Assessment of the Activity of Nitroisoxazole Derivatives against Trypanosoma cruzi
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Derivates
2.2. Electrochemical Studies
2.3. Monitoring of Electrochemically Generated Radicals by ESR
2.4. Capacity Antioxidant by ORAC-FL
2.5. Biological Studies
2.5.1. Trypanocidal and Cytotoxicity Activity
2.5.2. Generation of ROS on T. cruzi
2.5.3. Inhibition of Cruzipain Enzyme on T. cruzi
3. Materials and Methods
3.1. Synthesis
3.1.1. Synthesis of (E)-N,N-Dimethyl-2-(3-methyl-4-nitroisoxazol-5-yl)ethen-1-amine (1)
General Procedure to Obtain Compounds 2 and 3
3.1.2. (E)-3-Methyl-4-nitro-5-(2-(pyrrolidin-1-yl)vinyl)isoxazole (2)
3.1.3. (E)-3-Methyl-4-nitro-5-(2-(piperidin-1-yl)vinyl)isoxazole (3)
General Procedure to Obtain Compounds 4–17
3.1.4. (E)-3-Methyl-4-nitro-5-styrylisoxazole (4)
3.1.5. (E)-5-(4-Fluorostyryl)-3-methyl-4-nitroisoxazole (5)
3.1.6. (E)-3-Methyl-4-nitro-5-(4-(trifluoromethyl)styryl)isoxazole (6)
3.1.7. (E)-3-Methyl-4-nitro-5-(4-nitrostyryl)isoxazole (7)
3.1.8. (E)-4-(2-(3-Methyl-4-nitroisoxazol-5-yl)vinyl)benzene-1,2-diol (8)
3.1.9. (E)-2-Methoxy-4-(2-(3-methyl-4-nitroisoxazol-5-yl)vinyl)phenol (9)
3.1.10. (E)-5-(2-(Furan-2-yl)vinyl)-3-methyl-4-nitroisoxazole (10)
3.1.11. (E)-7-(Diethylamino)-3-(2-(3-methyl-4-nitroisoxazol-5-yl)vinyl)-2H-chromen-2-one (11)
3.1.12. (E)-3-Methyl-4-nitro-5-(2-(1-phenyl-1H-indol-3-yl)vinyl)isoxazole (12)
3.1.13. (E)-5-(2-(1-(4-Chlorophenyl)-1H-indol-3-yl)vinyl)-3-methyl-4-nitroisoxazole (13)
3.1.14. (E)-3-Methyl-4-nitro-5-(2-(1-(p-tolyl)-1H-indol-3-yl)vinyl)isoxazole (14)
3.1.15. (E)-5-(2-Bromostyryl)-3-methyl-4-nitroisoxazole (15)
3.1.16. (E)-5-(3-Bromostyryl)-3-methyl-4-nitroisoxazole (16)
3.1.17. (E)-5-(4-Bromostyryl)-3-methyl-4-nitroisoxazole (17)
3.2. Electrochemical Studies
3.2.1. Cyclic Voltammetry
3.2.2. Radical Generation by ESR-Electrochemical
3.3. Oxygen Radical Antioxidant Capacity-Fluorescein (ORAC-FL)
3.4. Biological Assays
3.4.1. Trypanocidal and Cytotoxicity Activity
3.4.2. Generation of Reactive Oxygen Species (ROS) on Trypomastigotes of T. cruzi
3.4.3. Inhibition of Cruzipain Enzyme by Computational Docking Calculations and ADME Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Souza, W. Basic Cell Biology of Trypanosoma Cruzi. Curr. Pharm. Des. 2002, 8, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Estani, S.S.; Segura, E.L. Protozoan Diseases: Chagas Disease. Int. Encycl. Public Health 2017, 70–78. [Google Scholar] [CrossRef]
- World Health Organization. Control of Chagas Disease: Second Report of the WHO Expert Committee; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Chatelain, E. Chagas Disease Drug Discovery: Toward a New Era. J. Biomol. Screen. 2015, 20, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, C.J.; Hernandez, S.; Olmedo, W.; Abuhamidah, A.; Traina, M.I.; Sanchez, D.R.; Soverow, J.; Meymandi, S.K. Safety Profile of Nifurtimox for Treatment of Chagas Disease in the United States. Clin. Infect. Dis. 2016, 63, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Saravia, S.G.; Haberland, A.; Wallukat, G.; Schimke, I. Chronic Chagas’ Heart Disease: A Disease on Its Way to Becoming a Worldwide Health Problem: Epidemiology, Etiopathology, Treatment, Pathogenesis and Laboratory Medicine. Heart Fail. Rev. 2010, 17, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. Chagas Disease in the United States: A Public Health Approach. Clin. Microbiol. Rev. 2019, 33, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Urbina, J.A. Recent Clinical Trials for the Etiological Treatment of Chronic Chagas Disease: Advances, Challenges and Perspectives. J. Eukaryot. Microbiol. 2015, 62, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E. Chagas Disease Research and Development: Is There Light at the End of the Tunnel? Comput. Struct. Biotechnol. J. 2017, 15, 98–103. [Google Scholar] [CrossRef]
- Inst, M.; Cruz, O.; Moncayo, Á.; Silveira, A.C. Current Epidemiological Trends for Chagas Disease in Latin America and Future Challenges in Epidemiology, Surveillance and Health Policy. Mem. Inst. Oswaldo Cruz 2009, 104, 17–30. [Google Scholar] [CrossRef]
- Bern, C.; Montgomery, S.P.; Herwaldt, B.L.; Rassi, A.; Marin-Neto, J.A.; Dantas, R.O.; Maguire, J.H.; Acquatella, H.; Morillo, C.; Kirchhoff, L.V.; et al. Evaluation and Treatment of Chagas Disease in the United States: A Systematic Review. JAMA 2007, 298, 2171–2181. [Google Scholar] [CrossRef]
- Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A Mechanism for Cross-Resistance to Nifurtimox and Benznidazole in Trypanosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 5022–5027. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.S.; Bot, C.; Wilkinson, S.R. Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites. J. Biol. Chem. 2011, 286, 13088–13095. [Google Scholar] [CrossRef] [PubMed]
- Sysak, A.; Obmińska-Mrukowicz, B. Isoxazole Ring as a Useful Scaffold in a Search for New Therapeutic Agents. Eur. J. Med. Chem. 2017, 137, 292–309. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, R.; Dambrós, B.P.; Höehr de Moraes, M.; Grand, L.; Jacolot, M.; Popowycz, F.; Steindel, M.; Schenkel, E.P.; Campos Bernardes, L.S. Natural-Product-Inspired Design and Synthesis of Two Series of Compounds Active against Trypanosoma Cruzi: Insights into Structure–Activity Relationship, Toxicity, and Mechanism of Action. Bioorg Chem. 2022, 119, 105492. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, R.; de Moraes, M.H.; Zimmermann, L.A.; Schenkel, E.P.; Steindel, M.; Bernardes, L.S.C. Design and Synthesis of a New Series of 3,5-Disubstituted Isoxazoles Active against Trypanosoma Cruzi and Leishmania Amazonensis. Eur. J. Med. Chem. 2017, 128, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.A.; de Moraes, M.H.; da Rosa, R.; de Melo, E.B.; Paula, F.R.; Schenkel, E.P.; Steindel, M.; Bernardes, L.S.C. Synthesis and SAR of New Isoxazole-Triazole Bis-Heterocyclic Compounds as Analogues of Natural Lignans with Antiparasitic Activity. Bioorg. Med. Chem. 2018, 26, 4850–4862. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.A.N.; Xavier, V.F.; Coelho, G.S.; Sales Junior, P.A.; Romanha, A.J.; Murta, S.M.F.; Carneiro, C.M.; Taylor, J.G. Synthesis of 3,5-Diarylisoxazole Derivatives and Evaluation of in Vitro Trypanocidal Activity. J. Braz. Chem. Soc. 2018, 29, 269–277. [Google Scholar] [CrossRef]
- Aoki, M.P.; Guiñazú, N.L.; Pellegrini, A.V.; Gotoh, T.; Masih, D.T.; Gea, S. Cruzipain, a Major Trypanosoma Cruzi Antigen, Promotes Arginase-2 Expression and Survival of Neonatal Mouse Cardiomyocytes. Am. J. Physiol. Cell Physiol. 2004, 286, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Schnapp, A.R.; Eickhoff, C.S.; Sizemore, D.; Curtiss, R.; Hoft, D.F. Cruzipain Induces Both Mucosal and Systemic Protection against Trypanosoma Cruzi in Mice. Infect. Immun. 2002, 70, 5065–5074. [Google Scholar] [CrossRef]
- Bellera, C.L.; Balcazar, D.E.; Vanrell, M.C.; Casassa, A.F.; Palestro, P.H.; Gavernet, L.; Labriola, C.A.; Gálvez, J.; Bruno-Blanch, L.E.; Romano, P.S.; et al. Computer-Guided Drug Repurposing: Identification of Trypanocidal Activity of Clofazimine, Benidipine and Saquinavir. Eur. J. Med. Chem. 2015, 93, 338–348. [Google Scholar] [CrossRef]
- Dere, R.; Monasterolo, C.; Moccia, M.; Adamo, M.F.A. Preparation and Reactivity of [2-(3-Methyl-4-Nitro-Isoxazol-5-Yl)-Vinyl]-Amines. Tetrahedron Lett. 2015, 56, 7168–7171. [Google Scholar] [CrossRef]
- Toro, P.M.; Oyarzo, J.; Arancibia, R.; Wilkinson, S.; Artigas, V.; Fuentealba, M.; Moncada-Basualto, M.; Olea-Azar, C.; Vega, A.; Hugo Klahn, A. Comparison of Chemical and Biological Properties of Organometallic Complexes Containing 4- and 5-Nitrothienyl Groups. Polyhedron 2021, 193, 114872. [Google Scholar] [CrossRef]
- Maria Aravena, C.; Claudio Olea, A.; Cerecetto, H.; González, M.; Maya, J.D.; Rodríguez-Becerra, J. Potent 5-Nitrofuran Derivatives Inhibitors of Trypanosoma Cruzi Growth: Electrochemical, Spectroscopic and Biological Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Gerpe, A.; Aguirre, G.; Kemmerling, U.; Piro, O.E.; Arán, V.J.; Maya, J.D.; Olea-Azar, C.; González, M.; Cerecetto, H. Study of 5-Nitroindazoles’ Anti-Trypanosoma Cruzi Mode of Action: Electrochemical Behaviour and ESR Spectroscopic Studies. Eur. J. Med. Chem. 2009, 44, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Olea-Azar, C.; Atria, A.M.; Di Maio, R.; Seoane, G.; Cerecetto, H. Electron spin resonance and cyclic voltammetry studies of nitrofurane and nitrothiophene analogues of nifurtimox. Spectrosc. Lett. 1998, 31, 849–857. [Google Scholar] [CrossRef]
- Toro, P.M.; Peralta, F.; Oyarzo, J.; Wilkinson, S.R.; Zavala, M.; Arancibia, R.; Moncada-Basualto, M.; Brito, I.; Cisterna, J.; Klahn, A.H.; et al. Evaluation of Trypanocidal Properties of Ferrocenyl and Cyrhetrenyl N-Acylhydrazones with Pendant 5-Nitrofuryl Group. J. Inorg. Biochem. 2021, 219, 111428. [Google Scholar] [CrossRef] [PubMed]
- Folch-Cano, C.; Olea-Azar, C.; Arán, V.J.; Diaz-Urrutia, C. ESR and Electrochemical Study of 1,2-Disubstituted 5-Nitroindazolin-3-Ones and 2-Substituted 3-Alkoxy-5-Nitro-2H-Indazoles: Reactivity and Free Radical Production Capacity in the Presence of Biological Systems. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Arán, V.J.; Boiani, L.; Olea-Azar, C.; Lavaggi, M.L.; González, M.; Cerecetto, H.; Maya, J.D.; Carrasco-Pozo, C.; Cosoy, H.S. New Potent 5-Nitroindazole Derivatives as Inhibitors of Trypanosoma Cruzi Growth: Synthesis, Biological Evaluation, and Mechanism of Action Studies. Bioorg Med. Chem. 2009, 17, 8186–8196. [Google Scholar] [CrossRef]
- Toro, P.; Suazo, C.; Acuña, A.; Fuentealba, M.; Artigas, V.; Arancibia, R.; Olea-Azar, C.; Moncada, M.; Wilkinson, S.; Klahn, A.H. Cyrhetrenylaniline and New Organometallic Phenylimines Derived from 4- and 5-Nitrothiophene: Synthesis, Characterization, X-Ray Structures, Electrochemistry and in Vitro Anti-T. Brucei Activity. J. Organomet. Chem. 2018, 862, 13–21. [Google Scholar] [CrossRef]
- Hossain, M.M.; Shaha, S.K.; Aziz, F. Antioxidant Potential Study of Some Synthesized N-Heterocycles. Bangladesh Med. Res. Counc. Bull. 2009, 35, 49–52. [Google Scholar] [CrossRef]
- Kumar, N.; Gusain, A.; Kumar, J.; Singh, R.; Hota, P.K. Anti-Oxidation Properties of 2-Substituted Furan Derivatives: A Mechanistic Study. J. Lumin. 2021, 230, 117725. [Google Scholar] [CrossRef]
- Pozo-Martínez, J.; Vázquez-Rodríguez, S.; Olea-Azar, C.; Moncada-Basualto, M. Evaluation of ORAC Methodologies in Determination of Antioxidant Capacity of Binary Combinations of Quercetin and 3-(3,4,5-Trihydroxybenzoyl) Coumarin Derivatives. Arab. J. Chem. 2022, 15, 104298. [Google Scholar] [CrossRef]
- Todorov, L.; Saso, L.; Kostova, I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals 2023, 16, 651. [Google Scholar] [CrossRef] [PubMed]
- Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, Antioxidant and Cytoprotective Activity Evaluation of C-3 Substituted Indole Derivatives. Sci. Rep. 2021, 11, 15425. [Google Scholar] [CrossRef] [PubMed]
- Justino, G.C.; Correia, C.F.; Mira, L.; Borges Dos Santos, R.M.; Martinho Simões, J.A.; Silva, A.M.; Santos, C.; Gigante, B. Antioxidant Activity of a Catechol Derived from Abietic Acid. J. Agric. Food Chem. 2006, 54, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Aravena, M.C.; Figueroa, R.; Olea-Azar, C.; Arán, V.J. Esr, electrochemical and orac studies of nitro compounds with potential antiprotozoal actvity. J. Chil. Chem. Soc. 2010, 55, 244–249. [Google Scholar] [CrossRef]
- Fonseca-Berzal, C.; Ibáñez-Escribano, A.; de Castro, S.; Escario, J.A.; Gómez-Barrio, A.; Arán, V.J. 5-Nitroindazole-Based Compounds: Further Studies for Activity Optimization as Anti-Trypanosoma Cruzi Agents. Acta Trop. 2022, 234, 106607. [Google Scholar] [CrossRef]
- do Vale Chaves e Mello, F.; Castro Salomão Quaresma, B.M.; Resende Pitombeira, M.C.; Araújo de Brito, M.; Farias, P.P.; Lisboa de Castro, S.; Salomão, K.; Silva de Carvalho, A.; Oliveira de Paula, J.I.; de Brito Nascimento, S.; et al. Novel Nitroimidazole Derivatives Evaluated for Their Trypanocidal, Cytotoxic, and Genotoxic Activities. Eur. J. Med. Chem. 2020, 186, 111887. [Google Scholar] [CrossRef]
- Pozo-Martínez, J.; Salgado, F.; Liempi, A.; Kemmerling, U.; Mera-Adasme, R.; Olea-Azar, C.; Moncada-Basualto, M.; Borges, F.; Uriarte, E.; Matos, M.J. Synthesis and Study of the Trypanocidal Activity of Catechol-Containing 3-Arylcoumarins, Inclusion in β-Cyclodextrin Complexes and Combination with Benznidazole. Arab. J. Chem. 2022, 15, 103641. [Google Scholar] [CrossRef]
- Pandhurnekar, C.P.; Pandhurnekar, H.C.; Mungole, A.J.; Butoliya, S.S.; Yadao, B.G. A Review of Recent Synthetic Strategies and Biological Activities of Isoxazole. J. Heterocycl. Chem. 2023, 60, 537–565. [Google Scholar] [CrossRef]
- Alves, M.J.M.; Kawahara, R.; Viner, R.; Colli, W.; Mattos, E.C.; Thaysen-Andersen, M.; Larsen, M.R.; Palmisano, G. Comprehensive Glycoprofiling of the Epimastigote and Trypomastigote Stages of Trypanosoma Cruzi. J. Proteom. 2017, 151, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Salgado, F.; Moncada-Basualto, M.; Pozo-Martinez, J.; Liempi, A.; Kemmerling, U.; Maya, J.D.; Jaque, P.; Borges, F.; Uriarte, E.; Matos, M.J.; et al. Chemical and Biological Analysis of 4-Acyloxy-3-Nitrocoumarins as Trypanocidal Agents. Arab. J. Chem. 2021, 14, 102975. [Google Scholar] [CrossRef]
- Díaz-Urrutia, C.A.; Olea-Azar, C.A.; Zapata, G.A.; Lapier, M.; Mura, F.; Aguilera-Venegas, B.; Arán, V.J.; López-Múñoz, R.A.; Maya, J.D. Biological and Chemical Study of Fused Tri- and Tetracyclic Indazoles and Analogues with Important Antiparasitic Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 95, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Scarim, C.B.; Jornada, D.H.; Machado, M.G.M.; Ferreira, C.M.R.; dos Santos, J.L.; Chung, M.C. Thiazole, Thio and Semicarbazone Derivatives against Tropical Infective Diseases: Chagas Disease, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria. Eur. J. Med. Chem. 2019, 162, 378–395. [Google Scholar] [CrossRef]
- Souto-Padron, T.; Campetella, O.E.; Cazzulo, J.J.; De Souza, W. Cysteine Proteinase in Trypanosoma Cruzi: Immunocytochemical Localization and Involvement in Parasite-Host Cell Interaction. J. Cell Sci. 1990, 96, 485–490. [Google Scholar] [CrossRef]
- Piras, M.M.; Henriquez, D.; Piras, R. The Effect of Proteolytic Enzymes and Protease Inhibitors on the Interaction Trypanosoma Cruzi—Fibroblasts. Mol. Biochem. Parasitol. 1985, 14, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, E.; Cazzulo, J.J. Digestion of Human Immunoglobulin G by the Major Cysteine Proteinase (Cruzipain) from Trypanosoma Cruzi. FEMS Microbiol. Lett. 1990, 70, 337–341. [Google Scholar] [CrossRef]
- Cazzulo, J.; Stoka, V.; Turk, V. The Major Cysteine Proteinase of Trypanosoma Cruzi: A Valid Target for Chemotherapy of Chagas Disease. Curr. Pharm. Des. 2001, 7, 1143–1156. [Google Scholar] [CrossRef]
- Stoka, V.; Turk, B.; Schendel, S.L.; Kim, T.H.; Cirman, T.; Snipas, S.J.; Ellerby, L.M.; Bredesen, D.; Freeze, H.; Abrahamson, M.; et al. Lysosomal Protease Pathways to Apoptosis: Cleavage of bid, not pro-caspases, is the most likely route. J. Biol. Chem. 2001, 276, 3149–3157. [Google Scholar] [CrossRef]
- Caputto, M.E.; Fabian, L.E.; Benítez, D.; Merlino, A.; Ríos, N.; Cerecetto, H.; Moltrasio, G.Y.; Moglioni, A.G.; González, M.; Finkielsztein, L.M. Thiosemicarbazones Derived from 1-Indanones as New Anti-Trypanosoma Cruzi Agents. Bioorg Med. Chem. 2011, 19, 6818–6826. [Google Scholar] [CrossRef]
- Dhar Dwivedi, K.; Marri, R.; Nandigama, K.; Chowhan, R.L. An Efficient Solvent-Free Synthesis of 3-Methyl-4-Nitro-5-Styrylisoxazoles Using Solid Nano-Titania. J. Chem. Sci. 2018, 130, 129. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Ma, X.; Wang, R. Organocatalyzed Asymmetric Vinylogous Michael Addition of α,β-Unsaturated γ-Butyrolactam. Chem. Commun. 2013, 49, 9329–9331. [Google Scholar] [CrossRef] [PubMed]
- Rajanarendar, E.; Raju, S.; Siva Rami Reddy, A.; Govardhan Reddy, K.; Nagi Reddy, M. A Fast and Highly Efficient Protocol for Synthesis of Pyrrolo[2,3-d]Isoxazoles and a New Series of Novel Benzyl Bis-Pyrrolo[2,3-d]Isoxazoles Using Task-Specific Ionic Liquids as Catalyst and Green Solvent. Chem. Pharm. Bull. 2010, 58, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein–Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J. Detection and Characterisation of Radicals Using Electron Paramagnetic Resonance (EPR) Spin Trapping and Related Methods. Methods 2016, 109, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Duling, D.R. Simulation of Multiple Isotropic Spin-Trap EPR Spectra. J. Magn. Reson. B 1994, 104, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Moncada-Basualto, M.; Lapier, M.; Maya, J.D.; Matsuhiro, B.; Olea-Azar, C.; Delogu, G.L.; Uriarte, E.; Santana, L.; Matose, M.J. Evaluation of Trypanocidal and Antioxidant Activities of a Selected Series of 3-Amidocoumarins. Med. Chem. 2018, 14, 573–584. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Santos-Martins, D.; Solis-Vasquez, L.; Tillack, A.F.; Sanner, M.F.; Koch, A.; Forli, S. Accelerating A Uto D Ock 4 with GPUs and Gradient-Based Local Search. J. Chem. Theory Comput. 2021, 17, 1060–1073. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules OPEN. Nat. Publ. Group. 2017, 7, 42717. [Google Scholar] [CrossRef]
Compound | −EpcI | −EpcII | −EpaIII | −EpaI | −EpaII | −EpaIII | |ΔEp| | Ipa/Ipc |
---|---|---|---|---|---|---|---|---|
1 | 1.33 | 1.19 | 140 | −0.44 | ||||
2 | 1.32 | 1.20 | 120 | 0.32 | ||||
3 | 1.29 | 1.19 | 100 | −0.19 | ||||
4 | 0.89 | 1.14 | 0.80 | 1.01 | 90 | −0.09 | ||
5 | 0.82 | 0.71 | 110 | −0.02 | ||||
6 | 0.74 | 1.33 | ||||||
7 | 0.71 | 0.64 | 70 | −0.44 | ||||
8 | 0.93 | 1.17 | 1.02 | 150 | −0.34 | |||
9 | 0.66 | 0.91 | 1.14 | 0.82 | 1.07 | 160 | −0.17 | |
10 | 0.84 | 0.74 | 100 | −0.16 | ||||
11 | 0.79 | 1.21 | 1.34 | |||||
12 | 0.96 | 0.87 | 90 | −0.36 | ||||
13 | 0.75 | 0.99 | 0.90 | 90 | −0.41 | |||
14 | 0.72 | 0.96 | 0.84 | 120 | −0.32 | |||
15 | 0.80 | 1.10 | 1.50 | 0.70 | 0.95 | 1.35 | 100 | −0.14 |
16 | 0.78 | 1.41 | 1.70 | |||||
17 | 0.81 | 1.53 | 1.62 |
Compound | ORAC-FL Index | Compound | ORAC-FL Index | Compound | ORAC-FL Index |
---|---|---|---|---|---|
1 | 0.9 ± 0.2 | 7 | 0.57 ± 0.08 | 13 | 0.4 ± 0.1 |
2 | 0.14 ± 0.05 | 8 | 1.0 ± 0.1 | 14 | 0.4 ± 0.1 |
3 | 0.52 ± 0.05 | 9 | 0.7 ± 0.2 | 15 | 0.8 ± 0.3 |
4 | 0.33 ± 0.06 | 10 | 0.36 ± 0.07 | 16 | 0.54 ± 0.07 |
5 | 0.74 ± 0.05 | 11 | 0.21 ± 0.01 | 17 | 0.4 ± 0.2 |
6 | 0.8 ± 0.1 | 12 | 0.4 ± 0.1 | Trolox | 1.00 ± 0.01 |
Compound | % T. cruzi | Log p | Compound | % T. cruzi | Log p | ||
---|---|---|---|---|---|---|---|
Trypomastigote | Epimastigote | Trypomastigote | Epimastigote | ||||
1 | n.a [c] | 18 ± 1 | 1.12 | 12 | 16 ± 2 | 5 ± 2 | 5.61 |
2 | n.a | 19 ± 3 | 1.75 | 13 | 14 ± 3 | n.a | 6.38 |
3 | 20 ± 2 | 17 ± 5 | 2.31 | 14 | 3 ± 1 | 27 ± 2 | 6.11 |
4 | 0 ± 2 | 47 ± 4 | 3.07 | 15 | n.a | 29 ± 2 | 3.94 |
5 | 19 ± 3 | 47 ± 1 | 3.21 | 16 | 22 ± 6 | 19 ± 3 | 3.94 |
6 | n.a | 28 ± 2 | 3.95 | 17 | 15 ± 5 | 27 ± 1 | 3.94 |
7 | n.a | 36 ± 2 | 2.81 | P1 [b] | n.a | 14 ± 3 | 0.57 |
8 | 16 ± 2 | 32 ± 5 | 1.81 | P2 [b] | n.a | 5 ± 2 | 1.43 |
9 | 15 ± 3 | 52 ± 4 | 2.25 | Nfx [a] | 74 ± 1 | 98.9 ± 0.3 | |
10 | n.a | 42 ± 2 | 2.25 | ||||
11 | 10 ± 4 | n.a | 4.07 |
Compound | T. cruzi (µM) | Vero Cells (µM) | SI [b] | ||
---|---|---|---|---|---|
T [c] | E [d] | T [c] | E [d] | ||
3 | >400 | >400 | >400 | nd [a] | nd |
5 | >400 | 400 ± 3 | >400 | nd | nd |
8 | >400 | > 400 | 398.1 ± 0.3 | nd | nd |
9 | 400 ± 2 | 166 ± 4 | 244.5 ± 0.5 | 0.6 | 1.5 |
11 | 400 ± 5 | >400 | 125.9 ± 0.1 | 0.3 | nd |
12 | >400 | >400 | 141 ± 6 | nd | nd |
13 | >400 | >400 | 102 ± 6 | nd | nd |
16 | >400 | >400 | 141 ± 4 | nd | nd |
17 | >400 | >400 | >400 | nd | nd |
Nfx | 10.04 ± 0.1 | - | 172.9 ± 0.1 | 17.9 | - |
Compound | Docking Score (kcal·mol−1) | Compound | Docking Score (kcal·mol−1) |
---|---|---|---|
Native | −10.03 | 9 | −5.36 |
1 | −4.13 | 10 | −4.60 |
2 | −4.58 | 11 | −6.65 |
3 | −4.82 | 12 | −5.18 |
4 | −4.90 | 13 | −5.09 |
5 | −4.77 | 14 | −5.64 |
6 | −4.91 | 15 | −5.22 |
7 | −4.29 | 16 | −5.48 |
8 | −5.09 | 17 | −5.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moncada-Basualto, M.; Saavedra-Olavarría, J.; Rivero-Jerez, P.S.; Rojas, C.; Maya, J.D.; Liempi, A.; Zúñiga-Bustos, M.; Olea-Azar, C.; Lapier, M.; Pérez, E.G.; et al. Assessment of the Activity of Nitroisoxazole Derivatives against Trypanosoma cruzi. Molecules 2024, 29, 2762. https://doi.org/10.3390/molecules29122762
Moncada-Basualto M, Saavedra-Olavarría J, Rivero-Jerez PS, Rojas C, Maya JD, Liempi A, Zúñiga-Bustos M, Olea-Azar C, Lapier M, Pérez EG, et al. Assessment of the Activity of Nitroisoxazole Derivatives against Trypanosoma cruzi. Molecules. 2024; 29(12):2762. https://doi.org/10.3390/molecules29122762
Chicago/Turabian StyleMoncada-Basualto, Mauricio, Jorge Saavedra-Olavarría, Paula S. Rivero-Jerez, Cristian Rojas, Juan D. Maya, Ana Liempi, Matías Zúñiga-Bustos, Claudio Olea-Azar, Michel Lapier, Edwin G. Pérez, and et al. 2024. "Assessment of the Activity of Nitroisoxazole Derivatives against Trypanosoma cruzi" Molecules 29, no. 12: 2762. https://doi.org/10.3390/molecules29122762
APA StyleMoncada-Basualto, M., Saavedra-Olavarría, J., Rivero-Jerez, P. S., Rojas, C., Maya, J. D., Liempi, A., Zúñiga-Bustos, M., Olea-Azar, C., Lapier, M., Pérez, E. G., & Pozo-Martínez, J. (2024). Assessment of the Activity of Nitroisoxazole Derivatives against Trypanosoma cruzi. Molecules, 29(12), 2762. https://doi.org/10.3390/molecules29122762