Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PhIN-CPP and ThIN-CPP
2.2. Visible Light Response and Energy Band Analysis of Polymers
2.3. Photocatalytic H2 Production Properties of PhIN-CPP and ThIN-CPP
2.4. Investigations on the Generation and Separation of Photovoltaic Carriers of Polymers
2.5. Electron Paramagnetic Resonance (EPR) Analysis
2.6. DFT and TD-DFT Calculations for PhIN-CPP and ThIN-CPP
2.7. Photocatalytic Mechanism
3. Experiments
3.1. Materials and Reagents
3.2. Synthesis of 2,4,6-tris (5-bromothiophen-2-yl)-1,3,5-triazine
3.3. Synthesis of PhIN-CPP and ThIN-CPP
3.4. Characterization
3.5. Photocatalytic H2 Evolution Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.Q.; Wang, J.M.; Zhang, S.; Zhang, Y.X.; Zhang, J.; Li, R.J.; Peng, T.Y. Porphyrin-based conjugated polymers as intrinsic semiconducting photocatalysts for robust H2 generation under visible light. ACS Appl. Energy Mater. 2019, 2, 5665–5676. [Google Scholar] [CrossRef]
- Samy, M.M.; Mekhemer, I.M.A.; Mohamed, M.G.; Elsayed, M.H.; Lin, K.H.; Chen, Y.K.; Wu, T.L.; Chou, H.H.; Kuo, S.W. Conjugated microporous polymers incorporating Thiazolo[5,4-d]thiazole moieties for sunlight-driven hydrogen production from water. Chem. Eng. J. 2022, 446, 137158. [Google Scholar] [CrossRef]
- Yu, C.L.; Chen, F.Y.; Zeng, D.B.; Xie, Y.; Zhou, W.Q.; Liu, Z.; Wei, L.F.; Yang, K.; Li, D.H. A facile phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties. Nanoscale 2019, 11, 7720–7733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.; Wang, X.C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108. [Google Scholar] [CrossRef]
- Lan, Z.A.; Ren, W.; Chen, X.; Zhang, Y.F.; Wang, X.C. Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Appl. Catal. B 2019, 245, 596–603. [Google Scholar] [CrossRef]
- Karayilan, M.; Brezinski, W.P.; Clary, K.E.; Lichtenberger, D.L.; Glass, R.S.; Pyun, J. Catalytic metallopolymers from [2Fe-2S] clusters: Artificial metalloenzymes for hydrogen production. Angew. Chem. Int. Ed. 2019, 131, 7617–7630. [Google Scholar] [CrossRef]
- Tan, Z.R.; Xing, Y.Q.; Cheng, J.Z.; Zhang, G.; Shen, Z.Q.; Zhang, Y.J.; Liao, G.F.; Chen, L.; Liu, S.Y. EDOT-based conjugated polymers accessed via C–H direct arylation for efficient photocatalytic hydrogen production. Chem. Sci. 2022, 13, 1725–1733. [Google Scholar] [CrossRef]
- Lin, W.C.; Elsayed, M.H.; Jayakumar, J.; Ting, L.Y.; Chang, C.L.; Elewa, A.M.; Wang, W.S.; Chung, C.C.; Lu, C.Y.; Chou, H.H. Design and synthesis of cyclometalated iridium-based polymer dots as photocatalysts for visible-light-driven hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 32072–32081. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef]
- Liu, L.; Gu, X.; Ji, Z.; Zou, W.; Tang, C.; Gao, F.; Dong, L. Anion assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions. J. Phys. Chem. C 2013, 117, 18578–18587. [Google Scholar] [CrossRef]
- Liu, L.; Ji, Z.; Zou, W.; Gu, X.; Deng, Y.; Gao, F.; Tang, C.; Dong, L. In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. ACS Catal. 2013, 3, 2052–2061. [Google Scholar] [CrossRef]
- Wang, W.H.; Ting, L.Y.; Jayakumar, J.; Chang, C.L.; Lin, W.C.; Chung, C.C.; Elsayed, M.H.; Lu, C.Y.; Elewa, A.M.; Chou, H.H. Design and synthesis of phenylphosphine oxide-based polymer photocatalysts for highly efficient visible light-driven hydrogen evolution. Sustain. Energy Fuels 2020, 4, 5264–5270. [Google Scholar] [CrossRef]
- Sprick, R.S.; Aitchison, C.M.; Berardo, E.; Turcani, L.; Wilbraham, L.; Alston, B.M.; Jelfs, K.E.; Zwijnenburg, M.A.; Cooper, A.I. Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. J. Mater. Chem. A 2018, 6, 11994–12003. [Google Scholar] [CrossRef]
- Mohamed, M.G.; EL-Mahdy, A.F.M.; Takashi, Y.; Kuo, S.W. Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide high-performance CO2 uptake and super capacitance. New J. Chem. 2020, 44, 8241–8253. [Google Scholar] [CrossRef]
- Feng, X.; Pi, Y.; Song, Y.; Brzezinski, C.; Xu, Z.; Li, Z.; Lin, W. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yan, W.; Wang, X.F.; Li, P.; Gao, W.Y.; Zou, H.H.; Wu, S.M.; Ding, K.J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060. [Google Scholar] [CrossRef] [PubMed]
- Sprick, R.S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N.J.; Slater, B.J.; Blanc, F.; Zwijnenburg, M.A.; Adams, D.J.; Cooper, A.I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 2016, 55, 1824–1828. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.F.; Mao, N.; Feng, S.; Zhang, C.; Wang, F.; Chen, Y.; Zeng, J.H.; Jiang, J.X. Perylene-containing conjugated microporous polymers for photocatalytic hydrogen evolution. Macromol. Chem. Phys. 2017, 218, 1700049. [Google Scholar] [CrossRef]
- Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140, 1423–1427. [Google Scholar] [CrossRef]
- Saber, A.F.; Elewa, A.M.; Chou, H.H.; EL-Mahdy, A.F.M. Donor-acceptor carbazole-based conjugated microporous polymers as photocatalysts for visible-light-driven H2 and O2 evolution from water splitting. Appl. Catal. B Environ. 2022, 316, 121624. [Google Scholar] [CrossRef]
- Chang, C.L.; Elewa, A.M.; Wang, J.H.; Chou, H.H.; EL-Mahdy, A.F.M. Donor–acceptor conjugated microporous polymers based on Thiazolo [5,4-d]thiazole building block for high-performance visible-light-induced H2 production. Microporous Mesoporous Mater. 2022, 345, 112258. [Google Scholar] [CrossRef]
- Ou, H.H.; Chen, X.R.; Lin, L.H.; Fang, Y.X.; Wang, X.C. Biomimetic donor-acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation. Angew. Chem. Int. Ed. 2018, 57, 8729–8733. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.F.; Mao, N.; Zhang, C.; Wang, X.; Zeng, J.H.; Chen, Y.; Wang, F.; Jiang, J.X. Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 228, 1–9. [Google Scholar] [CrossRef]
- Xiang, Y.G.; Wang, X.P.; Rao, L.; Wang, P.; Huang, D.K.; Ding, X.; Zhang, X.H.; Wang, S.Y.; Chen, H.; Zhu, Y.F. Conjugated polymers with sequential fluorination for enhanced photocatalytic H2 evolution via proton-coupled Electron transfer. ACS Energy Lett. 2018, 3, 2544–2549. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.B.; Zhang, Y.Z.; Yang, X.C.; Bai, G.Y.; Zhang, Q.F.; Chen, Y.; Lan, X.W. Structural engineering of donor–π–acceptor conjugated polymers for facilitating charge separation: A dual-functional photocatalysis. Macromolecules 2022, 55, 10842–10853. [Google Scholar] [CrossRef]
- Zang, S.H.; Zhang, G.G.; Lan, Z.A.; Zheng, D.D.; Wang, X.C. Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. Appl. Catal. B Environ. 2019, 251, 102–111. [Google Scholar] [CrossRef]
- Li, W.; Huang, X.; Zeng, T.; Liu, Y.A.; Hu, W.; Yang, H.; Zhang, Y.; Wen, K. Thiazolo [5,4-d]thiazole-based donor-acceptor covalent organic framework for sunlight driven hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 1869–1874. [Google Scholar] [CrossRef]
- Hayat, A.; Raziq, F.; Khan, M.; Khan, J.; Mane, S.; Ahmad, A.; Rahman, M.; Khan, W. Fusion of conjugated bicyclic co-polymer within polymeric carbon nitride for high photocatalytic performance. J. Colloid Interface Sci. 2019, 554, 627–639. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, W.; Xu, Y.; Zhang, C.; Wang, Q.; Yang, T.; Gao, X.; Wang, F.; Yan, C.; Jiang, J.X. Effect of linking pattern of dibenzothiophene-S,S-dioxide-containing conjugated microporous polymers on the photocatalytic performance. Macromolecules 2018, 51, 9502–9508. [Google Scholar] [CrossRef]
- Xiao, W.J.; Wang, Y.; Wang, W.R.; Li, J.; Wang, J.; Xu, Z.W.; Li, J.; Yao, J.; Li, W.S. Diketopyrrolopyrrole-based donor-acceptor conjugated microporous polymers for visible-light-driven photocatalytic hydrogen production from water. Macromolecules 2020, 53, 2454–2463. [Google Scholar] [CrossRef]
- Kailasam, K.; Mesch, M.B.; Mçhlmann, L.; Baar, M.; Blechert, S.; Schwarze, M.; Schrçder, M.; Schomacker, R.; Senker, J.; Thomas, A. Donor–acceptor-type heptazine-based polymer networks for photocatalytic hydrogen evolution. Energy Technol. 2016, 4, 744–750. [Google Scholar] [CrossRef]
- Mothika, V.S.; Sutar, P.; Verma, P.; Das, S.; Pati, S.K.; Maji, T.K. Regulating charge–transfer in conjugated microporous polymers for photocatalytic hydrogen evolution. Chem. Eur. J. 2019, 25, 3867–3874. [Google Scholar] [CrossRef]
- Gu, S.; Guo, J.; Huang, Q.; He, J.; Fu, Y.; Kuang, G.; Pan, C.; Yu, G. 1,3,5-Triazine-Based microporous polymers with tunable porosities for CO2 capture and fluorescent sensing. Macromolecules 2017, 50, 8512–8520. [Google Scholar] [CrossRef]
- Vyas, V.S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B.V. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 2015, 6, 8508. [Google Scholar] [CrossRef]
- Elewa, A.M.; EL-Mahdy, A.F.M.; Elsayed, M.H.; Mohamed, M.G.; Kuo, S.W.; Chou, H.H. Sulfur-doped triazine-conjugated microporous polymers for achieving the robust visible-light-driven hydrogen evolution. Chem. Eng. J. 2021, 421, 129825. [Google Scholar] [CrossRef]
- Han, X.; Zhao, F.; Shang, Q.Q.; Zhao, J.S.; Zhong, X.J.; Zhang, J.H. Effect of nitrogen atom introduction on the photocatalytic hydrogen evolution activity of covalent triazine frameworks: Experimental and theoretical study. ChemSusChem 2022, 15, e202200828. [Google Scholar] [CrossRef]
- Hao, W.B.; Chen, R.Z.; Zhang, Y.; Wang, Y.C.; Zhao, Y.J. Triazine-based conjugated microporous polymers for efficient hydrogen production. ACS Omega 2021, 6, 23782–23787. [Google Scholar] [CrossRef]
- Ting, L.Y.; Jayakumar, J.; Chang, C.L.; Lin, W.C.; Elsayed, M.H.; Chou, H.H. Effect of controlling the number of fused rings on polymer photocatalysts for visible-light driven hydrogen evolution. J. Mater. Chem. 2019, 7, 22924–22929. [Google Scholar] [CrossRef]
- Cheng, J.Z.; Tan, Z.R.; Xing, Y.Q.; Shen, Z.Q.; Zhang, Y.J.; Liu, L.L.; Yang, K.; Chen, L.; Liu, S.Y. Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. 2021, 9, 5787–5795. [Google Scholar] [CrossRef]
- Huang, W.; He, Q.; Hu, Y.; Li, Y. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 2019, 58, 8676–8680. [Google Scholar] [CrossRef]
- Ferchichi, S.; Sheibat-Othman, N.; Boyron, O.; Bonnin, C.; Norsic, S.; Rey-Bayle, M.; Monteil, V. In situ dissolved polypropylene prediction by Raman and ATR-IR spectroscopy for its recycling. Anal. Methods 2024, 16, 3109. [Google Scholar] [CrossRef]
- Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Application of vibrational spectroscopic techniques in the study of the natural polysaccharides and their cross-linking process. Int. J. Mol. Sci. 2023, 24, 2630. [Google Scholar] [CrossRef]
- Brezestean, I.A.; Marconi, D.; Colniţă, A.; Ciorîţă, A.; Tripon, S.C.; Vuluga, Z.; Corobea, M.C.; Dina, N.E.; Turcu, I. Scanning electron microscopy and Raman spectroscopy characterization of structural changes induced by thermal treatment in innovative bio-based polyamide nanocomposites. Chemosensors 2023, 11, 28. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Dong, Y.Y.; Zhao, J.S.; Ming, S.L.; Zhang, J.H. Effect of the cross-linker length of thiophene units on photocatalytic hydrogen production of triazine-based conjugated microporous polymers. RSC Adv. 2021, 12, 708–718. [Google Scholar] [CrossRef]
- Sheng, Q.N.; Zhong, X.J.; Shang, Q.Q.; Dong, Y.Y.; Zhao, J.S.; Du, Y.C.; Xie, Y. Triazine-based conjugated microporous polymers with different linkage units for visible light-driven hydrogen evolution. Front. Chem. 2022, 10, 854018. [Google Scholar] [CrossRef]
- Wang, J.L.; Ouyang, G.C.; Wang, Y.; Qiao, X.L.; Li, W.S.; Li, H.X. 1,3,5-Triazine and dibenzo[b,d]thiophene sulfone based conjugated porous polymers for highly efficient photocatalytic hydrogen evolution. Chem. Commum. 2020, 56, 1601–1604. [Google Scholar] [CrossRef]
- Lan, Z.A.; Fang, Y.X.; Zhang, Y.F.; Wang, X.C. Photocatalytic oxygen evolution from functional triazine-based polymers with tunable band structures. Angew. Chem. Int. Ed. 2018, 57, 470–474. [Google Scholar] [CrossRef]
- Xue, X.; Luo, J.M.; Kong, L.Q.; Zhao, J.S.; Zhang, Y.; Du, H.M.; Chen, S.; Xie, Y. The synthesis of triazine-thiophene-thiophene conjugated porous polymers and their composites with carbon as anode materials in lithium-ion batteries. RSC Adv. 2021, 11, 10688–10698. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhao, F.; Yasin, G.; Dong, Y.Y.; Zhao, J.S.; Guo, Y.; Tsiakaras, P.; Zhao, J. Efficient photocatalytic hydrogen evolution: Linkage units engineering in triazine-based conjugated porous polymers. J. Colloid Interface Sci. 2024, 637, 41–54. [Google Scholar] [CrossRef]
- Kotp, M.G.; Elewa, A.M.; EL-Mahdy, A.F.M.; Chou, H.H.; Kuo, S.W. Tunable pyridyl-based conjugated microporous polymers for visible light-driven hydrogen evolution. ACS Appl. Energy Mater. 2021, 4, 13140–13151. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhao, W.J.; Niu, H.Y.; Cai, Y.Q. Mechanochemical construction 2D/2D covalent organic nanosheets heterojunctions based on substoichiometric covalent organic frameworks. ACS Appl. Mater. Interfaces 2021, 13, 42035–42043. [Google Scholar] [CrossRef]
- Zhang, A.; Dong, P.Y.; Wang, Y.; Gao, K.J.; Pan, J.K.; Yang, B.R.; Xi, X.G.; Zhang, J.L. Fabrication of well-dispersed Pt nanoparticles onto the donor-acceptor type conjugated polymers for high-efficient photocatalytic hydrogen evolution. App. Catal. A-Gen. 2022, 644, 118793. [Google Scholar] [CrossRef]
- Kong, D.; Han, X.Y.; Xie, J.J.; Ruan, Q.S.; Windle, C.D.; Gadipelli, S.; Shen, K.; Bai, Z.M.; Guo, Z.X.; Tang, J.W. Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting. ACS Catal. 2019, 9, 7697–7707. [Google Scholar] [CrossRef]
- Lan, Z.J.; Yu, Y.L.; Yao, J.H.; Cao, Y.A. The band structure and photocatalytic mechanism of MoS2-modified C3N4 photocatalysts with improved visible photocatalytic activity. Mater. Res. Bull. 2018, 102, 433–439. [Google Scholar] [CrossRef]
- Zou, X.J.; Dong, Y.Y.; Ke, J.; Ge, H.; Chen, D.; Sun, H.J.; Cui, Y.B. Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation. Chem. Eng. J. 2020, 400, 125919. [Google Scholar] [CrossRef]
- Han, C.Z.; Xiang, S.H.; Jin, S.L.; Zhang, C.; Jiang, J.X. Rational design of conjugated microporous polymer photocatalysts with definite D-π-A structures for ultrahigh photocatalytic hydrogen evolution activity under natural sunlight. ACS Catal. 2023, 13, 204–212. [Google Scholar] [CrossRef]
- Xie, P.X.; Han, C.Z.; Xiang, S.H.; Jin, S.L.; Ge, M.T.; Zhang, C.; Jiang, J.X. Toward high-performance dibenzo[g,p]chrysene-based conjugated polymer photocatalysts for photocatalytic hydrogen production through donor-acceptor-acceptor structure design. Chem. Eng. J. 2023, 459, 141553. [Google Scholar] [CrossRef]
- Akple, M.S.; Low, J.X.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.G.; Zhang, J. Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 2015, 358, 196–203. [Google Scholar] [CrossRef]
- Ru, C.L.; Wang, Y.; Chen, P.Y.; Zhang, Y.H.; Wu, X.; Gong, C.L.; Zhao, H.; Wu, J.C.; Pan, X.B. Replacing C–C unit with B←N unit in isoelectronic conjugated polymers for enhanced photocatalytic hydrogen evolution. Small 2023, 19, 2302384. [Google Scholar] [CrossRef]
- Mekhemer, I.M.A.; Wu, Y.S.; Elewa, A.M.; Chen, W.C.; Chueh, C.C.; Chou, H.H. Naphthalenediimide-based polymer dots with dual acceptors as a new class of photocatalysts for photocatalytic hydrogen generation under visible light irradiation. Sol. RRL 2024, 8, 2300994. [Google Scholar] [CrossRef]
- Wang, X.; Hai, G.T.; Li, B.Z.; Luan, Q.J.; Dong, W.J.; Wang, G. Construction of dual-Z-scheme WS2-WO3⋅H2O/g-C3N4 catalyst for photocatalytic H2 evolution under visible light. Chem. Eng. J. 2021, 426, 130822. [Google Scholar] [CrossRef]
- Lyons, R.J.; Yang, Y.; McQueen, E.; Luo, L.; Cooper, A.I.; Zwijnenburg, M.A.; Sprick, R.S. Polymer photocatalysts with side chain induced planarity for increased activity for sacrificial hydrogen production from water. Adv. Energy Mater. 2024, 14, 2303680. [Google Scholar] [CrossRef]
- Li, Y.J.; Ding, L.; Yin, S.J.; Liang, Z.Q.; Xue, Y.J.; Wang, X.Z.; Cui, H.Z.; Tian, J. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T WS2 as co catalysts. Nano-Micro Lett. 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.Q.; Zhang, G.; Yang, K.; Zhang, Y.J.; Gong, H.; Liao, G.F.; Liu, S.Y. Direct C–H arylation derived ternary D–A conjugated polymers: Effects of monomer geometries, D/A ratios, and alkyl side chains on photocatalytic hydrogen production and pollutant degradation. Macromol. Rapid Commun. 2024, 45, 2300566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Cheng, J.Z.; Xing, Y.Q.; Tan, Z.R.; Liao, G.F.; Liu, S.Y. Solvent-exfoliated D-A π-polymer @ ZnS heterojunction for efficient photocatalytic hydrogen evolution. Mater. Sci. Semicond. Process. 2023, 161, 107463. [Google Scholar] [CrossRef]
- Li, Z.B.; Zhao, F.; Chu, Y.; Meng, F.P.; Dong, Y.Y.; Zhang, H.Y.; Zhao, J.S.; Du, Y.C.; Wang, S.B. Fused-thiophene and sulfone-based donor-acceptor conjugated polymers for enhanced hydrogen production. ACS Sustain. Chem. Eng. 2024, 12, 1072–1083. [Google Scholar] [CrossRef]
- Lin, C.X.; Han, C.Z.; Gong, L.; Chen, X.; Deng, J.X.; Qi, D.D.; Bian, Y.Z.; Wang, K.; Jiang, J.Z. Donor-acceptor covalent organic framework/g-C3N4 hybrids for efficient visible light photocatalytic H2 production. Catal. Sci. Technol. 2021, 11, 2616–2621. [Google Scholar] [CrossRef]
- Wang, Y.W.; Kong, X.G.; Jiang, M.H.; Zhang, F.Z.; Lei, X.D. A Z-scheme ZnIn2S4/Nb2O5 nanocomposite: Constructed and used as an efficient bifunctional photocatalyst for H2 evolution and oxidation of 5-hydroxymethylfurfural. Inorg. Chem. Front. 2020, 7, 437–446. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Tang, H.L.; Dong, H.; Gao, M.Y.; Li, C.C.; Sun, X.J.; Wei, J.Z.; Qu, Y.; Li, Z.J.; Zhang, F.M. Covalent-organic framework based Z-scheme heterostructured noble-metal-free photocatalysts for visible-light-driven hydrogen evolution. J. Mater. Chem. A 2020, 8, 4334–4340. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Xiang, Z.H. Fully conjugated covalent organic polymer with carbon-encapsulated Ni2P for highly sustained photocatalytic H2 production from seawater. ACS Appl. Mater. Interfaces 2019, 11, 41313–41320. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision, C.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Furche, F.; Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 2002, 117, 7433–7447. [Google Scholar] [CrossRef]
- Liu, J.; Liang, W. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation. J. Chem. Phys. 2011, 135, 014113. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyze. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Lim, E.C.; Chakrabarti, S.K. Role of I→aπ transitions in spin—Orbit coupling of aromatic amines: Phosphorescence of aniline and its N-Alkyl derivatives. J. Chem. Phys. 1967, 47, 4726–4730. [Google Scholar] [CrossRef]
- Chen, L.; Teng, C.; Lin, C.; Chang, H.; Chen, S.; Teng, H. Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process. Adv. Energy Mater. 2016, 6, 1600719. [Google Scholar] [CrossRef]
- Chen, Y.; Jayakumar, J.; Hsieh, C.M.; Wu, T.L.; Liao, C.C.; Pandidurai, J.; Ko, C.L.; Hung, W.Y.; Cheng, C.H. Triarylamine-pyridine-carbonitriles for organic lightemitting devices with EQE nearly 40%. Adv. Mater. 2021, 33, 2008032. [Google Scholar] [CrossRef] [PubMed]
- Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, Š.; Zbořil, R.; Schmuki, P. Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019, 9, 345–364. [Google Scholar] [CrossRef]
Polymer | λabs a (nm) | Eg b (eV) | EVB c (eV) | ECB d (eV) | HER e (μmol g−1 h−1) | HER f (μmol g−1 h−1) |
---|---|---|---|---|---|---|
PhIN-CPP | 630 | 2.05 | 1.09 | −0.96 | 3074.75 | 5359.92 |
ThIN-CPP | 706 | 1.79 | 1.15 | −0.64 | 306.63 | 538.49 |
Photocatalysts | HER (μmol·g−1·h−1) | References |
---|---|---|
g-C3N4/WS2 | 101 | [58] |
PBN | 223.5 | [59] |
NDI-BTzF-PS-PEG-COOH | 634.6 | [60] |
PS-Odec | 680 | [62] |
WS2-WO3·H2O/g-C3N4 | 1276.9 | [61] |
1T-WoS2@TiO2@Ti3C2 | 3409.8 | [63] |
SFBtBT0.02 | 4210 | [64] |
BT-TT@ZnS | 15,800 | [65] |
ThSo-1 | 111,790 | [66] |
Py-TP-BTDO | 115,030 | [56] |
DBC-BTDO-2 | 301,920 | [57] |
PhIN-CPP | 5359.92 | This study |
ThIN-CPP | 538.49 |
Monomer | ES1 | ET1 | ΔEST | λ (nm) | fS1 | λe |
---|---|---|---|---|---|---|
PhIN-CPP | 2.62 | 1.83 | 0.79 | 472.43 | 2.30 | 0.26 |
ThIN-CPP | 2.38 | 1.58 | 0.80 | 526.76 | 2.39 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, S.; Long, X.; Jin, X.; Zhu, Y.; Duan, S.; Zhao, J. Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production. Molecules 2024, 29, 2807. https://doi.org/10.3390/molecules29122807
Liu J, Zhang S, Long X, Jin X, Zhu Y, Duan S, Zhao J. Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production. Molecules. 2024; 29(12):2807. https://doi.org/10.3390/molecules29122807
Chicago/Turabian StyleLiu, Jian, Shengling Zhang, Xinshu Long, Xiaomin Jin, Yangying Zhu, Shengxia Duan, and Jinsheng Zhao. 2024. "Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production" Molecules 29, no. 12: 2807. https://doi.org/10.3390/molecules29122807
APA StyleLiu, J., Zhang, S., Long, X., Jin, X., Zhu, Y., Duan, S., & Zhao, J. (2024). Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production. Molecules, 29(12), 2807. https://doi.org/10.3390/molecules29122807