Synthesis of Novel Nitro-Halogenated Aryl-Himachalene Sesquiterpenes from Atlas Cedar Oil Components: Characterization, DFT Studies, and Molecular Docking Analysis against Various Isolated Smooth Muscles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Halogenation of Arylhimachalene
2.2. Nitration of Arylhimachalane-Halogenated Derivatives
2.3. Structural Description of the Compounds
2.3.1. 2-Bromo-1-Ntitro-Arylhimachalene
2.3.2. 2-Chloro-1:3-Dintitro-Arylhimachalene
2.4. DFT Computation and Electronic Structure
2.5. Frontier Molecular Orbital (FMO) and Reactivity Parameter Analysis
2.6. Molecular Electrostatic Potential (MEP)
2.7. Hirshfeld Surface Analyses
2.8. Molecular Docking Analysis
3. Materials and Methods
3.1. Materials
3.2. Procedure for the Synthesis of Compound 2
3.3. Procedure for the Synthesis of Compound 3
3.4. Procedure for the Synthesis of Compounds 4 and 5
- 2-bromo-3,5,5,9-tetramethyl-1-nitro-6,7,8,9-tetrahydro-5H-benzo[7]annulene (Compound 4)
- 2-chloro-3,5,5,9-tetramethyl-1,4-dinitro-6,7,8,9-tetrahydro-5H-benzo[7]annulene (Compound 5)
3.5. Crystal Structure Determination
3.6. Computational Method
3.7. In Silico Molecular Docking
3.7.1. Ligand Preparation
3.7.2. Protein Structure Preparation
3.7.3. Grid-Based Ligand Docking with Energetic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aberchane, M.; Fechtal, M.; Chaouch, A. Analysis of Moroccan Atlas Cedarwood Oil (Cedrus atlantica Manetti). J. Essent. Oil Res. 2004, 16, 542–547. [Google Scholar] [CrossRef]
- Abouhamza, B.; Allaoud, S.; Karim, A. Ar-Himachalene. Molecules 2001, 6, M236. [Google Scholar] [CrossRef]
- Geha, R.S.; Meltzer, E.O. Desloratadine: A New, Nonsedating, Oral Antihistamine. J. Allergy Clin. Immunol. 2001, 107, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Bryson, H.M.; Wilde, M.I. Amitriptyline. A Review of Its Pharmacological Properties and Therapeutic Use in Chronic Pain States. Drugs Aging 1996, 8, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Faris, A.; Edder, Y.; Louchachha, I.; Lahcen, I.A.; Azzaoui, K.; Hammouti, B.; Merzouki, M.; Challioui, A.; Boualy, B.; Karim, A.; et al. From Himachalenes to Trans-Himachalol: Unveiling Bioactivity through Hemisynthesis and Molecular Docking Analysis. Sci. Rep. 2023, 13, 17653. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Kumar, N.; Kumar, R.; Salar, R.K. Antimicrobial Activity of Zinc Oxide Nanoparticles Synthesized from Aloe Vera Peel Extract. SN Appl. Sci. 2019, 1, 1–9. [Google Scholar] [CrossRef]
- Chaudhary, A.; Das, P.; Mishra, A.; Kaur, P.; Singh, B.; Goel, R.K. Naturally Occurring Himachalenes to Benzocycloheptene Amino Vinyl Bromide Derivatives: As Antidepressant Molecules. Mol. Divers. 2012, 16, 357–366. [Google Scholar] [CrossRef]
- Yamini, Y.; Anand, P.; Bhardwaj, V.K.; Kumar, A.; Purohit, R.; Das, P.; Padwad, Y. Novel Pyrrolone-Fused Benzosuberene MK2 Inhibitors: Synthesis, Pharmacophore Modelling, Molecular Docking, and Anti-Cancer Efficacy Evaluation in HNSCC Cells. J. Biomol. Struct. Dyn. 2023. [Google Scholar] [CrossRef]
- Zollinger, H. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. Leonardo 1989, 22. [Google Scholar] [CrossRef]
- Paden, N.E.; Smith, E.E.; Maul, J.D.; Kendall, R.J. Effects of Chronic 2,4,6,-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene Exposure on Developing Bullfrog (Rana catesbeiana) Tadpoles. Ecotoxicol. Environ. Saf. 2011, 74, 924–928. [Google Scholar] [CrossRef]
- Becker, F.F.; Banik, B.K. Polycyclic Aromatic Compounds as Anticancer Agents: Synthesis and Biological Evaluation of Some Chrysene Derivatives. Bioorg. Med. Chem. Lett. 1998, 8, 2877–2880. [Google Scholar] [CrossRef] [PubMed]
- Sana, S.; Tasneem; Ali, M.M.; Rajanna, K.C.; Saiprakash, P.K. Efficient and Facile Method for the Nitration of Aromatic Compounds by Nitric Acid in Micellar Media. Synth. Commun. 2009, 39, 2949–2953. [Google Scholar] [CrossRef]
- Bak, R.R.; Smallridge, A.J. A Fast and Mild Method for the Nitration of Aromatic Rings. Tetrahedron. Lett. 2001, 42, 6767–6769. [Google Scholar] [CrossRef]
- Cheng, G.; Duan, X.; Qi, X.; Lu, C. Nitration of Aromatic Compounds with NO2/Air Catalyzed by Sulfonic Acid-Functionalized Ionic Liquids. Catal. Commun. 2008, 10, 201–204. [Google Scholar] [CrossRef]
- Zoubir, M.; Belghiti, M.E.; Idrissi, M.E.; Zeroual, A. Theoretical Investigation of the Mechanism and Regioselectivity of the 3-Isopropyl-1,6-Dimethyl-Naphthalene and Ar-Himachalene in Nitration Reaction: A MEDT Study. Theor. Chem. Acc. 2022, 141, 8. [Google Scholar] [CrossRef]
- Buu-Hoï, N.P. Quelques Nouvelles Halogénations Effectuées Avec Les N-bromo- et N-chlorosuccinimides. Recl. Des Trav. Chim. Des Pays.-Bas. 1954, 73, 197–202. [Google Scholar] [CrossRef]
- Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. Halogenation of Aromatic Compounds by N-Chloro-, N-Bromo-, and N-Iodosuccinimide. Chem. Lett. 2003, 32, 932–933. [Google Scholar] [CrossRef]
- Salama, T.A.; Novák, Z. N-Halosuccinimide/SiCl4 as General, Mild and Efficient Systems for the α-Monohalogenation of Carbonyl Compounds and for Benzylic Halogenation. Tetrahedron. Lett. 2011, 52, 4026–4029. [Google Scholar] [CrossRef]
- Gu, L.; Lu, T.; Zhang, M.; Tou, L.; Zhang, Y. Efficient Oxidative Chlorination of Aromatics on Saturated Sodium Chloride Solution. Adv. Synth. Catal. 2013, 355, 1077–1082. [Google Scholar] [CrossRef]
- Barhate, N.B.; Gajare, A.S.; Wakharkar, R.D.; Bedekar, A.V. Simple and Efficient Chlorination and Bromination of Aromatic Compounds with Aqueous TBHP (or H2O2) and a Hydrohalic Acid. Tetrahedron. Lett. 1998, 39, 6349–6350. [Google Scholar] [CrossRef]
- Khazaei, A.; Zolfigol, M.A.; Kolvari, E.; Koukabi, N.; Soltani, H.; Bayani, L.S. Electrophilic Bromination of Alkenes, Alkynes, and Aromatic Amines with Iodic Acid/Potassium Bromide under Mild Conditions. Synth. Commun. 2010, 40, 3672–3676. [Google Scholar] [CrossRef]
- Krishna Mohan, K.V.V.; Narender, N.; Kulkarni, S.J. Simple and Regioselective Oxyiodination of Aromatic Compounds with Ammonium Iodide and Oxone®. Tetrahedron. Lett. 2004, 45, 8015–8018. [Google Scholar] [CrossRef]
- Gruter, G.J.M.; Akkerman, O.S.; Bickelhaupt, F. Nuclear versus Side-Chain Bromination of Methyl-Substituted Anisoles by N-Bromosuccinimide. J. Org. Chem. 1994, 59, 4473–4481. [Google Scholar] [CrossRef]
- Edder, Y.; Lahcen, I.A.; Brahim, H.; Boualy, B.; Karim, A.; Pérez-Redondo, A. Synthesis, Crystal Structure and Spectral Characterization of (Z)-2,8-Dibromo-9-(Bromomethylene)-3,5,5-Trimethyl-6,7,8,9-Tetrahydro-5H-Benzo[7]Annulene. J. Mol. Struct. 2019, 1198, 126850. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON, an Integrated Tool for the Analysis of the Results of a Single Crystal Structure Determination. PLATON Integr. Tool Anal. Results A Single Cryst. Struct. Determ. 1990, 46, c34. [Google Scholar]
- Cremer, D.; Pople, J.A. A General Definition of Ring Puckering Coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358. [Google Scholar] [CrossRef]
- Flack, H.D.; Bernardinelli, G. Reporting and Evaluating Absolute-Structure and Absolute-Configuration Determinations. J. Appl. Crystallogr. 2000, 33, 1143–1148. [Google Scholar] [CrossRef]
- Bakhouch, M.; El Yazidi, M.; Al Houari, G.; Saadi, M.; El Ammari, L. 3′-(4-Chlorophenyl)-4′-Phenyl-3 H,4′ H-Spiro[Benzo[b]Thiophene-2,5′-Isoxazol]-3-One. IUCrdata 2017, 2, x170677. [Google Scholar] [CrossRef]
- Koopmans, T. Über Die Zuordnung von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Luque, F.J.; López, J.M.; Orozco, M. Perspective on “Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of Ab Initio Molecular Potentials for the Prevision of Solvent Effects”. Theor. Chem. Acc. 2000, 103, 343–345. [Google Scholar] [CrossRef]
- Chidangil, S.; Shukla, M.K.; Mishra, P.C. A Molecular Electrostatic Potential Mapping Study of Some Fluoroquinolone Anti-Bacterial Agents. J. Mol. Model. 1998, 4, 250–258. [Google Scholar] [CrossRef]
- Turner, J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Wihadi, M.N.K.; Merzouki, M.; Ma’arif, A.S.; Grasianto, G.; Santosa, S.J. Insights of Auric Ion Adsorption in the Presence of Ferric and Hexavalent Chromium Species on Mg/Al Layered Double Hydroxides. Moroc. J. Chem. 2024, 12, 854–869. [Google Scholar]
- Merzouki, M.; Bourassi, L.; Abidi, R.; Bouammali, B.; El Farh, L.; Sabbahi, R.; Challioui, A. Deciphering the SARS-CoV-2 Delta Variant: Antiviral Compound Efficacy by Molecular Docking, ADMET, and Dynamics Studies. Moroc. J. Chem. 2024, 12, 1153–1171. [Google Scholar]
- Coleman, R.G.; Carchia, M.; Sterling, T.; Irwin, J.J.; Shoichet, B.K. Ligand Pose and Orientational Sampling in Molecular Docking. PLoS ONE 2013, 8, e75992. [Google Scholar] [CrossRef] [PubMed]
- Bekkouch, A.; Merzouki, M.; El Mostafi, H.; Elhessni, A.; Challioui, A.; Mesfioui, A.; Touzani, R. Potential Inhibition of ALDH by Argan Oil Compounds, Computational Approach by Docking, ADMET and Molecular Dynamics. Moroc. J. Chem. 2024, 12, 676–695. [Google Scholar]
- Bruker. APEX2 (Version 5.054), SAINT (Version 6.36A), SADABS; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van De Streek, J.; Wood, P.A. Mercury CSD 2.0—New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Stalke, D. An empirical correction for the influence of low-energy contamination. J. Appl. Crystallogr. 2015, 48, 1907–1913. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02. 2016. Available online: https://gaussian.com/g09citation/ (accessed on 10 June 2024).
- Ezekiel, O.A.; Oluwaotbiloba, A.A.; Samuel, B.A.; Oluwatosin, A.G.; Mary, M.N.; Rasheedat, F.T.; Yetunde, K.O.; Victory, O.U.; Damilola, B.S.; Ewele, O.G.; et al. Application of In-Silico Methodologies in Exploring the Antagonistic Potential of Trigonella Frenum-Graecum on Cyclooxygenase-2 (Cox-2) in Cancer Treatment. IPS J. Mol. Docking Simul. 2023, 2, 26–36. [Google Scholar] [CrossRef]
- Adekiya, T.A.; Aruleba, R.T.; Klein, A.; Fadaka, A.O. In Silico Inhibition of SGTP4 as a Therapeutic Target for the Treatment of Schistosomiasis. J. Biomol. Struct. Dyn. 2022, 40, 3697–3705. [Google Scholar] [CrossRef] [PubMed]
- Doherty, B.; Zhong, X.; Gathiaka, S.; Li, B.; Acevedo, O. Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations. J. Chem. Theory Comput. 2017, 13, 6131–6145. [Google Scholar] [CrossRef] [PubMed]
- Fajriyah, N.N.; Mugiyanto, E.; Rahmasari, K.S.; Nur, A.V.; Najihah, V.H.; Wihadi, M.N.K.; Merzouki, M.; Challioui, A.; Vo, T.H. Indonesia Herbal Medicine and Its Active Compounds for Antidiabetic Treatment: A Systematic Mini Review. Moroc. J. Chem. 2023, 11, 11–14. [Google Scholar]
- Bouakline, H.; Bouknana, S.; Merzouki, M.; Ziani, I.; Challioui, A.; Bnouham, M.; Tahani, A.; El Bachiri, A. The Phenolic Content of Pistacia Lentiscus Leaf Extract and Its Antioxidant and Antidiabetic Properties. Sci. World J. 2024, 2024, 1998870. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.; Copeland, J.C.; Germer, K.; Mercier, K.A.; Ramanatlian, V.; Revesz, P. Comparison of Protein Active Site Structures for Functional Annotation of Proteins and Drug Design. Proteins Struct. Funct. Genet. 2006, 65, 124–135. [Google Scholar] [CrossRef]
- Saeed, M.; Shoaib, A.; Tasleem, M.; Alabdallah, N.M.; Alam, M.J.; El Asmar, Z.; Jamal, Q.M.S.; Bardakci, F.; Alqahtani, S.S.; Ansari, I.A.; et al. Assessment of Antidiabetic Activity of the Shikonin by Allosteric Inhibition of Protein-Tyrosine Phosphatase 1b (Ptp1b) Using State of Art: An in Silico and in Vitro Tactics. Molecules 2021, 26, 3996. [Google Scholar] [CrossRef]
D—H···A | D—H | H…A | D···A | D—H···A |
---|---|---|---|---|
C30—H30A···O2i | 0.98 | 2.675 | 3.557 (11) | 166 |
C4—H4B···Cg1ii | 0.98 | 2.82 | 3.67 (14) | 144 |
Compound 4 | Compound 5 | |||
---|---|---|---|---|
Bond Length Å | Calculated | Experimental | Calculated | Experimental |
C1–C14 | 1.421 | 1.432 | 1.433 | 1.429 |
C1–C19 | 1.410 | 1.375 | 1.408 | 1.375 |
C18–C19 | 1.390 | 1.402 | 1.389 | 1.384 |
C17–C32 | 1.506 | 1.572 | 1.511 | 1.518 |
C18–X39 | 1.904 | 1.891 | 1.747 | 1.729 |
C19–N36 | 1.487 | 1.481 | 1.489 | 1.489 |
C13–C14 | 1.559 | 1.527 | 1.575 | 1.563 |
C1–C2 | 1.537 | 1.522 | 1.545 | 1.542 |
Bond angles ° | Calculated | Experimental | Calculated | Experimental |
C1–C14–C15 | 117.6 | 116.5 | 114.9 | 114.8 |
C1–C19–C18 | 124.9 | 125.8 | 125.3 | 125.8 |
C1–C14–C13 | 127.2 | 126.5 | 124.7 | 124.2 |
C1–C2–C4 | 113.2 | 112.1 | 114.7 | 115.3 |
C19–C18–X39 | 120.7 | 120.7 | 120.2 | 120.2 |
C1–C19–N36 | 118.7 | 120.2 | 119.7 | 119.8 |
C15–C17–C32 | 121.1 | 123.3 | 123.4 | 123.5 |
C14–C13–C10 | 114.8 | 114.8 | 113.3 | 111.7 |
Torsion Angles ° | Calculated | Experimental | Calculated | Experimental |
C1–C19–C18–X39 | 178.7 | 177.2 | 178.8 | 178.6 |
N36–C19–C18–X39 | −2.5 | −4.9 | −2.7 | −4.7 |
C19–C1–C2–C4 | −139.8 | −141.2 | −141.4 | −147.0 |
C1–C14–C13–C10 | 19.0 | 23.2 | 22.7 | 24.0 |
Compound | HOMO | LUMO | Egap | μ | η | χ | ω |
---|---|---|---|---|---|---|---|
4 | −6.878 | −2.483 | 4.396 | −4.681 | 4.396 | 4.681 | 2.492 |
5 | −7.485 | −2.959 | 4.526 | −5.222 | 4.526 | 5.222 | 3.013 |
MO | Compound 4 | Compound 5 | ||||
---|---|---|---|---|---|---|
Energy | Center | Composition % | Energy | Center | Composition % | |
LUMO+1 | −1.090 | C1 | 0.663 | −2.838 | C1 | 4.926 |
C14 | 26.414 | C14 | 7.112 | |||
C15 | 16.379 | C15 | 17.423 | |||
C17 | 1.886 | C17 | 7.528 | |||
C18 | 28.515 | C18 | 18.456 | |||
C19 | 17.417 | N36 | 5.528 | |||
N36 | 0.671 | O37 | 3.459 | |||
O37 | 0.605 | O38 | 3.620 | |||
O38 | 0.566 | N39 | 11.464 | |||
Br39 | 2.274 | O40 | 6.397 | |||
O41 | 6.719 | |||||
LUMO | −2.483 | C1 | 1.517 | −2.959 | C14 | 6.848 |
C18 | 1.333 | C15 | 7.539 | |||
C19 | 0.927 | C18 | 7.677 | |||
N36 | 43.969 | N39 | 30.608 | |||
O37 | 25.017 | O40 | 16.589 | |||
O38 | 24.730 | O41 | 18.698 | |||
HOMO | −6.878 | C1 | 18.491 | −7.485 | C1 | 21.019 |
C14 | 22.213 | C14 | 21.773 | |||
C17 | 15.137 | C16 | 17.859 | |||
C18 | 19.209 | C17 | 17.979 | |||
Br39 | 15.753 | Cl35 | 9.525 | |||
HOMO-1 | −7.197 | C1 | 8.902 | −7.644 | C1 | 6.988 |
C14 | 4.001 | C14 | 4.226 | |||
C15 | 30.371 | C15 | 28.280 | |||
C17 | 12.600 | C16 | 7.567 | |||
C18 | 2.057 | C17 | 4.590 | |||
C19 | 28.718 | C18 | 20.565 | |||
O37 | 1.807 | Cl35 | 4.359 | |||
O38 | 1.946 | O37 | 2.560 | |||
Br39 | 3.655 | O38 | 2.375 | |||
O10 | 2.421 | |||||
O41 | 2.015 |
Compound | Docking Score | Interacting Amino Acid | Interaction Type |
---|---|---|---|
Bromo-nitro-arylhimachalene | −6.579 | ASP72 | Attractive charge |
TRP84 | Pi–Pi Stacked | ||
PHE330, PHE331, HIS440, TRP84 | Pi–Alkyl | ||
TYR121, SER124, SER122, LEU127, GLN69, GLY123, TYR130, GLY118, GLY117, ILE444, GLU199, GLY119, SER200, ALA201, GLY441, TYR442 | Van der Waals | ||
Chloro-dinitro-arylhimachalene | −4.931 | GLU199, TYR130 | Conventional hydrogen bond |
HIS440, GLY441, GLY118, GLY123 | Carbon–hydrogen bond | ||
GLY117 | Amide–Pi Stacked | ||
TRP84 | Pi–cation | ||
TRP84 | Pi–anion | ||
TRP84 | Pi–Pi Stacked | ||
LEU127 | Alkyl | ||
TYR121, PHE331, PHE330, HIS440, TRP84, TYR130 | Pi–Alkyl | ||
ILE444, SER124, TYR116, PHE290, SER122, GLY119 | Van der Waals | ||
Physostigmine | −3.950 | TRP84 | Pi–cation |
TYR121 | Pi–lone pair | ||
HIS440 | Pi–Pi T-shaped | ||
GLU199, GLY118, HIS440 | Carbon–hydrogen bond | ||
TYR334, PHE330, HIS440 | Pi–Alkyl | ||
PHE290, PHE331, GLY119, SER200, ALAL201, TYR130, ILE444, GLY117, GLY441, GLY123, SER122 | Van der Waals |
C15H20BrNO2 (Compound 4) | C15H19ClN2O4 (Compound 5) | |
---|---|---|
Mr | 326.23 | 326.77 |
Crystal system, space group | Orthorhombic, P212121 | Orthorhombic, P212121 |
Temperature (K) | 296 | 173 |
a, b, c (Å) | 10.2548 (5), 15.6927 (8), 19.1418 (9) | 9.4448 (3), 9.5590 (3), 16.6190 (6) |
V (Å3) | 3080.4 (3) | 1500.41 (9) |
Z | 8 | 4 |
Radiation type | Cu Kα (λ = 1.54178 Å) | Cu Kα (λ = 1.54178 Å) |
m (mm−1) | 3.62 | 2.44 |
Crystal size (mm) | 0.32 × 0.24 × 0.19 | 0.31 × 0.26 × 0.21 |
Data collection | ||
Diffractometer | Bruker D8 VENTURE Super DUO | Bruker D8 VENTURE Super DUO |
Absorption correction | Multi-scan | Multi-scan |
SADABS (Krause et al., 2015 [42]) | SADABS (Krause et al., 2015 [42]) | |
Tmin, Tmax | 0.616, 0.747 | 0.539, 0.753 |
No. of measured, independent and | 46,768, 5879, 4972 | 31,539, 2851, 2728 |
observed [I > 2s(I)] reflections | ||
Rint | 0.054 | 0.049 |
(sin q/l) max (Å−1) | 0.611 | 0.606 |
Refinement | ||
R[F2 > 2s(F2)], wR(F2), S | 0.054, 0.167, 1.03 | 0.028, 0.074, 1.06 |
No. of reflections | 5862 | 2851 |
No. of parameters | 351 | 205 |
No. of restraints | 102 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Dρmax, Dρmin (e Å−3) | 0.64, −0.52 | 0.21, −0.21 |
Absolute structure | Flack x determined using 1918 quotients [(I+) − (I−)]/[(I+) + (I−)] (Parsons, Flack and Wagner, ActaCryst. B69 (2013) 249–259) | Refined as an inversion twin |
Absolute structure parameter | 0.061 (13) | 0.065 (17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edder, Y.; Louchachha, I.; Faris, A.; Maatallah, M.; Azzaoui, K.; Zerrouk, M.; Saadi, M.; El Ammari, L.; Berraho, M.; Merzouki, M.; et al. Synthesis of Novel Nitro-Halogenated Aryl-Himachalene Sesquiterpenes from Atlas Cedar Oil Components: Characterization, DFT Studies, and Molecular Docking Analysis against Various Isolated Smooth Muscles. Molecules 2024, 29, 2894. https://doi.org/10.3390/molecules29122894
Edder Y, Louchachha I, Faris A, Maatallah M, Azzaoui K, Zerrouk M, Saadi M, El Ammari L, Berraho M, Merzouki M, et al. Synthesis of Novel Nitro-Halogenated Aryl-Himachalene Sesquiterpenes from Atlas Cedar Oil Components: Characterization, DFT Studies, and Molecular Docking Analysis against Various Isolated Smooth Muscles. Molecules. 2024; 29(12):2894. https://doi.org/10.3390/molecules29122894
Chicago/Turabian StyleEdder, Youssef, Issam Louchachha, Abdelmajid Faris, Mohamed Maatallah, Khalil Azzaoui, Mohammed Zerrouk, Mohamed Saadi, Lahcen El Ammari, Moha Berraho, Mohammed Merzouki, and et al. 2024. "Synthesis of Novel Nitro-Halogenated Aryl-Himachalene Sesquiterpenes from Atlas Cedar Oil Components: Characterization, DFT Studies, and Molecular Docking Analysis against Various Isolated Smooth Muscles" Molecules 29, no. 12: 2894. https://doi.org/10.3390/molecules29122894
APA StyleEdder, Y., Louchachha, I., Faris, A., Maatallah, M., Azzaoui, K., Zerrouk, M., Saadi, M., El Ammari, L., Berraho, M., Merzouki, M., Boualy, B., Hammouti, B., Sabbahi, R., Karim, A., Alanazi, M. M., Ayerdi Gotor, A., & Rhazi, L. (2024). Synthesis of Novel Nitro-Halogenated Aryl-Himachalene Sesquiterpenes from Atlas Cedar Oil Components: Characterization, DFT Studies, and Molecular Docking Analysis against Various Isolated Smooth Muscles. Molecules, 29(12), 2894. https://doi.org/10.3390/molecules29122894