Spermacoce alata Aubl. Essential Oil: Chemical Composition, In Vitro Antioxidant Activity, and Inhibitory Effects of Acetylcholinesterase, α-Glucosidase and β-Lactamase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Yield and Component Analysis
2.2. Antioxidant Activity Evaluation
2.3. Anti-Acetylcholinesterase Activity
2.4. Anti-α-Glucosidase Activity
2.5. Anti-β-Lactamase Activity
3. Materials and Methods
3.1. Plant Materials
3.2. Essential Oil Hydrodistillation
3.3. GC-MS and GC-FID Analysis
3.4. Antioxidant Capacity Evaluation
3.4.1. DPPH Method
3.4.2. ABTS Method
3.4.3. FRAP Method
3.5. Anti-Acetylcholinesterase Activity Test
3.6. Anti-α-Glucosidase Capacity Test
3.7. Anti-β-Lactamase Capacity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budiman, A.; Rusdin, A.; Aulifa, D.L. Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics. Antioxidants 2023, 12, 378. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant- and Animal-Based Antioxidants’ Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Witkowska, A.M. Dietary Antioxidants and Chronic Diseases. Antioxidants 2023, 12, 362. [Google Scholar] [CrossRef] [PubMed]
- Hęś, M.; Dziedzic, K.; Górecka, D.; Jędrusek-Golińska, A.; Gujska, E. Aloe vera (L.) Webb.: Natural Sources of Antioxidants—A Review. Plant Foods Hum. Nutr. 2019, 74, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; He, X.; Feng, M.; Zeng, Y.; Rauwolf, T.J.; Shao, L.; Ni, W.; Yan, H.; Porco, J.A.; Hao, X.; et al. Acylphloroglucinols with Acetylcholinesterase Inhibitory Effects from the Fruits of Eucalyptus Robusta. Bioorg. Chem. 2020, 103, 104127. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, P.; Hu, Y.; Liu, T.; Sun, J.; Wang, X. Synthesis and Biological Evaluation of 3-Arylcoumarins as Potential Anti-Alzheimer’s Disease Agents. J. Enzym. Inhib. Med. Chem. 2019, 34, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Chung, E.; Chen, M.A. Cardiovascular Complications of Acetylcholinesterase Inhibitors in Patients with Alzheimer’s Disease: A Narrative Review. Ann. Geriatr. Med. Res. 2021, 25, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Hung, N.H.; Quan, P.M.; Satyal, P.; Dai, D.N.; Hoa, V.V.; Huy, N.G.; Giang, L.D.; Ha, N.T.; Huong, L.T.; Hien, V.T.; et al. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules 2022, 27, 7092. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Singh, E. Antioxidants: An Approach for Restricting Oxidative Stress Induced Neurodegeneration in Alzheimer’s Disease. Inflammopharmacology 2023, 31, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Makhaeva, G.F.; Kovaleva, N.V.; Boltneva, N.P.; Rudakova, E.V.; Lushchekina, S.V.; Astakhova, T.Y.; Serkov, I.V.; Proshin, A.N.; Radchenko, E.V.; Palyulin, V.A.; et al. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022, 27, 1060. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhong, X. Synthesis of Activity Evaluation of Flavonoid Derivatives as α-Glucosidase Inhibitors. Front. Chem. 2022, 10, 1041328. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; He, F.; Huang, Y.; Zhou, M.; Liu, X.; Ye, X.; Yang, R.; Tian, W.; Chen, H. Inhibitory Effects of Phenolic Glycosides from Trollius chinensis Bunge on α-Glucosidase: Inhibition Kinetics and Mechanisms. Food Funct. 2022, 13, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, Z.; Wang, X.; Wang, S.; Cao, J.; Liu, Y. Exploring the Inhibitory Mechanism of Piceatannol on α-Glucosidase Relevant to Diabetes Mellitus. RSC Adv. 2020, 10, 4529–4537. [Google Scholar] [CrossRef] [PubMed]
- Niri, D.R.; Sayahi, M.H.; Behrouz, S.; Moazzam, A.; Mojtabavi, S.; Faramarzi, M.A.; Larijani, B.; Rastegar, H.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Design, Synthesis, in Vitro, and in Silico Biological Evaluations of Coumarin-Indole Hybrids as New Anti-α-Glucosidase Agents. BMC Chem. 2022, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M.A.Z.; Mohd Mokhtar, R.A.; Iqbal, M.; Abdullah, A.; Azizah, R.; Sulistyorini, L.; Mahfudh, N.; Zakaria, Z.A. Medicinal Plants of Southeast Asia with Anti-α-Glucosidase Activity as Potential Source for Type-2 Diabetes Mellitus Treatment. J. Ethnopharmacol. 2024, 330, 118239. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Hu, W.; Cheng, W.; Zhang, S.; Zou, R. Zanthoxylum bungeanum Essential Oil: Extraction and Component Analysis for α-Glucosidase Inhibitory Activity and the Underlying Mechanism Based on Molecular Docking. Appl. Sci. 2023, 13, 2627. [Google Scholar] [CrossRef]
- Tsang, M.; Chan, P.; Liu, S.; Wong, K.; Leung, Y. A Fluorescein-labeled AmpC Β-lactamase Allows Rapid Characterization of β-lactamase Inhibitors by Real-time Fluorescence Monitoring of the β-lactamase-inhibitor Interactions. Biotechnol. J. 2016, 11, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.A.; Shobrak, M.Y. Detection of Genes Mediating Beta-Lactamase Production in Isolates of Enterobacteria Recovered from Wild Pets in Saudi Arabia. Vet. World 2015, 8, 1400–1404. [Google Scholar] [CrossRef]
- Worthington, R.J.; Melander, C. Overcoming Resistance to β-Lactam Antibiotics. J. Org. Chem. 2013, 78, 4207–4213. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.D.; Kale, M.; Reddy, K.; Tentarelli, S.; Zambrowski, M.; Zhang, M.; Palmer, T.; Breen, J.; Lahiri, S.; Shirude, P.S.; et al. Alkylidene Oxapenem β-Lactamase Inhibitors Revisited: Potent Broad Spectrum Activity but New Stability Challenges. ACS Med. Chem. Lett. 2014, 5, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shang, X.; Hu, F.; Lao, X.; Gao, X.; Zheng, H.; Yao, W. β-Lactamase Inhibitors: An Update. Mini-Rev. Med. Chem. 2013, 13, 1846–1861. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; De Vos, A.L.; Khan, S.; St. John, M.; Hasan, T. Quantitative Insights Into β-Lactamase Inhibitor’s Contribution in the Treatment of Carbapenemase-Producing Organisms With β-Lactams. Front. Microbiol. 2021, 12, 756410. [Google Scholar] [CrossRef] [PubMed]
- Al-Hayanni, H.S.A.; El-Shora, H. Various Extracts of Some Medicinal Plants as Inhibitors for Beta-Lactamase Activity. Baghdad Sci. J. 2021, 18, 477. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, Y.; Li, F.; Chen, L.; Huang, X. Analysis of the Antibacterial Properties of Compound Essential Oil and the Main Antibacterial Components of Unilateral Essential Oils. Molecules 2023, 28, 6304. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Abdo, A.A.A.; Shu, Y.; Zhang, Z.; Liang, T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities—A Review. Foods 2023, 12, 4169. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Bhardwaj, U.; Kaur, R. Cymbopogon Nardus Essential Oil: A Comprehensive Review on Its Chemistry and Bioactivity. J. Essent. Oil Res. 2021, 33, 205–220. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Wang, Y.; Guo, Z.; Wang, G.; Zhang, Y. The Performance of Plant Essential Oils against Lactic Acid Bacteria and Adverse Microorganisms in Silage Production. Front. Plant Sci. 2023, 14, 1285722. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Júnior, J.C.; Lyra Lemos, R.P.; Conserva, L.M. Chemical Constituents from Spermacoce verticillata (Rubiaceae). Biochem. Syst. Ecol. 2012, 44, 208–211. [Google Scholar] [CrossRef]
- Cabral, E.L.; Miguel, L.M.; Soto, J.D. Dos Especies Nuevas de Borreria (Rubiaceae) y Sinopsis de Las Especies de Bolivia. Brittonia 2012, 64, 394–412. [Google Scholar] [CrossRef]
- Manandlar, N.P. An inventory of some vegetable drug resources of Makawanpur district Nepal. Fitoterapia 1995, 66, 231–238. [Google Scholar]
- Saidu, U.; Ibrahim, M.A.; De Koning, H.P.; McKerrow, J.H.; Caffrey, C.R.; Balogun, E.O. Human Schistosomiasis in Nigeria: Present Status, Diagnosis, Chemotherapy, and Herbal Medicines. Parasitol. Res. 2023, 122, 2751–2772. [Google Scholar] [CrossRef] [PubMed]
- González-Castelazo, F.; Soria-Jasso, L.E.; Torre-Villalvazo, I.; Cariño-Cortés, R.; Muñoz-Pérez, V.M.; Ortiz, M.I.; Fernández-Martínez, E. Plants of the Rubiaceae Family with Effect on Metabolic Syndrome: Constituents, Pharmacology, and Molecular Targets. Plants 2023, 12, 3583. [Google Scholar] [CrossRef] [PubMed]
- Su, G.-Y.; Chen, M.-L.; Wang, K.-W. Natural New Bioactive Anthraquinones from Rubiaceae. Mini-Rev. Org. Chem. 2020, 17, 872–883. [Google Scholar] [CrossRef]
- Sukari, M.A.; Utami, R.; Neoh, B.K.; Ee, G.C.L.; Jusoh, S.; Nor, S.M.M.; Rahmani, M. Antileukemic Properties of Spermacoce Species. Asian J. Chem. 2013, 25, 4595–4598. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. Application of Herbal Plants in Organic Poultry Nutrition and Production. Curr. Nutr. Food Sci. 2022, 18, 629–641. [Google Scholar] [CrossRef]
- Navaei, M.N.; Mirza, M.; Dini, M. Chemical Composition of the Essential Oils of Rubia tinctorum L. Aerial Parts from Iran. Flavour Fragrance J. 2006, 21, 519–520. [Google Scholar] [CrossRef]
- Il’ina, T.V.; Kovaleva, A.M.; Goryachaya, O.V.; Vinogradov, B.A. Terpenoids and Aromatic Compounds from Essential Oils of Cruciata Laevipes and C. Glabra. Chem. Nat. Compd. 2013, 48, 1106–1108. [Google Scholar] [CrossRef]
- Andrade, J.M.M.; Biegelmeyer, R.; Xavier, C.A.G.; Bordignon, S.A.L.; Moreno, P.R.H.; Zuanazzi, J.A.S.; Henriques, A.T.; Apel, M.A. Essential Oil Constituents of Psychotria leiocarpa. Chem. Nat. Compd. 2010, 46, 649–650. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, J.; Zhao, J.; Zhu, L.; Liu, X. Volatile Organic Composition of Five Rubiaceae Species: Insights into Their Phytochemical Diversity. Biochem. Syst. Ecol. 2024, 114, 104809. [Google Scholar] [CrossRef]
- Aparicio-Ruiz, R.; García-González, D.L.; Morales, M.T.; Lobo-Prieto, A.; Romero, I. Comparison of Two Analytical Methods Validated for the Determination of Volatile Compounds in Virgin Olive Oil: GC-FID vs GC-MS. Talanta 2018, 187, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ogunwande, I.A.; Walker, T.M.; Bansal, A.; Setzer, W.N.; Essien, E.E. Essential Oil Constituents and Biological Activities of Peristrophe bicalyculata and Borreria verticillata. Nat. Prod. Commun. 2010, 5, 1934578X1000501. [Google Scholar] [CrossRef]
- Saha, K.; Popy, D.A.; Akther, T.; Rahim, M.; Bhuiyan, H.N. Identification of Nonpolar Compounds from the Aerial Parts of Spermacoce latifolia by GC-MS Analysis. Jahangirnagar Univ. J. Sci. 2016, 39, 11–18. [Google Scholar]
- Zhao, J.; Xu, Z.; Gao, P.; Liu, X. Chemical Composition, In Vitro Antioxidant Activities, and Inhibitory Effects of the Acetylcholinesterase of Liparis nervosa (Thunb.) Lindl. Essential Oil. Biomolecules 2023, 13, 1089. [Google Scholar] [CrossRef] [PubMed]
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial Fatty Acids: An Update of Possible Mechanisms of Action and Implications in the Development of the next-Generation of Antibacterial Agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef] [PubMed]
- Mthembu, S.X.H.; Mazibuko-Mbeje, S.E.; Silvestri, S.; Orlando, P.; Marcheggiani, F.; Cirilli, I.; Nkambule, B.B.; Muller, C.J.F.; Tiano, L.; Dludla, P.V. Low Levels and Partial Exposure to Palmitic Acid Improves Mitochondrial Function and the Oxidative Status of Cultured Cardiomyoblasts. Toxicol. Rep. 2024, 12, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.Y.; Song, J. Important Roles of Linoleic Acid and α-Linolenic Acid in Regulating Cognitive Impairment and Neuropsychiatric Issues in Metabolic-Related Dementia. Life Sci. 2024, 337, 122356. [Google Scholar] [CrossRef] [PubMed]
- Rybalchenko, N.P.; Prykhodko, V.A.; Nagorna, S.S.; Volynets, N.N.; Ostapchuk, A.N.; Klochko, V.V.; Rybalchenko, T.V.; Avdeeva, L.V. In Vitro Antifungal Activity of Phenylheptatriyne from Bidens cernua L. against Yeasts. Fitoterapia 2010, 81, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Khobragade, C.N.; Park, S.W. Optimized and Comparative Antioxidant Assays and Its Applications in Herbal and Synthetic Drug Analysis as an Antioxidants. Mini-Rev. Med. Chem. 2012, 12, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.; Charles, A.L. In Vitro Antioxidant Activity of Kyoho Grape Extracts in DPPH and ABTS Assays: Estimation Methods for EC50 Using Advanced Statistical Programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Gao, P.; Liu, D.; Song, W.; Zhu, L.; Liu, X. Chemical Composition and In Vitro Antioxidant Activity of Sida Rhombifolia L. Volatile Organic Compounds. Molecules 2022, 27, 7067. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xu, Z.; Gao, P.; Liu, X. Chemical Composition and In Vitro Antioxidant Activity and Anti-Acetylcholinesterase Activity of Essential Oils from Tadehagi triquetrum (L.) Ohashi. Molecules 2023, 28, 2734. [Google Scholar] [CrossRef] [PubMed]
- Ćavar, S.; Maksimović, M.; Vidic, D.; Parić, A. Chemical Composition and Antioxidant and Antimicrobial Activity of Essential Oil of Artemisia annua L. from Bosnia. Ind. Crop. Prod. 2012, 37, 479–485. [Google Scholar] [CrossRef]
- Moukhfi, F.; Dakir, M.; Nait Irahal, I.; Chninigue, J.; Outlioua, A.; JamalEddine, J.; Chadli, N. Antioxidant Potential and Inhibitory Effect of Essential Oil from the Aerial Parts of Origanum vulgare L. Against Salmonella Poultry in Morocco. J. Essent. Oil Bear. Plants 2022, 25, 456–467. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich US Foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative Evaluation of Fe(III) Reducing Power-Based Antioxidant Capacity Assays in the Presence of Phenanthroline, Batho-Phenanthroline, Tripyridyltriazine (FRAP), and Ferricyanide Reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Kanmaz, H.; Gokce, Y.; Hayaloglu, A.A. Volatiles, Phenolic Compounds and Bioactive Properties of Essential Oil and Aqueous Extract of Purple Basil (Ocimum basilicum L.) and Antidiabetic Activity in Streptozotocin-Induced Diabetic Wistar Rats. Food Chem. Adv. 2023, 3, 100429. [Google Scholar] [CrossRef]
- Liu, Y.; Su, X.; Xiang, Y.; Wang, X.; Lai, P. Chemical Composition, Antibacterial, Cytotoxic and Antioxidant Activities of the Essential Oil of Malvastrum Coromandelianum Aerial Parts. J. Essent. Oil Bear. Plants 2019, 22, 1040–1047. [Google Scholar] [CrossRef]
- Wojtunik, K.A.; Ciesla, L.M.; Waksmundzka-Hajnos, M. Model Studies on the Antioxidant Activity of Common Terpenoid Constituents of Essential Oils by Means of the 2,2-Diphenyl-1-Picrylhydrazyl Method. J. Agric. Food Chem. 2014, 62, 9088–9094. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of Phenolic Compounds towards Free Radicals under in Vitro Conditions. J. Food Sci. Technol. 2015, 52, 5790–5798. [Google Scholar] [CrossRef] [PubMed]
- Hajlaoui, H.; Mighri, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical Composition and in Vitro Evaluation of Antioxidant, Antimicrobial, Cytotoxicity and Anti-Acetylcholinesterase Properties of Tunisian Origanum majorana L. Essential Oil. Microb. Pathog. 2016, 95, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Chahal, K.K.; Kumar, A.; Singh, R.; Bhardwaj, U. Antioxidant Activity of Anethum graveolens L. Essential Oil Constituents and Their Chemical Analogues. J. Food Biochem. 2019, 43, e12782. [Google Scholar] [CrossRef] [PubMed]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules 2021, 26, 3625. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and Antiacetylcholinesterase Activities of Some Commercial Essential Oils and Their Major Compounds. Molecules 2011, 16, 7672–7690. [Google Scholar] [CrossRef] [PubMed]
- López, M.D.; Pascual-Villalobos, M.J. Mode of Inhibition of Acetylcholinesterase by Monoterpenoids and Implications for Pest Control. Ind. Crop. Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Kaskoos, R.A. GC/MS Profile and In-Vitro Antidiabetic Activity of Cinnamomum zylanicum Blume., Bark and Trachyspermum ammi (L.) Sprague, Seeds. J. Essent. Oil Bear. Plants 2019, 22, 535–544. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Uren, M.C.; Kocak, M.S.; Cengiz, M.; Tepe, B. Chemical Composition, Antioxidant, and Enzyme Inhibitory Activities of the Essential Oils of Three Phlomis Species as Well as Their Fatty Acid Compositions. Food Sci. Biotechnol. 2016, 25, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Heydari Koochi, Z.; Jahromi, K.G.; Kavoosi, G.; Babaei, S. Citrus Peel Waste Essential Oil: Chemical Composition along with Anti-amylase and Anti-glucosidase Potential. Int. J. Food Sci. Technol. 2022, 57, 6795–6804. [Google Scholar] [CrossRef]
- Drawz, S.M.; Papp-Wallace, K.M.; Bonomo, R.A. New β-Lactamase Inhibitors: A Therapeutic Renaissance in an MDR World. Antimicrob. Agents Chemother. 2014, 58, 1835–1846. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.E.; Ozcelik, B.; Kan, Y.; Kartal, M. Inhibitory Effects of Various Essential Oils and Individual Components against Extended-Spectrum Beta-Lactamase (ESBL) Produced by Klebsiella Pneumoniae and Their Chemical Compositions. J. Food Sci. 2011, 76, M538–M546. [Google Scholar] [CrossRef] [PubMed]
- Qaralleh, H.N. Chemical Composition and Antibacterial Activity of Origanum ramonense Essential Oil on the β-Lactamase and Extended- Spectrum β-Lactamase Urinary Tract Isolates. Bangladesh. J. Pharmacol. 2018, 13, 280. [Google Scholar] [CrossRef]
- Sarhadi, E.; Ebrahimi, S.N.; Hadjiakhoondi, A.; Manayi, A. Chemical Composition and Antioxidant Activity of Root Essential Oil of Different Salvia leriifolia Populations. J. Essent. Oil Bear. Plants 2021, 24, 209–217. [Google Scholar] [CrossRef]
- Kamal, R.M.; Sabry, M.M.; El-Halawany, A.M.; Rabie, M.A.; El Sayed, N.S.; Hifnawy, M.S.; Younis, I.Y. GC-MS Analysis and the Effect of Topical Application of Essential Oils of Pinus canariensis C. Sm., Cupressus lusitanica Mill. and Cupressus arizonica Greene Aerial Parts in Imiquimod–Induced Psoriasis in Mice. J. Ethnopharmacol. 2024, 318, 116947. [Google Scholar] [CrossRef] [PubMed]
- Paw, M.; Begum, T.; Gogoi, R.; Pandey, S.K.; Lal, M. Chemical Composition of Citrus limon L. Burmf Peel Essential Oil from North East India. J. Essent. Oil Bear. Plants 2020, 23, 337–344. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, J.; Gao, Y.; Han, W.; Chen, D. Antioxidant Activity and Mechanism of Rhizoma Cimicifugae. Chem. Cent. J. 2012, 6, 140. [Google Scholar] [CrossRef] [PubMed]
- Szafrańska, K.; Szewczyk, R.; Janas, K. Involvement of Melatonin Applied to Vigna radiata L. Seeds in Plant Response to Chilling Stress. Open Life Sci. 2014, 9, 1117–1126. [Google Scholar] [CrossRef]
- Dang, N.H.; Nhung, P.H.; Mai Anh, B.T.; Thu Thuy, D.T.; Minh, C.V.; Dat, N.T. Chemical Composition and α-Glucosidase Inhibitory Activity of Vietnamese Citrus Peels Essential Oils. J. Chem. 2016, 2016, 6787952. [Google Scholar] [CrossRef]
- Shoeib, N.A.; Al-Madboly, L.A.; Ragab, A.E. In Vitro and in Silico β-Lactamase Inhibitory Properties and Phytochemical Profile of Ocimum basilicum Cultivated in Central Delta of Egypt. Pharm. Biol. 2022, 60, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Vosbeek, A.; Corbella, K.; Severson, J.; Schesser, J.; Sutton, L.D. A Chromogenic Cephalosporin for β-Lactamase Inhibitor Screening Assays. Anal. Biochem. 2012, 428, 96–98. [Google Scholar] [CrossRef] [PubMed]
No. | RT | Compound | RIcalc | RIlib | Area (%) | Identification Method | CAS ID |
---|---|---|---|---|---|---|---|
1 | 10.688 | Linalool oxide | 1076 | 1074 | 0.78% | RRI, MS | 5989-33-3 |
2 | 11.441 | Linalool | 1104 | 1099 | 3.08% | RRI, MS | 78-70-6 |
3 | 12.794 | (E,Z)-2,6-Nonadienal | 1157 | 1155 | 0.24% | RRI, MS | 557-48-2 |
4 | 12.952 | (E)-2-Nonenal | 1163 | 1162 | 0.37% | RRI, MS | 18829-56-6 |
5 | 13.110 | Camphol | 1169 | 1167 | 0.56% | RRI, MS | 507-70-0 |
6 | 13.285 | 1-Nonanol | 1176 | 1173 | 0.17% | RRI, MS | 143-08-8 |
7 | 13.732 | α-Terpineol | 1193 | 1189 | 0.39% | RRI, MS | 98-55-5 |
8 | 14.087 | Decanal | 1208 | 1206 | 0.36% | RRI, MS | 112-31-2 |
9 | 14.447 | β-Cyclocitral | 1223 | 1220 | 0.17% | RRI, MS | 432-25-7 |
10 | 14.621 | Nerol | 1230 | 1228 | 0.33% | RRI, MS | 106-25-2 |
11 | 15.309 | Geraniol | 1260 | 1255 | 0.28% | RRI, MS | 106-24-1 |
12 | 15.418 | (E)-2-Decenal | 1264 | 1263 | 0.62% | RRI, MS | 3913-81-3 |
13 | 15.974 | Isobornyl acetate | 1288 | 1286 | 0.27% | RRI, MS | 125-12-2 |
14 | 16.165 | (E,Z)-2,4-Decadienal | 1296 | 1295 | 0.20% | RRI, MS | 25152-83-4 |
15 | 16.689 | (E,E)-2,4-Decadienal | 1319 | 1317 | 0.51% | RRI, MS | 25152-84-5 |
16 | 16.885 | 4-Ethyl-2-methoxyanisole | 1328 | 1320 | 0.26% | RRI, MS | 5888-51-7 |
17 | 17.725 | 2-Undecenal | 1366 | 1367 | 0.35% | RRI, MS | 2463-77-6 |
18 | 18.085 | n-Decanoic acid | 1382 | 1372 | 0.23% | RRI, MS | 334-48-5 |
19 | 18.211 | Damascenone | 1388 | 1386 | 1.19% | RRI, MS | 23726-93-4 |
20 | 18.615 | Hexahydropseudoionone | 1407 | 1406 | 0.64% | RRI, MS | 1604-34-8 |
21 | 18.926 | Caryophyllene | 1422 | 1419 | 0.19% | RRI, MS | 87-44-5 |
22 | 19.122 | β-Copaene | 1431 | 1432 | 0.31% | RRI, MS | 18252-44-3 |
23 | 19.215 | Mellitene | 1436 | 1434 | 0.14% | RRI, MS | 87-85-4 |
24 | 19.635 | Dihydropseudoionone | 1456 | 1452 | 0.78% | RRI, MS | 689-67-8 |
25 | 19.755 | 4-Methyl-tetradecane | 1462 | 1459 | 0.15% | RRI, MS | 25117-24-2 |
26 | 19.858 | Precocene I | 1467 | 1466 | 0.80% | RRI, MS | 17598-02-6 |
27 | 20.071 | Undecanoic acid | 1477 | 1468 | 0.17% | RRI, MS | 112-37-8 |
28 | 20.333 | (E)-β-Ionone | 1490 | 1486 | 1.29% | RRI, MS | 79-77-6 |
29 | 21.026 | 4-(2-Methyl-3-oxocyclohexyl)-butanal | 1525 | 1515 | 0.27% | RRI, MS | 92485-93-3 |
30 | 21.140 | 3-(2-Pentenyl)-1,2,4-cyclopentanetrione | 1530 | 1525 | 0.39% | RRI, MS | 54644-27-8 |
31 | 21.866 | (E)-Nerolidol | 1567 | 1564 | 0.09% | RRI, MS | 7212-44-4 |
32 | 22.073 | Dodecanoic acid | 1578 | 1568 | 0.52% | RRI, MS | 143-07-7 |
33 | 22.188 | (-)-Spathulenol | 1584 | 1577 | 0.42% | RRI, MS | 77171-55-2 |
34 | 22.292 | Caryophyllene oxide | 1589 | 1581 | 2.69% | RRI, MS | 1139-30-6 |
35 | 22.482 | Mintketone | 1599 | 1595 | 0.53% | RRI, MS | 73809-82-2 |
36 | 22.777 | Humulene oxide II | 1615 | 1606 | 0.40% | RRI, MS | 19888-34-7 |
37 | 23.039 | Silphiperfol-6-en-5-one | 1629 | 1623 | 0.13% | RRI, MS | 77887-60-6 |
38 | 23.159 | Isospathulenol | 1635 | 1638 | 0.16% | RRI, MS | 88395-46-4 |
39 | 23.284 | 5-Heptene-1,3-diynylbenzene | 1642 | 1642 | 0.96% | RRI, MS | 13678-98-3 |
40 | 23.628 | α-Cadinol | 1660 | 1653 | 0.17% | RRI, MS | 481-34-5 |
41 | 23.715 | Precocene II | 1665 | 1558 | 0.59% | RRI, MS | 644-06-4 |
42 | 23.912 | (E)-2-Tetradecenal | 1676 | 1673 | 0.38% | RRI, MS | 51534-36-2 |
43 | 23.961 | 1-Tetradecanol | 1678 | 1676 | 0.51% | RRI, MS | 112-72-1 |
44 | 24.354 | Heptadecane | 1699 | 1700 | 0.14% | RRI, MS | 629-78-7 |
45 | 24.659 | Pentadecanal | 1717 | 1717 | 0.68% | RRI, MS | 2765-11-9 |
46 | 24.921 | Phenylheptatriyne | 1731 | 1725 | 8.07% | RRI, MS | 4300-27-0 |
47 | 25.739 | Tetradecanoic acid | 1778 | 1768 | 3.16% | RRI, MS | 544-63-8 |
48 | 26.579 | Methyl pentadecanoate | 1827 | 1824 | 0.14% | RRI, MS | 7132-64-1 |
49 | 26.950 | Hexahydrofarnesyl acetone | 1849 | 1844 | 4.44% | RRI, MS | 502-69-2 |
50 | 27.365 | Pentadecanoic acid | 1873 | 1867 | 1.70% | RRI, MS | 1002-84-2 |
51 | 27.649 | (Z,Z)-8,11-Heptadecadienal | 1890 | 1886 | 0.48% | RRI, MS | 56797-42-3 |
52 | 27.752 | Methyl (4E,7E,10E)-4,7,10-hexadecatrienoate | 1896 | 1892 | 0.29% | RRI, MS | 17364-31-7 |
53 | 28.172 | Farnesyl acetone | 1922 | 1919 | 0.30% | RRI, MS | 1117-52-8 |
54 | 28.260 | Methyl palmitate | 1927 | 1926 | 0.51% | RRI, MS | 112-39-0 |
55 | 28.614 | Palmitoleic acid | 1949 | 1951 | 1.35% | RRI, MS | 373-49-9 |
56 | 29.324 | Palmitic acid | 1964 | 1968 | 30.74% | RRI, MS | 57-10-3 |
57 | 30.213 | Cycloheptadecanolide | 2051 | 2042 | 0.15% | RRI, MS | 5637-97-8 |
58 | 30.524 | Heptadecanoic acid | 2071 | 2071 | 0.15% | RRI, MS | 506-12-7 |
59 | 30.911 | Methyl linoleate | 2096 | 2092 | 0.28% | RRI, MS | 112-63-0 |
60 | 31.020 | Methyl linolenate | 2103 | 2098 | 0.51% | RRI, MS | 301-00-8 |
61 | 31.080 | γ-Hexadecalactone | 2107 | 2105 | 0.35% | RRI, MS | 730-46-1 |
62 | 31.206 | Phytol | 2116 | 2114 | 1.25% | RRI, MS | 150-86-7 |
63 | 31.882 | Linolenic acid | 2130 | 2139 | 16.13% | RRI, MS | 60-33-3 |
64 | 32.068 | Octadecanoic acid | 2174 | 2172 | 0.88% | RRI, MS | 57-11-4 |
65 | 32.297 | Hexadecanamide | 2190 | 2184 | 0.21% | RRI, MS | 629-54-9 |
66 | 33.835 | Tricosane | 2298 | 2300 | 0.24% | RRI, MS | 638-67-5 |
67 | 34.626 | 4,8,12,16-Tetramethylheptadecan-4-olide | 2357 | 2364 | 0.25% | RRI, MS | 96168-15-9 |
Fatty acids | 55.03% | ||||||
Esters | 2.31% | ||||||
Monoterpenoids | 9.49% | ||||||
Sesquiterpenoids | 9.70% | ||||||
Diterpenoids | 1.25% | ||||||
Aldehydes (including aldehydes and olefine aldehyde) | 4.75% | ||||||
Aromatic compounds | 9.43% | ||||||
Other compounds | 3.48% | ||||||
Total identified | 95.44% |
Tested Samples | DPPH (IC50) | ABTS (IC50) | FRAP Antioxidant Capacity |
---|---|---|---|
S. alata essential oil | >10 mg/mL | 3.84 ± 2.12 mg/mL | 87.22 ± 12.22 µM/g |
Trolox | 9.3 ± 1.3 µg/mL | 6.1 ± 1.4 µg/mL | - |
Tested Samples | Anti-Acetylcholinesterase (IC50) | Anti-α-Glucosidase (IC50) | Anti-β-Lactamase (IC50) |
---|---|---|---|
S. alata essential oil | 286.0 ± 79.04 μg/mL | 174.7 ± 13.12 μg/mL | 37.56 ± 3.48 μg/mL |
Galantamine | 130.0 ± 2.0 ng/mL | - | - |
Acarbose | - | 6.40 ± 0.46 ng/mL | - |
Clavulanate Potassium | - | - | 85.98 ± 10.37 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhu, J.; Xu, Z.; Liu, X. Spermacoce alata Aubl. Essential Oil: Chemical Composition, In Vitro Antioxidant Activity, and Inhibitory Effects of Acetylcholinesterase, α-Glucosidase and β-Lactamase. Molecules 2024, 29, 2869. https://doi.org/10.3390/molecules29122869
Zhu X, Zhu J, Xu Z, Liu X. Spermacoce alata Aubl. Essential Oil: Chemical Composition, In Vitro Antioxidant Activity, and Inhibitory Effects of Acetylcholinesterase, α-Glucosidase and β-Lactamase. Molecules. 2024; 29(12):2869. https://doi.org/10.3390/molecules29122869
Chicago/Turabian StyleZhu, Xinyu, Jiadong Zhu, Ziyue Xu, and Xu Liu. 2024. "Spermacoce alata Aubl. Essential Oil: Chemical Composition, In Vitro Antioxidant Activity, and Inhibitory Effects of Acetylcholinesterase, α-Glucosidase and β-Lactamase" Molecules 29, no. 12: 2869. https://doi.org/10.3390/molecules29122869
APA StyleZhu, X., Zhu, J., Xu, Z., & Liu, X. (2024). Spermacoce alata Aubl. Essential Oil: Chemical Composition, In Vitro Antioxidant Activity, and Inhibitory Effects of Acetylcholinesterase, α-Glucosidase and β-Lactamase. Molecules, 29(12), 2869. https://doi.org/10.3390/molecules29122869