microbiota. In Colonic Microbiota, Nutrition and Health; Springer: Dordrecht, The Netherlands, 1999; pp. 1–25. [Google Scholar]
- Díaz Medina, E.M.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chem. 2007, 103, 38–45. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Humphries, K.H.; Gotay, C.; Mena-Sánchez, G.; Salas-Salvadó, J.; Esmaillzadeh, A.; Ignaszewski, A.; Sarrafzadegan, N. Trace minerals intake: Risks and benefits for cardiovascular health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1334–1346. [Google Scholar] [CrossRef]
- El Kossori, R.L.; Villaume, C.; El Boustani, E.; Sauvaire, Y.; Méjean, L. Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant Foods Hum Nutr. 1998, 52, 263–270. [Google Scholar] [CrossRef]
- Habibi, Y.; Heyraud, A.; Mahrouz, M.; Vignon, M.R. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydr. Res. 2004, 339, 1119–1127. [Google Scholar] [CrossRef]
- Santos-Zea, L.; Leal-Díaz, A.M.; Jacobo-Velázquez, D.A.; Rodríguez-Rodríguez, J.; García-Lara, S.; Gutiérrez-Uribe, J.A. Characterization of concentrated agave saps and storage effects on browning, antioxidant capacity and amino acid content. J. Food Compos. Anal. 2016, 45, 113–120. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Das, A.B.; Goud, V.V.; Das, C. Phenolic Compounds as Functional Ingredients in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 285–323. [Google Scholar] [CrossRef]
- Shahidi, F.; Chandrasekara, A.; Zhong, Y. Bioactive phytochemicals in vegetables. Handb. Veg. Veg. Process Second. Ed. 2018, 1–2, 181–222. [Google Scholar]
- Kashyap, P.; Riar, C.S.; Jindal, N. Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT 2022, 153, 112570. [Google Scholar] [CrossRef]
- Park, S.H.; Jeong, B.G.; Song, W.; Jung, J.; Chun, J. Enhancement of functional and sensory properties of eastern prickly pear (Opuntia humifusa) by fermentation with yuza peel and guava leaf. Food Biosci. 2021, 41, 100921. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Sobeh, M.; Badr, W.K.; Abdelfattah, M.A.O.; Ali, Z.Y.; El-Tantawy, M.E.; Rabeh, M.A.; Wink, M. HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi J. Biol. Sci. 2020, 27, 2829–2838. [Google Scholar] [CrossRef]
- Márquez-Lemus, M.; Valadez-Carmona, L.; García-Zebadúa, J.C.; Ortiz-Moreno, A.; Vázquez-Landaverde, P.A.; Alamilla-Beltrán, L.; Mora-Escobedo, R. Assessment of the variation of the volatile compound composition and antioxidant activity in Opuntia fruits liquors during the maceration process. CYTA J. Food 2019, 17, 501–508. [Google Scholar] [CrossRef]
- Chavez-Santoscoy, R.A.; Gutierrez-Uribe, J.A.; Serna-Saldivar, S.O.; Serna-Saldívar, S.O. Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum. Nutr. 2009, 64, 146–152. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Romero-López, M.R.; Osorio-Díaz, P.; Flores-Morales, A.; Robledo, N.; Mora-Escobedo, R. Chemical composition, antioxidant capacity and prebiotic effect of aguamiel (Agave atrovirens) during in vitro fermentation. Rev. Mex. Ing. Quim. 2015, 14, 281–292. [Google Scholar]
- Ramírez-Cuellar, L.I.; Alfaro-Rodríguez, C.; Ramos-Muñoz, L.G.; Hernández -Castañeda, V.N.; Carranza-Concha, J. Capacidad antioxidante, fenoles totales y análisis microbiológico del Aguamiel. Investig. Desarro. En. Cienc. Tecnol. Aliment 2018, 3, 495–500. [Google Scholar]
- Islam, J.; Kabir, Y. Effects and mechanisms of antioxidant-rich functional beverages on disease prevention. In Functional and Medicinal Beverages: Volume 11: The Science of Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 157–198. [Google Scholar] [CrossRef]
- Khouloud, A.; Abedelmalek, S.; Chtourou, H.; Souissi, N. The effect of Opuntia ficus-indica juice supplementation on oxidative stress, cardiovascular parameters, and biochemical markers following yo-yo Intermittent recovery test. Food Sci. Nutr. 2018, 6, 259–268. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76, 6–15. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef]
- Virgen-Carrillo, C.A.; Valdés Miramontes, E.H.; Fonseca Hernández, D.; Luna-Vital, D.A.; Mojica, L. West Mexico Berries Modulate α-Amylase, α-Glucosidase and Pancreatic Lipase Using In Vitro and In Silico Approaches. Pharmaceuticals 2022, 15, 1081. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhan, J.; Liu, X.L.; Wang, Y.; Ji, J.; He, Q.Q. Dietary flavonoids intake and risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Clin. Nutr. 2014, 33, 59–63. [Google Scholar] [CrossRef]
- Tveter, K.M.; Villa-Rodriguez, J.A.; Cabales, A.J.; Zhang, L.; Bawagan, F.G.; Duran, R.M.; Roopchand, D.E. Polyphenol-induced improvements in glucose metabolism are associated with bile acid signaling to intestinal farnesoid X receptor. BMJ Open Diabetes Res. Care 2020, 8, e001386. [Google Scholar] [CrossRef]
- Cerda de los Santos, K.L. Evaluación del Contenido de Fenólicos, Actividad Antioxidante y Efectos Antidiabéticos de Extractos de Jarabes de Agave (A. atrovirens Karw). Instituto Tecnológico y de Estudios Superiores de Monterrey. 2010. Available online: http://hdl.handle.net/11285/570267 (accessed on 28 May 2024).
- Gómez-Maqueo, A.; Antunes-Ricardo, M.; Welti-Chanes, J.; Cano, M.P. Digestive stability and bioaccessibility of antioxidants in prickly pear fruits from the Canary Islands: Healthy foods and ingredients. Antioxidants 2020, 9, 164. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Ruengsamran, T.; Kampa, P.; Sompong, W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement. Altern. Med. 2012, 12, 110. [Google Scholar] [CrossRef]
- Alongi, M.; Frías Celayeta, J.M.; Vriz, R.; Kinsella, G.K.; Rulikowska, A.; Anese, M. In vitro digestion nullified the differences triggered by roasting in phenolic composition and α-glucosidase inhibitory capacity of coffee. Food Chem. 2021, 342, 128289. [Google Scholar] [CrossRef]
- Mi, S.; Liu, J.; Liu, X.; Fu, Y.; Yi, J.; Cai, S. Inhibitory Effects of Myricetrin and Dihydromyricetin toward α -Glucosidase and Pancreatic Lipase with Molecular Docking Analyses and Their Interaction. J. Food Qual. 2021, 2021, 9943537. [Google Scholar] [CrossRef]
- Fu, M.; Shen, W.; Gao, W.; Namujia, L.; Yang, X.; Cao, J.; Sun, L. Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase. Bioorg Chem. 2021, 115, 105235. [Google Scholar] [CrossRef]
- Meza, D.L.M.; Valdés, R.M. Inhibición in vitro de las enzimas alfa-amilasa y lipasa pancreática por fracciones fenólicas de extractos etanólicos de hojas de Yacón (Smallanthus sonchifolius Poepp. & Endl). Av. En. Quim. 2015, 10, 33–40. [Google Scholar]
- Ross, S.A.; Gulve, E.A.; Wang, M. Chemistry and biochemistry of type 2 diabetes. Chem. Rev. 2004, 104, 1255–1282. [Google Scholar] [CrossRef]
- Deehan, E.C.; Duar, R.M.; Armet, A.M.; Perez-Muñoz, M.E.; Jin, M.; Walter, J. Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol. Spectr. 2017, 5, 1–24. [Google Scholar] [CrossRef]
- Magallanes-Cruz, P.A.; Flores-Silva, P.C.; Bello-Perez, L.A. Starch Structure Influences Its Digestibility: A Review. J. Food Sci. 2017, 82, 2016–2023. [Google Scholar] [CrossRef]
- Moro Cantu-Jungles, T.; do Nascimento, G.E.; Zhang, X.; Iacomini, M.; Cordeiro, L.M.C.; Hamaker, B.R. Soluble xyloglucan generates bigger bacterial community shifts than pectic polymers during in vitro fecal fermentation. Carbohydr. Polym. 2019, 206, 389–395. [Google Scholar] [CrossRef]
- Gulfi, M.; Arrigoni, E.; Amadò, R. The chemical characteristics of apple pectin influence its fermentability in vitro. LWT Food Sci. Technol. 2006, 39, 1001–1004. [Google Scholar] [CrossRef]
- Gulfi, M.; Arrigoni, E.; Amadò, R. Influence of structure on in vitro fermentability of commercial pectins and partially hydrolysed pectin preparations. Carbohydr. Polym. 2005, 59, 247–255. [Google Scholar] [CrossRef]
- Peralta-García, I.; González-Muñoz, F.; Elena, R.A.M.; Sánchez-Flores, A.; López Munguía, A. Evolution of fructans in Aguamiel (Agave Sap) suring the plant production lifetime. Front. Nutr. 2020, 7, 566950. [Google Scholar] [CrossRef]
- Wong, J.M.W.; De Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 3, 235–243. [Google Scholar] [CrossRef]
- Astó, E.; Méndez, I.; Rodríguez-Prado, M.; Cuñé, J.; Espadaler, J.; Farran-Codina, A. Effect of the degree of polymerization of fructans on ex vivo fermented human gut microbiome. Nutrients 2019, 11, 1293. [Google Scholar] [CrossRef]
- García-Gamboa, R.; Gradilla-Hernández, M.S.; Ortiz-Basurto, R.I.; García-Reyes, R.A.; González-Avila, M. Assessment of intermediate-and long-chains agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract. Rev. Mex. Ing. Quim. 2020, 19, 827–838. [Google Scholar] [CrossRef]
- Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Env. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef]
- Van De Wiele, T.; Boon, N.; Possemiers, S.; Jacobs, H.; Verstraete, W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol. 2007, 102, 452–460. [Google Scholar] [CrossRef]
- Hernot, D.C.; Boileau, T.W.; Bauer, L.L.; Middelbos, I.S.; Murphy, M.R.; Swanson, K.S.; Fahey, G.C. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. J. Agric. Food Chem. 2009, 57, 1354–1361. [Google Scholar] [CrossRef]
- Stewart, M.L.; Timm, D.A.; Slavin, J.L. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Nutr. Res. 2008, 28, 329–334. [Google Scholar] [CrossRef]
- Cockburn, D.W.; Koropatkin, N.M. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J. Mol. Biol. 2016, 428, 3230–3252. [Google Scholar] [CrossRef]
- Smith, E.A.; Macfarlane, G.T. Enumeration of amino acid fermenting bacteria in the human large intestine: Effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Immunol. Med. Microbiol. 1998, 25, 355–368. [Google Scholar] [CrossRef]
- Aguirre, M.; Eck, A.; Koenen, M.E.; Savelkoul, P.H.M.; Budding, A.E.; Venema, K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res. Microbiol. 2016, 167, 114–125. [Google Scholar] [CrossRef]
- García-Mendoza, A.J. Flora del Valle de Tehuacán-Cuicatlán-Fascículo 88 AGAVACEAE. In Flora del Valle de Teguacán; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2011; p. 102. Available online: http://www.ibiologia.unam.mx/barra/publicaciones/floras_tehuacan/F82_Laur.pdf (accessed on 3 June 2024).
- SAGARPA. AGAVE (Agave spp.) Guía Técnica para la Descripción Varietal [Internet]. Tlalnepantla, Mexico. 2014. Available online: https://www.gob.mx/cms/uploads/attachment/file/120821/Agave.pdf (accessed on 3 June 2024).
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; Volume I–II. [Google Scholar]
- Ball, S.; Bullock, S.; Lloyd, L.; Mapp, K.; Ewen, A. Analysis of carbohydrates, alcohols, and organic acids by Ion-Exchange Chromatography. Agil. Hi-Plex. Columns Appl. Compend. Agil. Technol. 2011, 1, 1–98. [Google Scholar]
- Kurdyukov, E.E.; Vodop’yanova, O.A.; Moiseeva, I.Y.; Semenova, E.F. A method for the quantitative determination of the total flavonoid content of moringa leaves (Moringa oleifera). Mosc. Univ. Chem. Bull. 2021, 76, 224–226. [Google Scholar] [CrossRef]
- Ruiz Canizales, J.; Heredia, J.B.; Domínguez Avila, J.A.; Madera Santana, T.J.; Villegas Ochoa, M.A.; Robles Sánchez, R.M.; González Aguilar, G.A. Microencapsulation of blue maize (Zea mays L.) polyphenols in two matrices: Their stability during storage and in vitro digestion release. J. Food Meas. Charact. 2019, 13, 892–900. [Google Scholar] [CrossRef]
- Villamarín-Gallegos, D.; Oviedo-Pereira, D.G.; Evangelista-Lozano, S.; Sepúlveda-Jiménez, G.; Molina-Torres, J.; Rodríguez-Monroy, M. Trichoderma asperellum, an inoculant for the production of steviol glycosides in Stevia rebaudiana Bertoni plants micropropagated in a temporary immersion bioreactor. Rev. Mex. Ing. Quim. 2020, 19, 1153–1161. [Google Scholar] [CrossRef]
- Mothibedi, K. A Study of Electrospun Nanofibers and Diatomaceous Earth Materials for the Extraction of Alkaloids, Flavonoids and Aromatic Amines in Various Matrices; Rhodes University: Makhanda, South Africa, 2013. [Google Scholar]
- Leite, A.V.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Pastore, G.M.; Maróstica Júnior, M.R. Antioxidant potential of rat plasma by administration of freeze-dried jaboticaba peel (Myrciaria jaboticaba Vell Berg). J. Agric. Food Chem. 2011, 59, 2277–2283. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Lu, Y.L.; Han, C.H.; Hou, W.C.; Aluko, R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem. 2009, 116, 277–284. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Goñi, I.; Martín-Carrón, N. In vitro fermentation and hydration properties of commercial diatary fiber-rich supplements. Nutr. Res. 1998, 18, 1077–1089. [Google Scholar] [CrossRef]
- González-Vázquez, M.; Calderón-Domínguez, G.; Mora-Escobedo, R.; Salgado-Cruz, M.P.; Arreguín-Centeno, J.H.; Monterrubio-López, R. Polysaccharides of nutritional interest in jicama (Pachyrhizus erosus) during root development. Food Sci. Nutr. 2022, 10, 1146–1158. [Google Scholar] [CrossRef]
- Yuan, T.; Wan, C.; Liu, K.; Seeram, N.P. New maplexins F-I and phenolic glycosides from red maple (Acer rubrum) bark. Tetrahedron. 2012, 68, 959–964. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Garcia-Alonso, A.; Goni, I.; Bravo, L. In vitro determination of the indigestible fraction in foods: An alternative to dietary fiber analysis. J. Agric. Food Chem. 2000, 48, 3342–3347. [Google Scholar] [CrossRef]
Component (g/100 mL) | AS | PPJ | Beverage |
---|---|---|---|
Moisture | 90.04 ± 0.11 a | 87.53 ± 0.08 c | 89.80 ± 0.09 b |
Ash | 0.13 ± 0.03 a | 0.30 ± 0.06 a | 0.18 ± 0.04 a |
Protein | 0.25 ± 0.25 a | 0.21 ± 0.15 a | 0.26 ± 0.18 a |
Carbohydrate (mg/100 mL) | AS | PPJ | Beverage |
---|---|---|---|
Nystose | 78.52 ± 3.93 a | 52.57 ± 1.88 b | 72.98 ± 3.83 a |
Kestose | 44.8 ± 2.24 a | 33.45 ± 1.67 c | 39.26 ± 1.96 b |
Sucrose | 74.43 ± 2.62 a | 71.51 ± 3.29 a | 70.08 ± 3.50 a |
Glucose | 43.46 ± 2.17 c | 226.27 ± 4.09 a | 142.15 ± 5.67 b |
Fructose | 191.43 ± 9.65 a | 103.26 ± 2.36 c | 158.16 ± 8.86 b |
Galacturonic acid | 113.08 ± 6.43 c | 411.96 ± 1.91 a | 217.74 ± 13.46 b |
Mannose | 238.54 ± 13.63 a | - | 151.28 ± 2.04 b |
Galactose | - | 192.24 ± 4.63 a | 100.85 ± 1.15 b |
Rhamnose | 222.53 + 10.87 b | 274.09 ± 4.84 a | 227.00 ± 1.58 b |
Total quantified | 1006.79 ± 25.29 c | 1365.35 ± 29.51 a | 1179.50 ± 77.84 b |
AS | PPJ | Beverage | |
---|---|---|---|
TPC (GAE) | 22.95 ± 1.29 c | 62.415 ± 0.24 a | 48.179 ± 0.42 b |
Flavonoids (QE) | 1.33 ± 0.18 c | 15.92 ± 1.85 a | 7.52 ± 0.10 b |
Catechin (mg/100 mL) | 30.00 ± 1.40 c | 63.53 ± 3.20 a | 46.05 ± 2.16 b |
Protocatechuic acid (mg/100 mL) | 33.89 ± 0.36 c | 84.43 ± 0.75 a | 55.03 ± 0.39 b |
Gallic acid (mg/100 mL) | 1.31 ± 0.09 | 1.23 ± 0.02 a | 1.58 ± 0.05 a |
Myricetin (mg/100 mL) | 10.28 ± 4.86 a | - | 4.70 ± 1.20 a |
Total quantified (mg/100 mL) | 79.97 ± 6.79 c | 153.78 ± 4.1 a | 112.56 ± 3.88 b |
Ascorbic acid (mg/100 mL) | 4.49 ± 0.08 a | 4.59 ± 0.13 a | 5.20 ± 0.08 a |
Method | AS | PPJ | Beverage |
---|---|---|---|
PFRAP (%) | 96.05 ± 0.26 c | 88.04 ± 0.99 a | 95.29 ± 0.11 b |
SASA (%) | 10.34 ± 0.16 c | 15.63 ± 0.52 a | 13.47 ± 0.30 b |
ABTS (TE) | 873.33 ± 70.24 c | 2853.33 ± 23.01 a | 2000.00 ± 55.34 b |
Glycemic index | |||
AS | PPJ | Beverage | |
37.35 ± 0.42 a | 30.04 ± 0.44 b | 26.39 ± 0.19 c | |
Enzymatic inhibition (%) | |||
α-amylase | - | NA | - |
α-glucosidase | 93.92 ± 6.44 b | NA | 95.56 ± 3.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque-Buitrago, L.F.; Solórzano-Lugo, I.E.; González-Vázquez, M.; Jiménez-Martínez, C.; Hernández-Aguirre, M.A.; Osorio-Díaz, P.; Calderón-Domínguez, G.; Loera-Castañeda, V.; Mora-Escobedo, R. Health-Related Composition and Bioactivity of an Agave Sap/Prickly Pear Juice Beverage. Molecules 2024, 29, 2742. https://doi.org/10.3390/molecules29122742
Duque-Buitrago LF, Solórzano-Lugo IE, González-Vázquez M, Jiménez-Martínez C, Hernández-Aguirre MA, Osorio-Díaz P, Calderón-Domínguez G, Loera-Castañeda V, Mora-Escobedo R. Health-Related Composition and Bioactivity of an Agave Sap/Prickly Pear Juice Beverage. Molecules. 2024; 29(12):2742. https://doi.org/10.3390/molecules29122742
Chicago/Turabian StyleDuque-Buitrago, Luisa Fernanda, Iraham Enrique Solórzano-Lugo, Marcela González-Vázquez, Cristian Jiménez-Martínez, María Antonia Hernández-Aguirre, Perla Osorio-Díaz, Georgina Calderón-Domínguez, Verónica Loera-Castañeda, and Rosalva Mora-Escobedo. 2024. "Health-Related Composition and Bioactivity of an Agave Sap/Prickly Pear Juice Beverage" Molecules 29, no. 12: 2742. https://doi.org/10.3390/molecules29122742
APA StyleDuque-Buitrago, L. F., Solórzano-Lugo, I. E., González-Vázquez, M., Jiménez-Martínez, C., Hernández-Aguirre, M. A., Osorio-Díaz, P., Calderón-Domínguez, G., Loera-Castañeda, V., & Mora-Escobedo, R. (2024). Health-Related Composition and Bioactivity of an Agave Sap/Prickly Pear Juice Beverage. Molecules, 29(12), 2742. https://doi.org/10.3390/molecules29122742