Phytochemicals of Alpinia zerumbet: A Review
Abstract
:1. Introduction
2. Phytochemicals
2.1. Isolated Compounds
2.1.1. Kavalactones
2.1.2. Chalcones
2.1.3. Flavonoids
2.1.4. Diterpenoids
2.1.5. Sesquiterpenoids and Monoterpenoids
2.1.6. Meroterpenoids and Steroids
2.1.7. Diarylheptanoids and Neolignans
2.1.8. Glucoside Esters, Phenolic Compounds, and Others
2.2. Essential Oils
2.2.1. Leaves
2.2.2. Rhizomes
2.2.3. Fruits
2.2.4. Seeds
2.2.5. Flowers
2.2.6. Stems: Aerial Parts and Others
2.2.7. Comparison of the Compositions of the Oils from Different Parts of A. zerumbet
2.3. Quantitative Analysis
2.3.1. Kavalactones
2.3.2. Diterpenoids
2.3.3. Others
2.4. Qualitative Analysis
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Correction Statement
References
- Lim, T.K. Alpinia Zerumbet; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-26065-5. [Google Scholar]
- Zoghbi, M.D.G.B.; Andrade, E.H.A.; Maia, J.G.S. Volatile Constituents from Leaves and Flowers of Alpinia speciosa K. Schum. and A. purpurata (Viell.) Schum. Flavour Fragr. J. 1999, 14, 411–414. [Google Scholar] [CrossRef]
- Batista, T.S.C.; Barros, G.S.; Damasceno, F.C.; Cândido, E.A.F.; Batista, M.V.A. Chemical Characterization and Effects of Volatile Oil of Alpinia zerumbet on the Quality of Collagen Deposition and Caveolin-1 Expression in a Muscular Fibrosis Murine Model. Braz. J. Biol. 2021, 84, e253616. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Li, W.; Matsuura, M.; Satou, T.; Hayashi, S.; Koike, K. Composition and Seasonal Variation of Essential Oil in Alpinia zerumbet from Okinawa Island. J. Nat. Med. 2009, 63, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.W.P.; Martins, L.; Gomes, E.; Muribeca, A.; Pamplona, S.; Komesu, A.; Bichara, C.; Rai, M.; Silva, C.; Silva, M. Antiviral Plants from Marajó Island, Brazilian Amazon: A Narrative Review. Molecules 2022, 27, 1542. [Google Scholar] [CrossRef] [PubMed]
- Victório, C.P. Therapeutic Value of the Genus Alpinia, Zingiberaceae. Rev. Bras. Farmacogn. 2011, 21, 194–201. [Google Scholar] [CrossRef]
- Shen, X.C.; Tao, L.; Li, W.K.; Zhang, Y.Y.; Luo, H.; Xia, Y.Y. Evidence-Based Antioxidant Activity of the Essential Oil from Fructus A. Zerumbet on Cultured Human Umbilical Vein Endothelial Cells’ Injury Induced by Ox-LDL. BMC Complement. Altern. Med. 2012, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Sotheeswaran, S.; Tuiwawa, M.; Smith, R.M. Comparison of the Composition of the Essential Oils of Alpinia and Hedychium Species—Essential Oils of Fijian Plants, Part 1. J. Essent. Oil Res. 2002, 14, 409–411. [Google Scholar] [CrossRef]
- Agrawal, N.K. Physico-Chemical and Natural Product Investigations of Essential Oil and Variously Extracted Medicinally Useful Materials From the Rhizomes of Alpinia speciosa K. Schum. Int. J. Pharmacogn. 2015, 2, 519–522. [Google Scholar] [CrossRef]
- Nadkarni, K.M. Indian Materia Medica Vol. I.; Popular Prakashan: Bombay, India, 1908. [Google Scholar]
- Kuraya, E.; Miyafuji, Y.; Takemoto, A.; Itoh, S. The Effect of Underwater Shock Waves on Steam Distillation of Alpinia zerumbet Leaves. Trans. Mat. Res. Soc. Jpn. 2014, 39, 447–449. [Google Scholar] [CrossRef]
- Longuefosse, J.L.; Nossin, E. Medical Ethnobotany Survey in Martinique. J. Ethnopharmacol. 1996, 53, 117–142. [Google Scholar] [CrossRef] [PubMed]
- Hanh, N.P.; Binh, N.Q.; Adhikari, B.S. Distribution of Alpinia (Zingiberaceae) and Their Use Pattern in Vietnam. J. Biodivers. Endanger. Species 2014, 2, 1000121. [Google Scholar] [CrossRef]
- Prudent, D.; Perineau, F.; Bessiere, J.M.; Michel, G.; Bravo, R. Chemical Analysis, Bacteriostatic and Fungistatic Properties of the Essential Oil of the Atoumau from Martinique (Alpinia speciosa K. Schum.). J. Essent. Oil Res. 1993, 5, 255–264. [Google Scholar] [CrossRef]
- Mpalantinos, M.A.; de Moura, R.S.; Parente, J.P.; Kuster, R.M. Biologically Active Flavonoids and Kava Pyrones from the Aqueous Extract of Alpinia zerumbet. Phytother. Res. 1998, 12, 442–444. [Google Scholar] [CrossRef]
- Paulino, E.T.; Barros Ferreira, A.K.; da Silva, J.C.G.; Ferreira Costa, C.D.; Smaniotto, S.; de Araújo-Júnior, J.X.; Silva Júnior, E.F.; Bortoluzzi, J.H.; Nogueira Ribeiro, Ê.A. Cardioprotective Effects Induced by Hydroalcoholic Extract of Leaves of Alpinia zerumbet on Myocardial Infarction in Rats. J. Ethnopharmacol. 2019, 242, 112037. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, S.; Galindo, C.A.B.; Leal-Cardoso, J.H.; Fonteles, M.C.; Duarte, G.P. Cardiovascular Effects of the Essential Oil of Alpinia zerumbet Leaves and Its Main Constituent, Terpinen-4-Ol, in Rats: Role of the Autonomic Nervous System. Planta Med. 2002, 68, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Peng, C.C.; Liang, Y.J.; Yeh, W.T.; Wang, H.E.; Yu, T.H.; Peng, R.Y. Alpinia zerumbet Potentially Elevates High-Density Lipoprotein Cholesterol Level in Hamsters. J. Agric. Food Chem. 2008, 56, 4435–4443. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.Y.; Lin, M.H.; Lin, L.C.; Chou, C.J. Toxicologic Studies of Dihydro-5,6-Dihydrokawain and 5,6-Dehydrokawain. Planta Med. 1994, 60, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.X.; Hui, D.; Sim, K.Y. The Isolation of a New Labdane Diterpene from the Seeds of Alpinia zerumbet. Nat. Prod. Lett. 1995, 7, 29–34. [Google Scholar] [CrossRef]
- Liao, J.; Fu, L.; Tai, S.; Xu, Y.; Wang, S.; Guo, L.; Guo, D.; Du, Y.; He, J.; Yang, H.; et al. Essential Oil from Fructus Alpiniae zerumbet Ameliorates Vascular Endothelial Cell Senescence in Diabetes by Regulating PPAR-γ Signalling: A 4D Label-Free Quantitative Proteomics and Network Pharmacology Study. J. Ethnopharmacol. 2024, 321, 117550. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.P.; Shi, T.Y.; Zhang, Y.Y.; Lin, D.; Linghu, K.G.; Xu, Y.N.; Tao, L.; Lu, Q.; Shen, X.C. Essential Oil from Fructus Alpinia Zerumbet (Fruit of Alpinia zerumbet (Pers.) Burtt.et Smith) Protected against Aortic Endothelial Cell Injury and Inflammation in Vitro and in Vivo. J. Ethnopharmacol. 2019, 237, 149–158. [Google Scholar] [CrossRef]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants Vol. IV; Lalit Mohan Basu: Allahabad, India, 1936. [Google Scholar]
- Tawata, S.; Fukuta, M.; Xuan, T.D.; Deba, F. Total Utilization of Tropical Plants Leucaena Leucocephala and Alpinia zerumbet. J. Pestic. Sci. 2008, 33, 40–43. [Google Scholar] [CrossRef]
- da Cruz, J.D.; Mpalantinos, M.A.; de Oliveira, L.R.; Branches, T.G.; Xavier, A.; Souza, F.D.C.D.A.; Aguiar, J.P.L.; Ferreira, J.L.P.; de Andrade Silva, J.R.; Amaral, A.C.F. Nutritional and Chemical Composition of Alpinia zerumbet Leaves, a Traditional Functional Food. Food Res. Int. 2023, 173, 113417. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Sumitani, H.; Takahashi, K.; Isegawa, Y. Mode of Antifungal Action of Daito-Gettou (Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus Brasiliensis. Foods 2023, 12, 1298. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.W.C.; Lim, Y.Y.; Wong, L.F.; Lianto, F.S.; Wong, S.K.; Lim, K.K.; Joe, C.E.; Lim, T.Y. Antioxidant and Tyrosinase Inhibition Properties of Leaves and Rhizomes of Ginger Species. Food Chem. 2008, 109, 477–483. [Google Scholar] [CrossRef]
- Itokawa, H.; Morita, M.; Mihashi, S. Labdane and Bisnorlabdane Type Diterpenes from Alpinia speciosa K. SCHUM. Chem. Pharm. Bull. 1980, 28, 3452–3454. [Google Scholar] [CrossRef]
- Kimura, Y. Pharmacognostic Study on the Seeds of Species of the Genus Alpinia Native to Japan. Yakugaku Zasshi 1939, 59, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.; Chen, P.W.; Tsung, T.T. Taiwan Aboriginal Traditional Alpinia zerumbet Handicraft Preparation Study. In Proceedings of the International Association of Societies for Design Research (IASDR), Tokyo, Japan, 26–30 August 2013; pp. 1485–1491. [Google Scholar]
- de Carvalho Castro, K.N.; Canuto, K.M.; de Sousa Brito, E.; Costa-Júnior, L.M.; de Andrade, I.M.; Magalhães, J.A.; Barros, D.M.A. In Vitro Efficacy of Essential Oils with Different Concentrations of 1,8-Cineole against Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2018, 27, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.T.B.; Tawata, S. Anti-Oxidant, Anti-Aging, and Anti-Melanogenic Properties of the Essential Oils from Two Varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, S.; Leal Interaminense, L.F.; Leal-Cardoso, J.H.; Duarte, G.P. Antihypertensive Effects of the Essential Oil of Alpinia zerumbet and Its Main Constituent, Terpinen-4-Ol, in DOCA-Salt Hypertensive Conscious Rats. Fundam. Clin. Pharmacol. 2003, 17, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.H.; Fechine, F.V.; Frota Bezerra, F.A.; Moraes, M.O.; Silveira, E.R.; Canuto, K.M.; Moraes, M.E.A. Comparative Study of the Antihypertensive Effects of Hexane, Chloroform and Methanol Fractions of Essential Oil of Alpinia zerumbet in Rats Wistar. Rev. Bras. Plantas Med. 2016, 18, 113–124. [Google Scholar] [CrossRef]
- Victório, C.P.; Alviano, D.S.; Alviano, C.S.; Lage, C.L.S. Chemical Composition of the Fractions of Leaf Oil of Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm. and Antimicrobial Activity. Rev. Bras. Farmacogn. 2009, 19, 697–701. [Google Scholar] [CrossRef]
- de Pooter, H.L.; Aboutabl, E.A.; El-Shabrawy, A.O. Chemical Composition and Antimicrobial Activity of Essential Oil of Leaf, Stem and Rhizome of Alpinia speciosa (J.C.Wendl.) K.Schum. Grown in Egypt. Flavour Fragr. J. 1995, 10, 63–67. [Google Scholar] [CrossRef]
- Mendes, F.R.S.; Silva, F.G.E.; Sousa, E.O.; Rodrigues, F.F.G.; Costa, J.G.M.; Monte, F.J.Q.; Lemos, T.L.G.; Assunção, J.C.C. Essential Oil of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. (Zingiberaceae): Chemical Composition and Modulation of the Activity of Aminoglycoside Antibiotics. J. Essent. Oil Res. 2015, 27, 259–263. [Google Scholar] [CrossRef]
- Ho, J.C. Chemical Composition and Bioactivity of Essential Oil of Seed and Leaf from Alpinia speciosa Grown in Taiwan. J. Chin. Chem. Soc. 2010, 57, 758–763. [Google Scholar] [CrossRef]
- de Araújo Pinho, F.V.S.; Coelho-De-Souza, A.N.; Morais, S.M.; Ferreira Santos, C.; Leal-Cardoso, J.H. Antinociceptive Effects of the Essential Oil of Alpinia zerumbet on Mice. Phytomedicine 2005, 12, 482–486. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.Y.R.; de Oliveira, G.V.; Gomes, P.X.L.; Soares, M.A.; Silva, M.I.G.; Carvalho, A.F.; de Moraes, M.O.; de Moraes, M.E.A.; Vasconcelos, S.M.M.; Viana, G.S.B.; et al. Inhibition of Ketamine-Induced Hyperlocomotion in Mice by the Essential Oil of Alpinia zerumbet: Possible Involvement of an Antioxidant Effect. J. Pharm. Pharmacol. 2011, 63, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, B.C.; Ferreira, J.R.O.; Cabral, I.O.; Magalhães, H.I.F.; de Oliveira, C.C.; Rodrigues, F.A.R.; Rocha, D.D.; Barros, F.W.A.; da Silva, C.R.; Júnior, H.V.N.; et al. Genetic Toxicology Evaluation of Essential Oil of Alpinia zerumbet and Its Chemoprotective Effects against H2O2-Induced DNA Damage in Cultured Human Leukocytes. Food Chem. Toxicol. 2012, 50, 4051–4061. [Google Scholar] [CrossRef] [PubMed]
- Kuraya, E.; Yamashiro, R.; Touyama, A.; Nakada, S.; Watanabe, K.; Iguchi, A.; Itoh, S. Aroma Profile and Antioxidant Activity of Essential Oil from Alpinia zerumbet. Nat. Prod. Commun. 2017, 12, 1321–1325. [Google Scholar] [CrossRef]
- Pereira, P.S.; Maia, A.J.; Duarte, A.E.; Oliveira-Tintino, C.D.M.; Tintino, S.R.; Barros, L.M.; Vega-Gomez, M.C.; Rolón, M.; Coronel, C.; Coutinho, H.D.M.; et al. Cytotoxic and Anti-Kinetoplastid Potential of the Essential Oil of Alpinia speciosa K. Schum. Food Chem. Toxicol. 2018, 119, 387–391. [Google Scholar] [CrossRef]
- de Araújo, F.Y.R.; Silva, M.I.G.; Moura, B.A.; de Oliveira, G.V.; Leal, L.A.K.M.; Vasconcelos, S.M.M.; Viana, G.S.B.; de Moraes, M.O.; de Sousa, F.C.F.; Macêdo, D.S. Central Nervous System Effects of the Essential Oil of the Leaves of Alpinia zerumbet in Mice. J. Pharm. Pharmacol. 2010, 61, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.Y.R.; Chaves Filho, A.J.M.; Nunes, A.M.; de Oliveira, G.V.; Gomes, P.X.L.; Vasconcelos, G.S.; Carletti, J.; de Moraes, M.O.; de Moraes, M.E.; Vasconcelos, S.M.M.; et al. Involvement of Anti-Inflammatory, Antioxidant, and BDNF up-Regulating Properties in the Antipsychotic-like Effect of the Essential Oil of Alpinia zerumbet in Mice: A Comparative Study with Olanzapine. Metab. Brain Dis. 2021, 36, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.C.; Leal-Cardoso, J.H.; Coelho-De-Souza, A.N.; Criddle, D.N.; Fonteles, M.C. Myorelaxant and Antispasmodic Effects of the Essential Oil of Alpinia speciosa on Rat Ileum. Phytother. Res. 2000, 14, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Matsuura, M.; Satou, T.; Hayashi, S.; Koike, K. Effects of the Essential Oil from Leaves of Alpinia zerumbet on Behavioral Alterations in Mice. Nat. Prod. Commun. 2009, 4, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Satou, T.; Murakami, S.; Matsuura, M.; Hayashi, S.; Koike, K. Anxiolytic Effect and Tissue Distribution of Inhaled Alpinia zerumbet Essential Oil in Mice. Nat. Prod. Commun. 2010, 5, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Satou, T.; Kasuya, H.; Takahashi, M.; Murakami, S.; Hayashi, S.; Sadamoto, K.; Koike, K. Relationship between Duration of Exposure and Anxiolytic-like Effects of Essential Oil from Alpinia zerumbet. Flavour Fragr. J. 2011, 26, 180–185. [Google Scholar] [CrossRef]
- Freitas, F.P.; Freitas, S.P.; Lemos, G.C.S.; Vieira, I.J.C.; Gravina, G.A.; Lemos, F.J.A. Comparative Larvicidal Activity of Essential Oils from Three Medicinal Plants against Aedes aegypti L. Chem. Biodivers. 2010, 7, 2801–2807. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.R.B.; Everton, G.O.; Fontenele, M.A.; Souza, R.D.; de Freitas, A.C.; Lima Hunaldo, V.K.; Louzeiro, H.C.; Rodrigues, N.F.M.; Reis, J.B.; Filho, V.E.M. Chemical Composition, Larvicidal and Molluscicidal Activity of the Essential Oil Alpinia zerumbet. J. Essent. Oil-Bear Plants 2023, 26, 1256–1265. [Google Scholar] [CrossRef]
- de Silva Barbosa, D.R.; dos Santos, R.B.V.; Santos, F.M.P.; da Silva Junior, P.J.; de Oliveira Neto, F.M.; Silva, G.N.; de Andrade Dutra, K.; do Amaral Ferraz Navarro, D.M. Evaluation of Cymbopogon flexuosus and Alpinia zerumbet Essential Oils as Biopesticides against Callosobruchus maculatus. J. Plant Dis. Prot. 2022, 129, 125–136. [Google Scholar] [CrossRef]
- Feng, Y.X.; Zhang, X.; Wang, Y.; Chen, Z.Y.; Lu, X.X.; Du, Y.S.; Du, S.S. The Potential Contribution of Cymene Isomers to Insecticidal and Repellent Activities of the Essential Oil from Alpinia zerumbet. Int. Biodeterior. Biodegrad. 2021, 157, 105138. [Google Scholar] [CrossRef]
- Rocha, D.G.; Holanda, T.M.; Braz, H.L.B.; de Moraes, J.A.S.; Marinho, A.D.; Maia, P.H.F.; de Moraes, M.E.A.; Fechine-Jamacaru, F.V.; de Moraes Filho, M.O. Vasorelaxant Effect of Alpinia zerumbet’s Essential Oil on Rat Resistance Artery Involves Blocking of Calcium Mobilization. Fitoterapia 2023, 169, 105623. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.V.; Assreuy, A.M.S.; Coelho-de-Souza, A.N.; Ceccatto, V.M.; Magalhães, P.J.C.; Lahlou, S.; Leal-Cardoso, J.H. Endothelium-Dependent Vasorelaxant Effects of the Essential Oil from Aerial Parts of Alpinia zerumbet and Its Main Constituent 1,8-Cineole in Rats. Phytomedicine 2009, 16, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Chompoo, J.; Kishimoto, W.; Makise, T.; Tawata, S. HIV-1 Integrase and Neuraminidase Inhibitors from Alpinia zerumbet. J. Agric. Food Chem. 2011, 59, 2857–2862. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Chompoo, J.; Taira, N.; Fukuta, M.; Tawata, S. Significant Longevity-Extending Effects of Alpinia zerumbet Leaf Extract on the Life Span of Caenorhabditis elegans. Biosci. Biotechnol. Biochem. 2013, 77, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.C.; Arakaki, H.; Li, Y.; Takamiyagi, A.; Tawata, S.; Aniya, Y.; Sakurai, H.; Nonaka, S. Inhibitory Effects of Alpinia speciosa K. SCHUM on the Porphyrin Photooxidative Reaction. J. Dermatol. 2000, 27, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Nishidono, Y.; Okada, R.; Iwama, Y.; Okuyama, T.; Nishizawa, M.; Tanaka, K. Anti-Inflammatory Kavalactones from Alpinia zerumbet. Fitoterapia 2020, 140, 104444. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, M.A.; Sobeh, M.; Rezq, S.; El-Shazly, A.M.; Mahmoud, M.F.; Wink, M. HPLC-ESI-MS/MS Profiling of Polyphenolics of a Leaf Extract from Alpinia zerumbet (Zingiberaceae) and Its Anti-Inflammatory, Anti-Nociceptive, and Antipyretic Activities In Vivo. Molecules 2018, 23, 3238. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.F.; Lim, Y.Y.; Omar, M. Antioxidant and Antimicrobal Activities of Some Alpinia Species. J. Food Biochem. 2009, 33, 835–851. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Wong, S.K.; Lim, K.K.; Tan, S.P.; Lianto, F.S.; Yong, M.Y. Effects of Different Drying Methods on the Antioxidant Properties of Leaves and Tea of Ginger Species. Food Chem. 2009, 113, 166–172. [Google Scholar] [CrossRef]
- de Moura, R.S.; Emiliano, A.F.; de Carvalho, L.C.R.M.; Souza, M.A.V.; Guedes, D.C.; Tano, T.; Resende, A.C. Antihypertensive and Endothelium-Dependent Vasodilator Effects of Alpinia zerumbet, a Medicinal Plant. J. Cardiovasc. Pharmacol. 2005, 46, 288–294. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.A.; de Carvalho, L.C.R.M.; Victório, C.P.; Ognibene, D.T.; Resende, A.C.; de Souza, M.A.V. Chemical Composition and Vasodilator Activity of Different Alpinia zerumbet Leaf Extracts, a Potential Source of Bioactive Flavonoids. Med. Chem. Res. 2021, 30, 2103–2113. [Google Scholar] [CrossRef]
- Bevilaqua, F.; Mocelin, R.; Grimm, C.; da Silva Junior, N.S.; Buzetto, T.L.B.; Conterato, G.M.M.; Roman, W.A.; Piato, A.L. Involvement of the Catecholaminergic System on the Antidepressant-like Effects of Alpinia zerumbet in Mice. Pharm. Biol. 2016, 54, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Roman Junior, W.A.; Piato, A.L.; Marafiga Conterato, G.M.; Wildner, S.M.; Marcon, M.; Moreira, S.; Santo, G.D.; Mocelin, R.; Emanuelli, T.; de Moraes Santos, C.A. Psychopharmacological and Antioxidant Effects of Hydroethanolic Extract of Alpinia zerumbet Leaves in Mice. Pharmacogn. J. 2013, 5, 113–118. [Google Scholar] [CrossRef]
- da Cruz, J.D.; Mpalantinos, M.A.; Ramos, A.D.S.; Ferreira, J.L.P.; de Oliveira, A.A.; Júnior, N.L.N.; Silva, J.R.D.A.; Amaral, A.C.F. Chemical Standardization, Antioxidant Activity and Phenolic Contents of Cultivated Alpinia zerumbet Preparations. Ind. Crops Prod. 2020, 151, 112495. [Google Scholar] [CrossRef]
- Lima, R.M.; Polonini, H.C.; de Souza, K.C.; Brandão, M.A.F.; Salgado, I.; Raposo, N.R.B. Assessment of Different Biological Capacities of Alpinia speciosa (Pers.) B.L. Burtt and R.M. Sm. J. Young Pharm. 2015, 7, 500–504. [Google Scholar] [CrossRef]
- Junior, W.A.R.; Gomes, D.B.; Zanchet, B.; Schönell, A.P.; Diel, K.A.P.; Banzato, T.P.; Ruiz, A.L.T.G.; Carvalho, J.E.; Neppel, A.; Barison, A.; et al. Antiproliferative Effects of Pinostrobin and 5,6-Dehydrokavain Isolated from Leaves of Alpinia zerumbet. Rev. Bras. Farmacogn. 2017, 27, 592–598. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Essential Oils, Kava Pyrones and Phenolic Compounds from Leaves and Rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. and Their Antioxidant Activity. Food Chem. 2007, 103, 486–494. [Google Scholar] [CrossRef]
- Niwano, Y.; Beppu, F.; Shimada, T.; Kyan, R.; Yasura, K.; Tamaki, M.; Nishino, M.; Midorikawa, Y.; Hamada, H. Extensive Screening for Plant Foodstuffs in Okinawa, Japan with Anti-Obese Activity on Adipocytes in Vitro. Plant Foods Hum. Nutr. 2009, 64, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Laranja, S.M.; Bergamaschi, C.M.; Schor, N. Evaluation of Acute Administration of Natural Products with Potential Diuretic Effects, in Humans. Mem. Inst. Oswaldo Cruz. 1991, 86, 237–240. [Google Scholar] [CrossRef]
- Laranja, S.M.R.; Bergamaschi, C.M.; Schor, N. Evaluation of Three Plants with Potential Diuretic Effect. Rev. Assoc. Med. Bras. 1992, 38, 13–16. [Google Scholar] [PubMed]
- Indrayan, A.K.; Tyagi, P.K.; Agrawal, N.K. Chemical Composition and Antimicrobial Activity of the Essential Oil of Alpinia Speciosa K. Schum. Rhizome From India. J. Essent. Oil Res. 2010, 22, 179–182. [Google Scholar] [CrossRef]
- Chompoo, J.; Upadhyay, A.; Fukuta, M.; Tawata, S. Effect of Alpinia zerumbet Components on Antioxidant and Skin Diseases-Related Enzymes. BMC Complement. Altern. Med. 2012, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- El-Hawary, S.; Kassem, H.; Motaal, A.A.; Tawfik, W.; Hassanein, H.; El-Shamy, S. GC-MS Analysis of the Essential Oil of Alpinia zerumbet (Pers.) B.L. and in Vitro Hepatoprotection and Cytotoxicity Study. MPC-4. Planta Med. 2013, 79, 1207–1208. [Google Scholar] [CrossRef]
- Chen, I.N.; Chang, C.C.; Ng, C.C.; Wang, C.Y.; Shyu, Y.T.; Chang, T.L. Antioxidant and Antimicrobial Activity of Zingiberaceae Plants in Taiwan. Plant Foods Hum. Nutr. 2008, 63, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, F.M.; El-Hawary, S.S.; Kassem, H.A.; Motaal, A.A.A.; Nazif, N.M.; El-Shamy, S.S. Hepatoprotective and Antioxidant Activities of Phenolic Compounds Isolated from Alpinia zerumbet (Pers.) B.L. Grown in Egypt. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 448–456. [Google Scholar]
- Tavichakorntrakool, R.; Lulitanond, A.; Sangka, A.; Sungkeeree, S.; Weerapreeyakul, N. Antibacterial Activity and Bioactive Compounds of 50% Hydroethanolic Extract of Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm. Asian Pac. J. Trop. Biomed. 2019, 9, 204–208. [Google Scholar] [CrossRef]
- Machana, S.; Weerapreeyakul, N.; Barusrux, S.; Nonpunya, A.; Sripanidkulchai, B.; Thitimetharoch, T. Cytotoxic and Apoptotic Effects of Six Herbal Plants against the Human Hepatocarcinoma (HepG2) Cell Line. Chin. Med. 2011, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Huang, T.L. Screening of Anti-Helicobacter pylori Herbs Deriving from Taiwanese Folk Medicinal Plants. FEMS Immunol. Med. Microbiol. 2005, 43, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Thenmozhi, S.; Sureshkumar, S.; Rajesh, V. Evaluation of Analgesic and Anti-Inflammatory Activity of Alpinia speciosa K. Schum Rhizomes. J. Pharm. Res. 2011, 4, 728–729. [Google Scholar]
- Masuda, T.; Fujita, N.; Odaka, Y.; Takeda, Y.; Yonemori, S.; Nakamoto, K.; Kuninaga, H. Tyrosinase Inhibitory Activity of Ethanol Extracts from Medicinal and Edible Plants Cultivated in Okinawa and Identification of a Water-Soluble Inhibitor from the Leaves of Nandina Domestica. Biosci. Biotechnol. Biochem. 2007, 71, 2316–2320. [Google Scholar] [CrossRef]
- Chompoo, J.; Upadhyay, A.; Kishimoto, W.; Makise, T.; Tawata, S. Advanced Glycation End Products Inhibitors from Alpinia zerumbet Rhizomes. Food Chem. 2011, 129, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.Y.; Wu, L.J.; Hong, X.X.; Tao, L.; Luo, P.; Shen, X.C. Screening of Analgesic and Anti-Inflammatory Active Component in Fructus Alpiniae zerumbet Based on Spectrum–Effect Relationship and GC–MS. Biomed. Chromatogr. 2018, 32, e4112. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Xiang, J.; Zhang, G.Q.; Fu, L.Y.; Xu, Y.N.; Chen, Y.; Tao, L.; Hu, X.X.; Shen, X.C. Essential Oil from Fructus Alpinia zerumbet Ameliorates Atherosclerosis by Activating PPARγ-LXRα-ABCA1/G1 Signaling Pathway. Phytomedicine 2024, 123, 155227. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Gong, H.; Gong, Z.; Qin, X.; Nie, J.; Zhu, H.; Zhong, S. Chemical Composition and Potential Antimicrobial and Anti-Inflammatory Activities of Essential Oil from Fruits of Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. Chem. Biodivers. 2023, 20, e202301269. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Zeng, Y.; Xu, Y.; Zhang, Y.; Jiang, Y.; Tao, L.; Shen, X. The Endothelial Protective Properties of Essential Oil from Fructus Alpiniae Zerumbet via the Akt/NOS-NO Signaling Pathway In Vitro. Planta Med. 2014, 80, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, S.; Tu, M.; He, L.; Xu, Y.; Gan, S.; Shen, X. Inhibitory Effect of Essential Oil from Fructus of Alpinia zerumbet on Endothelial-to-Mesenchymal Transformation Induced by TGF-β 1and Downregulation of KLF4. J. Cardiovasc. Pharmacol. 2022, 80, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.; Huang, Y.; Zhao, S.; Xu, Y.; Chen, Y.; Jiang, F.; Tao, L.; Shen, X. EOFAZ Inhibits Endothelial-to-Mesenchymal Transition through Downregulation of KLF4. Int. J. Mol. Med. 2020, 46, 300. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gan, S.; Jiang, Z.; Song, X.; Chen, T.; Xu, Y.; Fu, L.; Zhang, Y.; Tao, L.; Shen, X. Protective Effects of Essential Oil from Fructus Alpiniae zerumbet on Retinal Müller Gliosis via the PPAR-γ-p-CREB Signaling Pathway. Chin. Med. 2020, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Hu, H.S.; Shen, X.C. Endothelium-Dependent Vasodilatation Effects of the Essential Oil from Fructus Alpiniae Zerumbet (EOFAZ) on Rat Thoracic Aortic Rings in Vitro. Phytomedicine 2013, 20, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Wu, A.; Wang, X.; Guo, Z.; Huang, F.; Cheng, X.; Shen, X.; Tao, L. Anti-Hypertensive and Composition as Well as Pharmacokinetics and Tissues Distribution of Active Ingredients from Alpinia zerumbet. Fitoterapia 2024, 172, 105753. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.M.; Wang, H.E.; Peng, C.C.; Chen, K.C.; Peng, R.Y. Hypolipidemic Effects of Different Angiocarp Parts of Alpinia zerumbet. Pharm. Biol. 2011, 49, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Chompoo, J.; Upadhyay, A.; Gima, S.; Fukuta, M.; Tawata, S. Antiatherogenic Properties of Acetone Extract of Alpinia zerumbet Seeds. Molecules 2012, 17, 6237–6248. [Google Scholar] [CrossRef] [PubMed]
- Elzaawely, A.A.; Xuan, T.D.; Koyama, H.; Tawata, S. Antioxidant Activity and Contents of Essential Oil and Phenolic Compounds in Flowers and Seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Food Chem. 2007, 104, 1648–1653. [Google Scholar] [CrossRef]
- Kerdudo, A.; Ellong, E.N.; Burger, P.; Gonnot, V.; Boyer, L.; Chandre, F.; Adenet, S.; Rochefort, K.; Michel, T.; Fernandez, X. Chemical Composition, Antimicrobial and Insecticidal Activities of Flowers Essential Oils of Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. from Martinique Island. Chem. Biodivers. 2017, 14, e1600344. [Google Scholar] [CrossRef] [PubMed]
- Zahra, M.H.; Salem, T.A.R.; El-Aarag, B.; Yosri, N.; EL-Ghlban, S.; Zaki, K.; Marei, A.H.; El-Wahed, A.A.; Saeed, A.; Khatib, A.; et al. Alpinia zerumbet (Pers.): Food and Medicinal Plant with Potential In Vitro and In Vivo Anti-Cancer Activities. Molecules 2019, 24, 2495. [Google Scholar] [CrossRef] [PubMed]
- Devi, V.S.; Rao, M. Alpinia speciosa: A Gold Ornamental Plant—A Review. World J. Pharm. Res. 2014, 3, 169–177. [Google Scholar]
- Chan, E.W.C.; Wong, S.K.; Chan, H.T. Alpinia zerumbet, a Ginger Plant with a Multitude of Medicinal Properties: An Update on Its Research Findings. J. Chin. Pharm. Sci. 2017, 26, 775–788. [Google Scholar] [CrossRef]
- Kumar, A.; Bind, V. Alpinia zerumbet an Essential Medicinal Herb. MOJ Toxicol. 2018, 4, 316–318. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, J.; Wang, X.; Wu, L.; Zhou, X.; Jiang, F.; He, Z.; Guo, Q.; Tao, L.; Shen, X. Alpinia zerumbet and Its Potential Use as an Herbal Medication for Atherosclerosis: Mechanistic Insights from Cell and Rodent Studies. Lifestyle Genom. 2020, 13, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.W.C.; Kezuka, M.; Chan, H.T.; Wong, S.K. Alpinia zerumbet: A Review of the Chemistry, Quantity, and Pharmacological Properties of Selected Kavalactones. J. Nat. Rem. 2023, 23, 699–709. [Google Scholar] [CrossRef]
- Kimura, Y.; Takido, M.; Nakano, K.; Takishita, M. Studies on the Constituents of Alpinia. X: On the Constituents of the Rhizomata of Alpinia speciosa K. SCHUMANN and A. kumatake MAKINO (A. formosana K. SCHUMANN). Yakugaku Zasshi 1966, 86, 1184–1186. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, H.; Morita, M.; Mihashi, S. Phenolic Compounds from the Rhizomes of Alpinia speciosa. Phytochemistry 1981, 20, 2503–2506. [Google Scholar] [CrossRef]
- Chen, J.J.; Liao, H.R.; Chen, K.S.; Cheng, M.J.; Shu, C.W.; Sung, P.J.; Lim, Y.P.; Wang, T.C.; Kuo, W.L. A New 2H-Pyran-2-One Derivative and Anti-Inflammatory Constituents of Alpinia zerumbet. Chem. Nat. Compd. 2017, 53, 40–43. [Google Scholar] [CrossRef]
- Rao, Y.K.; Shih, H.N.; Lee, Y.C.; Cheng, W.T.; Hung, H.C.; Wang, H.C.; Chen, C.J.; Tzeng, Y.M.; Lee, M.J. Purification of Kavalactones from Alpinia zerumbet and Their Protective Actions against Hydrogen Peroxide-Induced Cytotoxicity in PC12 Cells. J. Biosci. Bioeng. 2014, 118, 679–688. [Google Scholar] [CrossRef]
- Nishidono, Y.; Iwama, Y.; Shirako, S.; Ishii, T.; Okuyama, T.; Nishizawa, M.; Tanaka, K. Two New Monoterpene Esters from the Pericarps of Alpinia zerumbet. Nat. Prod. Res. 2023, 37, 3694–3701. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, T.; Kikuchi, H.; Koyano, T.; Kowithayakorn, T.; Sakai, T.; Ishibashi, M. Death Receptor 5 Promoter-Enhancing Compounds Isolated from Catimbium speciosum and Their Enhancement Effect on TRAIL-Induced Apoptosis. Bioorg. Med. Chem. 2009, 17, 6748–6754. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Nishimura, H.; Kaburagi, K.; Mizutani, J. Plant Growth Inhibiting α-Pyrones from Alpinia speciosa. Phytochemistry 1994, 36, 23–27. [Google Scholar] [CrossRef]
- You, H.; He, M.; Pan, D.; Fang, G.; Chen, Y.; Zhang, X.; Shen, X.; Zhang, N. Kavalactones Isolated from Alpinia zerumbet (Pers.) Burtt. et Smith with Protective Effects against Human Umbilical Vein Endothelial Cell Damage Induced by High Glucose. Nat. Prod. Res. 2022, 36, 5740–5746. [Google Scholar] [CrossRef] [PubMed]
- Krishna, B.M.; Chaganty, R.B. Cardamonin and Alpinetin from the Seeds of Alpinia speciosa. Phytochemistry 1973, 12, 238. [Google Scholar] [CrossRef]
- Natsume, N.; Yonezawa, T.; Woo, J.T.; Teruya, T. Effect of Pinocembrin Isolated from Alpinia zerumbet on Osteoblast Differentiation. Cytotechnology 2021, 73, 307–317. [Google Scholar] [CrossRef]
- Taira, N.; Nguyen, B.C.Q.; Tawata, S. Hair Growth Promoting and Anticancer Effects of P21-Activated Kinase 1 (PAK1) Inhibitors Isolated from Different Parts of Alpinia zerumbet. Molecules 2017, 22, 132. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Zeng, J.; Chen, L.; Wang, L.; Gao, J.; Huang, L.; Xu, J.; Wang, Y.; He, X. Anti-Inflammatory Terpenoids from the Rhizomes of Shell Ginger. J. Agric. Food Chem. 2023, 72, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Be Tu, P.T.; Chompoo, J.; Tawata, S. Hispidin and Related Herbal Compounds from Alpinia zerumbet Inhibit Both PAK1-Dependent Melanogenesis in Melanocytes and Reactive Oxygen Species (ROS) Production in Adipocytes. Drug Discov. Ther. 2015, 9, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.X.; Dong, H.; Sim, K.Y. Labdane Diterpenes from Alpinia zerumbet. Phytochemistry 1996, 42, 149–151. [Google Scholar] [CrossRef]
- Morita, M.; Nakanishi, H.; Morita, H.; Mihashi, S.; Itokawa, H. Structures and Spasmolytic Activities of Derivatives from Sesquiterpenes of Alpinia speciosa and Alpinia japonica. Chem. Pharm. Bull. 1996, 44, 1603–1606. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.Y.; Peng, F.; Duan, W.T.; Wu, C.H.; Li, H.T.; Zhang, X.F.; Shi, Y.S. Neolignans and Diarylheptanoids with Anti-Inflammatory Activity from the Rhizomes of Alpinia zerumbet. J. Agric. Food. Chem. 2021, 69, 9229–9237. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Mizuguchi, S.; Tanaka, T.; Iritani, K.; Takeda, Y.; Yonemori, S. Isolation and Structure Determination of New Antioxidative Ferulic Acid Glucoside Esters from the Rhizome of Alpinia speciosa, a Zingiberaceae Plant Used in Okinawan Food Culture. J. Agric. Food Chem. 2000, 48, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.R.; Scalise, L.; Bergonzi, M.C.; Vincieri, F.F. Analysis of Kavalactones from Piper methysticum (Kava-Kava). J. Chromatogr. B 2004, 812, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Teschke, R. Dihydro-5,6-Dehydrokavain (DDK) from Alpinia zerumbet: Its Isolation, Synthesis, and Characterization. Molecules 2015, 20, 16306–16319. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Thang, T.D.; Luu, T.N.; Doan, V.D. An Overview of the Chemical Composition and Biological Activities of Essential Oils from Alpinia Genus (Zingiberaceae). RSC Adv. 2021, 11, 37767–37783. [Google Scholar] [CrossRef] [PubMed]
- Luz, A.I.R.; Zoghbi, M.G.B.; Ramos, L.S.; Maia, J.G.S.; Silva, M.L. Essential Oils of Some Amazonian Zingiberaceas, 3. Genera Alpinia and Rengalmia. J. Nat. Prod. 1984, 47, 907–908. [Google Scholar] [CrossRef] [PubMed]
- Victório, C.P.; da Silva Riehl, C.A.; Lage, C.L.S. Simultaneous Distillation-Extraction, Hydrodistillation and Static Headspace Methods for the Analysis of Volatile Secondary Metabolites of Alpinia zerumbet (Pers.) Burtt et Smith. from Southeast Brazil. J. Essent. Oil-Bear Plants 2009, 12, 137–143. [Google Scholar] [CrossRef]
- Victório, C.P.; Leitão, S.G.; Lage, C.L.S. Chemical Composition of the Leaf Oils of Alpinia zerumbet (Pers.) Burtt et Smith and A. purpurata (Vieill) K. Schum. From Rio de Janeiro, Brazil. J. Essent. Oil Res. 2010, 22, 52–54. [Google Scholar] [CrossRef]
- dos Santos, J.V.B.; de Almeida Chaves, D.S.; de Souza, M.A.A.; Riger, C.J.; Lambert, M.M.; Campos, D.R.; Moreira, L.O.; dos Santos Siqueira, R.C.; de Paulo Osorio, R.; Boylan, F.; et al. In Vitro Activity of Essential Oils against Adult and Immature Stages of Ctenocephalides felis felis. Parasitology 2020, 147, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Brandão, R.M.; Cardoso, M.G.; de Oliveira, J.E.; Barbosa, R.B.; Ferreira, V.R.F.; Campolina, G.A.; Martins, M.A.; Nelson, D.L.; Batista, L.R. Antifungal and Antiocratoxigenic Potential of Alpinia speciosa and Cymbopogon flexuosus Essential Oils Encapsulated in Poly(Lactic Acid) Nanofibres against Aspergillus Fungi. Lett. Appl. Microbiol. 2022, 75, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Kawai, H.; Kuraya, E.; Touyama, A.; Higa, O.; Hokamoto, K.; Tokeshi, K.; Yasuda, A.; Naragaki, T.; Itoh, S. Improved Yield and Antioxidant Activity of Essential Oil from Alpinia zerumbet (Zingiberaceae) Leaves by Underwater Shockwave Pretreatment. Food Bioprod. Process. 2021, 125, 134–140. [Google Scholar] [CrossRef]
- Padalia, R.C.; Chanotiya, C.S.; Sundaresana, V. Compositional Variability in Essential Oil from Different Parts of Alpinia speciosa from India. Nat. Prod. Commun. 2010, 5, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Saikia, J.; Sarkar, A.; Washmin, N.; Borah, T.; Das, B.; Konwar, P.; Siga, A.; Banik, D. Effect of Postharvest Drying on Physicochemical Properties, Volatile Yield, Composition, and Sensory Attributes of Alpinia zerumbet (Shell Ginger) Rhizome. Ind. Crops Prod. 2023, 198, 116719. [Google Scholar] [CrossRef]
- Dũng, N.X.; Chính, T.D.; Rãng, D.D.; Leclercq, P.A. Constituents of the Flower Oil of Alpinia speciosa K. Schum. from Vietnam. J. Essent. Oil Res. 1994, 6, 433–434. [Google Scholar] [CrossRef]
- Joshi, S.; Prakash, O.; Pant, A.K.; Mathela, C.S. Chemical Composition, and Antioxidant and Antimicrobial Activities of Alpinia nutans Rosc. J. Essent. Oil Res. 2010, 22, 85–90. [Google Scholar] [CrossRef]
- Luz, J.G.R.; Nogueira, J.N.; Alves, C.M.G.; Videira, M.N.; Canuto, K.M.; Castro, K.N.C.; Tavares-Dias, M. Essential Oil of Alpinia zerumbet (Zingiberaceae) Has Anthelmintic Efficacy against Monogenean of Colossoma Macropomum (Characiformes: Serrasalmidae). Aquac. Res. 2021, 52, 5340–5349. [Google Scholar] [CrossRef]
- Santos, B.A.; Roman-Campos, D.; Carvalho, M.S.; Miranda, F.M.F.; Carneiro, D.C.; Cavalcante, P.H.; Cândido, E.A.F.; Filho, L.X.; Cruz, J.S.; Gondim, A.N.S. Cardiodepressive Effect Elicited by the Essential Oil of Alpinia speciosa Is Related to L-Type Ca2+ Current Blockade. Phytomedicine 2011, 18, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Padalia, R.C.; Verma, R.S.; Sundaresan, V.; Chanotiya, C.S. Chemical Diversity in the Genus Alpinia (Zingiberaceae): Comparative Composition of Four Alpinia Species Grown in Northern India. Chem. Biodivers. 2010, 7, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Tawata, S.; Taira, S.; Kobamoto, N.; Ishihara, M.; Toyama, S. Syntheses and Biological Activities of Dihydro-5,6-Dehydrokawain Derivatives. Biosci. Biotechnol. Biochem. 1996, 60, 1643–1645. [Google Scholar] [CrossRef] [PubMed]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Changes in Essential Oil, Kava Pyrones and Total Phenolics of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Leaves Exposed to Copper Sulphate. Environ. Exp. Bot. 2007, 59, 347–353. [Google Scholar] [CrossRef]
- Victório, C.P.; Lage, C.L.S.; Kuster, R.M. Flavonoid Extraction from Alpinia zerumbet (Pers.) Burtt et Smith Leaves Using Different Techniques and Solvents. Eclética Química 2009, 34, 19–24. [Google Scholar] [CrossRef]
- Victório, C.P.; Lage, C.L.S.; Kuster, R.M. Flavonoids Extraction from Alpinia zerumbet (Pers.) Burtt et Smith Leaves Using Different Procedures. Eclética Química 2010, 35, 35–40. [Google Scholar] [CrossRef]
- Kuster, R.M.; Mpalantinos, M.A.; De Holanda, M.C.; Lima, P.; Brand, E.T.; Parente, J.P. GC-MS Determination of Kava-Pyrones in Alpinia zerumbet Leaves. J. High Resolut. Chromatogr. 1999, 22, 129–130. [Google Scholar]
Plant parts | Extracts | Bioactivities | References |
---|---|---|---|
Leaves | Essential oil | Acaricidal | [31] |
Anti-aging | [32] | ||
Anti-hypertensive | [33,34] | ||
Antimicrobial | [14,35,36,37,38] | ||
Anti-nociceptive | [39] | ||
Antioxidant | [32,40,41,42] | ||
Antiparasitic | [43] | ||
Antipsychotic | [40,44] | ||
Anti-schizophrenic | [45] | ||
Antispasmodic | [46] | ||
Anxiolytic-like | [47,48,49] | ||
Depressant | [44] | ||
Larvicidal | [38,50,51] | ||
Insecticidal | [52,53] | ||
Anti-melanogenic | [32] | ||
Molluscicidal | [51] | ||
Myorelaxant | [46] | ||
Repellent | [53] | ||
Tyrosinase inhibitory | [38] | ||
Vasorelaxant | [17,54,55] | ||
Aqueous extract | Antioxidant | [38] | |
Antiviral | [56] | ||
Longevity-extending | [57] | ||
Singlet oxygen quenching | [58] | ||
Methanol extract | Anti-inflammatory | [59,60] | |
Anti-nociceptive | [60] | ||
Antioxidant | [27,38,60,61,62] | ||
Antipyretic | [60] | ||
50% Ethanol extract | Anti-hypertensive | [63] | |
Vasodilator | [63,64] | ||
70% Ethanol extract | Antidepressant-like | [65,66] | |
Antioxidant | [66] | ||
Anxiolytic-like | [66] | ||
80% Ethanol extract | Antioxidant | [67] | |
90% Ethanol extract | Cardioprotective | [16] | |
Ethanol extract | Antioxidant | [68] | |
Photoprotective | [68] | ||
Dichloromethane extracts | Antiproliferative | [69] | |
Ethyl acetate extract | Antioxidant | [70] | |
n-Hexane extract | Anti-obese | [71] | |
Tea | Diuretic | [72,73] | |
Rhizomes | Essential oil | Antimicrobial | [36,74] |
Aqueous extract | Anti-skin disease | [75] | |
Antioxidant | [75] | ||
Antiviral | [56] | ||
Hepatoprotective | [76] | ||
Methanol extract | Antimicrobial | [77] | |
Antioxidant | [77] | ||
Hepatoprotective | [76,78] | ||
50% Ethanol extract | Antibacterial | [79] | |
Cytotoxicity | [80] | ||
95% Ethanol extract | Anti-Helicobacter pylori | [81] | |
Ethanol extract | Analgesic | [82] | |
Anti-inflammatory | [82] | ||
Tyrosinase inhibitory | [83] | ||
n-Hexane extract | Antiglycation | [84] | |
Fruits | Essential oil | Analgesic | [85] |
Anti-atherosclerotic | [86] | ||
Anti-inflammatory | [85,87] | ||
Antimicrobial | [87] | ||
Endothelial protective | [7,22,88,89,90] | ||
Neuroprotective | [91] | ||
Vasodilator | [92] | ||
Ethyl acetate extract | Anti-hypertensive | [93] | |
Seeds | Essential oil | Antimicrobial | [38] |
Hypolipidemic | [18,94] | ||
Larvicidal | [38] | ||
Tyrosinase inhibitory | [38] | ||
Aqueous extract | Antioxidant | [38,75] | |
Acetone extract | Antiatherogenic | [95] | |
Methanol extract | Antioxidant | [38] | |
Ethyl acetate extract | Antioxidant | [96] | |
Powder | Hypolipidemic | [18,94] | |
Flowers | Essential oil | Antimicrobial | [97] |
Insecticidal | [97] | ||
Methanol extract | Anticancer | [98] | |
Dichloromethane extract | Anticancer | [98] | |
Ethyl acetate extract | Antioxidant | [96] |
Compounds | Source | References | |||||
---|---|---|---|---|---|---|---|
Kavalactones | L | R | Fr | Pe | Se | Fl | |
5,6-Dehydrokawain (1) | + | + | + | + | − | + | [15,19,56,59,69,93,98,104,105,106,107,108,109] |
7,8-Dihydro-5,6-dehydrokawain (2) | + | + | + | + | − | − | [15,19,56,59,69,93,104,105,106,107,108,110] |
4′-Hydroxyl dihydro-5,6-dehydrokavain (3) | + | − | − | − | − | − | [111] |
4-Hydroxy-6-(4-methoxyphenethyl)-2H-pyran-2-one (4) | − | + | − | − | − | − | [106] |
(±)-Aniba dimer A (5) | + | − | + | + | − | − | [59,93,110,111] |
(±)-Aniba dimer C (6) | + | − | − | + | − | − | [59,111] |
Alpingsin C (7) | + | − | + | + | − | − | [59,93,111] |
Alpingsin D (8) | + | − | − | + | − | − | [59,111] |
Chalcones | L | R | Fr | Pe | Se | Fl | |
Pinocembrin chalcone (9) | − | + | − | − | − | − | [109] |
Cardamonin (10) | − | + | − | + | + | − | [105,108,109,112] |
Flavokawin B (11) | − | + | − | − | − | − | [105] |
Uvangoletin (12) | − | − | − | + | − | − | [108] |
Dihydroflavokawin B (13) | − | + | − | − | − | − | [105] |
Flavonoids | L | R | Fr | Pe | Se | Fl | |
(+)-Catechin (14) | + | − | − | − | − | − | [15] |
(−)-Epicatechin (15) | + | − | − | − | − | − | [15] |
Pinocembrin (16) | + | + | − | − | − | − | [109,113] |
Pinostrobin (17) | + | − | − | − | − | − | [69] |
Alpinetin (18) | − | + | − | − | + | − | [105,112] |
Naringenin (19) | − | + | − | − | − | − | [109] |
Kaempferol (20) | + | − | − | − | − | − | [69] |
3-Methoxykaempferol (21) | − | + | − | − | − | − | [109] |
Quercetin (22) | − | + | + | − | − | − | [93,106] |
Kaempferol-3-O-glucuronide (23) | + | + | − | − | − | − | [15,114] |
Kaempferol-3-O-rutinoside (24) | + | − | − | − | − | − | [15] |
Rutin (25) | + | − | − | − | − | − | [15] |
Diterpenoids | L | R | Fr | Pe | Se | Fl | |
Zerumin D3 (26) | − | + | − | − | − | − | [115] |
(E)-Labda-8(17),12-diene-15,16-dial (27) | − | + | − | − | + | − | [28,56,84,106,114,116] |
Zerumin A (28) | − | − | − | − | + | − | [117] |
Pahangensin B (29) | − | + | − | − | − | − | [115] |
Zerumin D1 (30) | − | + | − | − | − | − | [115] |
Zerumin D2 (31) | − | + | − | − | − | − | [115] |
Zerumin D8 (32) | − | + | − | − | − | − | [115] |
Zerumin D9 (33) | − | + | − | − | − | − | [115] |
Zerumin D10 (34) | − | + | − | − | − | − | [115] |
Zerumin B (35) | − | − | − | − | + | − | [117] |
Villosin (36) | − | + | − | − | − | − | [115] |
Zerumin (37) | − | + | − | − | + | − | [20,115] |
Coronarin E (38) | − | − | − | − | + | − | [117] |
Labda-8(17),13(14)-dien-15,16-olide (39) | − | + | − | − | − | − | [115] |
(12S)-15,16-Epoxy-12-hydroxy-labda-8(17),13(16),14-triene (40) | − | + | − | − | − | − | [115] |
(12R)-15,16-Epoxy-12-hydroxy-labda-8(17),13(16),14-triene (41) | − | + | − | − | − | − | [115] |
(12E)-Labda-8(17),12(13)-dien-16,15-olide (42) | − | + | − | − | − | − | [115] |
Coronarin D ethyl ether (43) | − | + | − | − | − | − | [115] |
(12E)-Labda-8(17),12,14-trien-16,15-olide (44) | − | + | − | − | − | − | [115] |
Zerumin D11 (45) | − | + | − | − | − | − | [115] |
Zerumin D12 (46) | − | + | − | − | − | − | [115] |
12,15-Epoxylabda-8(17),12,14-trien-16-al (47) | − | + | − | − | − | − | [115] |
Obtunone (48) | − | + | − | − | − | − | [115] |
Podocarpa-8,11,13-trien-12-ol (49) | − | + | − | − | − | − | [115] |
Zerumin D13 (50) | − | + | − | − | − | − | [115] |
Podocarpa-8,11,13-trien-13-ol (51) | − | + | − | − | − | − | [115] |
(11E)-14,15,16-Trinorlabda-8(17),11-dien-13-al (52) | − | + | − | − | − | − | [115] |
(11E)-14,15,16-Trinorlabda-8(17),11-dien-13-oic acid (53) | − | + | − | − | − | − | [115] |
Zerumin D14 (54) | − | + | − | − | − | − | [115] |
(E)-15,16-Bisnorlabda-8(17),11-dien-13-one (55) | − | + | − | − | + | − | [28,117] |
13,14,15,16-Tetranorlabda-8(l7)-en-12-oic acid (56) | − | + | − | − | − | − | [115] |
Isodrimenin (57) | − | + | − | − | − | − | [115] |
Zerumin D4 (58) | − | + | − | − | − | − | [115] |
Sesquiterpenoids | L | R | Fr | Pe | Se | Fl | |
Zerumin D6 (59) | − | + | − | − | − | − | [115] |
Zerumin D5 (60) | − | + | − | − | − | − | [115] |
α-Cadinol (61) | − | + | − | − | − | − | [115] |
α-Eudesmol (62) | − | + | − | − | − | − | [115] |
β-Eudesmol (63) | − | + | − | − | − | − | [115,118] |
γ-Eudesmol (64) | − | + | − | − | − | − | [115] |
Caryophyllenol I (65) | − | + | − | − | − | − | [115] |
(±)-Humulene epoxide II(66) | − | + | − | − | − | − | [118] |
Nerolidol (67) | − | + | − | − | − | − | [118] |
Monoterpenoids | L | R | Fr | Pe | Se | Fl | |
2′-Methoxy-4′-oxo-6′-phenyl-2′E-hexenoic acid 4-hydroxy-2-isopropyl-5-methylphenyl ester (68) | − | − | − | + | − | − | [108] |
2′-Methoxy-4′-oxo-6′-phenyl-2′E-hexenoic acid 4-hydroxy-5-isopropyl-2-methylphenyl ester (69) | − | − | − | + | − | − | [108] |
Meroterpenoids | L | R | Fr | Pe | Se | Fl | |
Zerumin D7 (70) | − | + | − | − | − | − | [115] |
Steroids | L | R | Fr | Pe | Se | Fl | |
β-Sitosterol (71) | − | − | + | − | − | − | [93] |
Cholestenone (72) | − | − | + | − | − | − | [93] |
Diarylheptanoids | L | R | Fr | Pe | Se | Fl | |
1,2-Dihydro-bis(de-O-methyl)curcumin (73) | − | + | − | − | − | − | [119] |
(4E,6E)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-phenylhepta-4,6-dien-3-one (74) | − | + | − | − | − | − | [119] |
(3S,7S)-5,6-Dehydro-4″-de-O-methylcentrolobine (75) | − | + | − | − | − | − | [119] |
1,7-Diphenyl-5-heptene-3-one (76) | − | + | − | − | − | − | [119] |
(−)-(R)-4″-Hydroxyyashabushiketol (77) | − | + | − | − | − | − | [119] |
(3S,5S)-Alpinikatin (78) | − | + | − | − | − | − | [119] |
5S-Ethoxyl-7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone (79) | − | + | − | − | − | − | [119] |
Neolignans | L | R | Fr | Pe | Se | Fl | |
9-Benzoyloxy-3,3′-dimethoxy-8′,9′-dinor-7′,8-neoligane-4,4′,7-triol (80–83) | − | + | − | − | − | − | [119] |
9-Benzoyloxy-3,7-dimethoxy-8,9′-neoligane-4,4′-diol (84–86) | − | + | − | − | − | − | [119] |
1,5-Di(3′-methoxyphenyl-4′-hydroxy)-2-[(benzyloxy)methyl]-pent-4-en-1-yl benzoate (87) | − | + | − | − | − | − | [119] |
7,8-erythro-3,3-Dimethoxy-9,9′-dibenzoyloxy-5′,8-neoligane-4,4′,7-triol (88) | − | + | − | − | − | − | [119] |
Quiquelignan H (89) | − | + | − | − | − | − | [119] |
Morinol G (90) | − | + | − | − | − | − | [119] |
(1R,2R,4E)-1,5-Bis(3,4-dimethoxyphenyl)-2-(methoxymethyl)pent-4-en-1-ol (91) | − | + | − | − | − | − | [119] |
(4E)-1,5-Bis(4-hydroxyphenyl)-2-(hydroxymethyl)-4-penten-1-ol (92) | − | + | − | − | − | − | [78] |
1,2-Bis-(3-methoxy-4-hydroxyphenyl)-1,3-propanediol (93) | − | + | − | − | − | − | [119] |
Glucoside esters | L | R | Fr | Pe | Se | Fl | |
Ethyl 4-O-feruloyl-β-glucopyranoside (94) | − | + | − | − | − | − | [120] |
4-Hydroxy-3-methoxyphenyl 4-O-feruloyl-β-glucopyranoside (95) | − | + | − | − | − | − | [120] |
Phenolic compounds | L | R | Fr | Pe | Se | Fl | |
Chavicol-β-rutinoside (96) | − | + | − | − | − | − | [78] |
1,2,Di-O-β-D-glucopyranosyl-4-allylbenzene (97) | − | + | − | − | − | − | [78] |
trans-Cinnamic acid methyl ester (98) | − | + | − | − | − | − | [105] |
Ferulic acid (99) | − | − | + | − | − | − | [93] |
Vanillin (100) | − | − | + | − | − | − | [93] |
Syringic acid (101) | − | − | + | − | − | − | [93] |
Others | L | R | Fr | Pe | Se | Fl | |
(E)-2,2,3,3-Tetramethyl-8-methylene-7-(oct-6-en-1-yl)octahydro-1H-quinolizine (102) | − | − | − | − | + | − | [116] |
2,5-Bis (1E,3E,5E)-6-methoxyhexa-1,3,5-trien-1-yl-2,5-dihydrofuran (103) | − | + | − | − | − | − | [116] |
Oleamide (104) | − | − | + | − | − | − | [93] |
Compounds | Relative Contents of the Essential Oils | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | |
BRA | BRA | BRA | BRA | BRA | BRA | BRA | BRA | BRA | BRA | BRA | BRA | BRA | BRA | JPN | JPN | JPN | JPN | JPN | JPN | JPN | JPN | JPN | JPN | JPN | JPN | JPN | JPN | MTQ | EGY | FJI | |
α-Thujene | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||||
α-Pinene | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ++ | + | + | + | ++ | ++ | + | + | + | ||
Camphene | + | + | + | + | + | + | + | + | + | + | + | + | ++ | ||||||||||||||||||
Sabinene | + | + | ++ | + | + | + | + | + | ++ | ++ | +++ | + | + | + | + | ++ | + | + | + | ++ | + | + | + | + | ++ | ||||||
β-pinene | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ++ | ||||
Myrcene | + | + | + | + | + | + | + | + | + | ||||||||||||||||||||||
α-Phellandlene | + | + | |||||||||||||||||||||||||||||
α-Terpinene | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||||||||
p-Cymene | + | + | + | + | ++ | + | ++ | ++++ | + | ++++ | ++ | +++ | +++ | ++ | +++ | +++ | +++ | +++ | +++ | ++ | +++ | + | +++ | ++ | +++ | ++ | + | + | |||
Limonene | + | +++ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ++ | + | + | |||||||
1,8-Cineole | ++ | ++ | +++ | +++ | +++ | +++ | +++ | ++ | ++ | ++ | +++ | +++ | +++ | ++ | ++ | ++ | +++ | +++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | + | ++ | ++ | ++ | ||
γ-Terpinene | + | ++ | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ | + | ++ | + | + | ++ | + | + | + | ++ | + | + | + | + | ++ | + | |||||
trans-4-Thujanol | + | + | + | + | + | ||||||||||||||||||||||||||
Terpinolene | + | + | + | + | + | + | + | ||||||||||||||||||||||||
Linalool | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
Camphor | + | + | + | + | + | + | + | + | + | ++ | + | + | + | + | |||||||||||||||||
Borneol | + | + | + | + | + | + | + | + | |||||||||||||||||||||||
Terpinen-4-ol | +++ | +++ | ++ | +++ | ++ | ++++ | ++ | +++ | +++ | ++ | +++ | +++ | +++ | ++ | ++ | ++ | ++ | ++ | + | ++ | + | +++ | + | + | ++ | +++ | ++ | +++ ++ | |||
Cryptone | + | + | |||||||||||||||||||||||||||||
α-Terpineol | + | + | + | + | + | + | + | + | + | + | |||||||||||||||||||||
Cuminaldehyde | + | + | + | + | + | + | + | + | |||||||||||||||||||||||
(E)-Methyl cinnamate | + | + | + | + | + | + | + | + | + | + | |||||||||||||||||||||
β-Caryophyllene | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
α-Humulene | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||||||||||
Elemol | |||||||||||||||||||||||||||||||
(E)-Nerolidol | + | ||||||||||||||||||||||||||||||
Caryophyllene oxide | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||
10-Epi-γ-eudesmol | |||||||||||||||||||||||||||||||
γ-Eudesmol | + | ||||||||||||||||||||||||||||||
β-Eudesmol | |||||||||||||||||||||||||||||||
α-Eudesmol | |||||||||||||||||||||||||||||||
References | [124] | [2] | [125] | [126] | [126] | [41] | [37] | [34] | [31] | [127] | [52] | [128] | [51] | [54] | [4] | [4] | [4] | [4] | [4] | [4] | [4] | [4] | [4] | [4] | [70] | [47] | [49] | [129] | [14] | [36] | [8] |
Compounds | Relative Contents in the Essential Oils | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | L | L | R | R | R | R | R | R | R | Fr | Fr | Fr | Se | Se | Se | Fl | Fl | Fl | Fl | Fl | Fl | Fl | Fl | Fl | Fl | Fl | Fl | |
IND | TWN | CHN | IND | IND | IND | MTQ | EGY | FJI | JPN | CHN | CHN | CHN | TWN | TWN | JPN | MTQ | MTQ | MTQ | MTQ | MTQ | MTQ | VNM | JPN | BRA | IND | IND | CHN | |
α-Thujene | + | + | + | + | + | + | + | + | ||||||||||||||||||||
α-Pinene | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ++ | + | + | + | |||||||||
Camphene | + | + | + | + | ++ | + | + | + | ||||||||||||||||||||
Sabinene | + | + | + | + | + | ++++ | ++ | ++ | ++ | ++ | + | + | + | ++ | ++ | |||||||||||||
β-pinene | + | + | + | + | + | + | ++ | + | ++ | ++++ | + | ++++ | + | |||||||||||||||
Myrcene | + | + | + | + | + | + | + | + | + | + | ||||||||||||||||||
α-Phellandlene | + | + | + | + | + | + | ||||||||||||||||||||||
α-Terpinene | + | + | + | + | + | + | + | + | ||||||||||||||||||||
p-Cymene | + | + | + | + | + | + | + | + | + | + | ||||||||||||||||||
Limonene | + | + | + | + | + | |||||||||||||||||||||||
1,8-Cineole | ++ | + | + | ++ | ++ | ++ | ++ | +++ | ++ | + | + | + | + | +++ | +++ | ++ | ++ | +++ | + | ++ | ++ | ++ | +++ | + | ||||
γ-Terpinene | + | + | + | + | + | + | + | + | + | ++ | + | ++ | ++ | ++ | ||||||||||||||
trans-4-Thujanol | + | + | + | + | + | |||||||||||||||||||||||
Terpinolene | + | + | + | + | + | + | ||||||||||||||||||||||
Linalool | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
Camphor | ++++ | + | + | + | + | + | ++ | + | ++ | + | ||||||||||||||||||
Borneol | + | + | + | + | + | + | + | + | ||||||||||||||||||||
Terpinen-4-ol | +++ | + | + | + | ++ | +++ ++ | +++ ++ | +++ | +++ ++ | + | + | + | + | + | +++ | +++ | +++ | ++ | +++ | +++ | + | +++ ++ | +++ | +++ | + | |||
Cryptone | + | + | + | + | + | + | ||||||||||||||||||||||
α-Terpineol | + | + | + | + | + | + | + | + | + | + | + | + | + | ++ | + | + | + | + | + | + | + | + | + | + | + | |||
Cuminaldehyde | + | |||||||||||||||||||||||||||
(E)-Methyl cinnamate | ++ | |||||||||||||||||||||||||||
β-Caryophyllene | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ++ | + | + | + | |||||||||
α-Humulene | + | + | + | + | ||||||||||||||||||||||||
Elemol | + | + | + | + | + | |||||||||||||||||||||||
(E)-Nerolidol | + | + | + | + | + | + | + | + | + | + | ||||||||||||||||||
Caryophyllene oxide | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||
10-Epi-γ-eudesmol | + | + | ||||||||||||||||||||||||||
γ-Eudesmol | + | + | + | + | ||||||||||||||||||||||||
β-Eudesmol | + | + | + | + | + | |||||||||||||||||||||||
α-Eudesmol | + | + | ||||||||||||||||||||||||||
References | [130] | [38] | [53] | [130] | [74] | [131] | [14] | [36] | [8] | [70] | [92] | [53] | [87] | [18] | [38] | [96] | [14] | [97] | [97] | [97] | [97] | [97] | [132] | [96] | [125] | [133] | [130] | [53] |
Compounds | Plant Parts | Solvent | Content (%) | References |
---|---|---|---|---|
5,6-Dehydrokawain (1) | Fresh leaves | Ethanol | 0.01 | [138] |
Dried leaves | n-Hexane | 0.07 | [107] | |
Methanol | 0.20 | [59] | ||
Fresh rhizomes | Ethanol | 0.10 | [138] | |
Dried pericarps | n-Hexane | 0.21 | [107] | |
Methanol | 0.16 | [59] | ||
Dried seeds | n-Hexane | 0.05 | [107] | |
Dried placenta | Methanol | 0.13 | [59] | |
Fresh stems | Ethanol | 0.02 | [138] | |
7,8-Dihydro-5,6-dehydrokawain (2) | Fresh leaves | Ethanol | 0.41 | [138] |
Water | 0.07 | [139] | ||
Dried leaves | n-Hexane | 0.39 | [107] | |
Methanol | 0.22 | [59] | ||
Fresh rhizomes | Ethanol | 0.35 | [138] | |
Dried pericarps | n-Hexane | 0.54 | [107] | |
Methanol | 0.55 | [59] | ||
Fresh seeds | Water | 0.0003 | [96] | |
Dried seeds | n-Hexane | 0.14 | [107] | |
Fresh flowers | Water | 0.03 | [96] | |
Dried placenta | Methanol | 0.49 | [59] | |
Fresh stems | Ethanol | 0.08 | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishidono, Y.; Tanaka, K. Phytochemicals of Alpinia zerumbet: A Review. Molecules 2024, 29, 2845. https://doi.org/10.3390/molecules29122845
Nishidono Y, Tanaka K. Phytochemicals of Alpinia zerumbet: A Review. Molecules. 2024; 29(12):2845. https://doi.org/10.3390/molecules29122845
Chicago/Turabian StyleNishidono, Yuto, and Ken Tanaka. 2024. "Phytochemicals of Alpinia zerumbet: A Review" Molecules 29, no. 12: 2845. https://doi.org/10.3390/molecules29122845
APA StyleNishidono, Y., & Tanaka, K. (2024). Phytochemicals of Alpinia zerumbet: A Review. Molecules, 29(12), 2845. https://doi.org/10.3390/molecules29122845