Phenyl Derivatives Modulate the Luminescent Properties and Stability of CzBTM-Type Radicals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structure Characterization
2.2. Photophysical Properties
2.3. Theoretical Calculations
2.4. Electrochemical Properties
2.5. Stability
3. Materials and Methods
3.1. Synthesis of Ph2CzBTM and Mes2CzBTM
3.2. Synthesis of Ph2PyIDBTM and Mes2PyIDBTM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubo, T.; Abe, M. Introduction: Persistent and Stable Organic Radicals. Chem. Rev. 2024, 124, 4541–4542. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.H.; Kimura, S.; Greenham, N.C.; Tani, Y.; Matsuoka, R.; Nishihara, H.; Evans, E.W. Near-Infrared Light-Emitting Diodes from Organic Radicals with Charge Control. Adv. Opt. Mater. 2022, 10, 2200628. [Google Scholar] [CrossRef]
- Cho, E.; Coropceanu, V.; Brédas, J.L. Organic neutral radical emitters: Impact of chemical substitution and electronic-state hybridization on the luminescence properties. J. Am. Chem. Soc. 2020, 142, 17782–17786. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Cho, E.; Wan, K.; Wu, C.; Gao, Y.; Coropceanu, V.; Li, F. Achieving Nearly 100% Photoluminescence Quantum Efficiency in Organic Radical Emitters by Fine-Tuning the Effective Donor-Acceptor Distance. Adv. Funct. Mater. 2024, 34, 2314811. [Google Scholar] [CrossRef]
- Zong, C.; Yang, S.; Sun, Y.; Zhang, L.; Hu, J.; Hu, W.; Sun, Z. Isomeric dibenzooctazethrene diradicals for high-performance air-stable organic field-effect transistors. Chem. Sci. 2022, 13, 11442–11447. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Chikamatsu, M.; Azumi, R.; Tsutsumi, J.Y.; Ogawa, K.; Yamane, W.; Kanai, K. Stable Delocalized Singlet Biradical Hydrocarbon for Organic Field-Effect Transistors. Adv. Funct. Mater. 2016, 26, 277–283. [Google Scholar] [CrossRef]
- Ai, X.; Evans, E.W.; Dong, S.; Gillett, A.J.; Guo, H.; Chen, Y.; Li, F. Efficient radical-based light-emitting diodes with doublet emission. Nature 2018, 563, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Murto, P.; Chowdhury, R.; Gorgon, S.; Guo, E.; Zeng, W.; Li, B.; Bronstein, H. Mesitylated trityl radicals, a platform for doublet emission: Symmetry breaking, charge-transfer states and conjugated polymers. Nat. Commun. 2023, 14, 4147. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Rong, X.F.; Ye, Y.Y.; Li, W.Z.; Wang, X.Q.; Wang, W. Research progress on triarylmethyl radical-based high-efficiency OLED. Molecules 2022, 27, 1632. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, Z.; Lei, Y.; Zou, W.; Suo, B. Unraveling the emission mechanism of radical-based organic light-emitting diodes. The J. Phys. Chem. Lett. 2019, 10, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Zhang, M.; Li, F. Efficient radical-based near-infrared organic light-emitting diodes with an emission peak exceeding 800 nm. J. Mater. Chem. C 2023, 11, 15892–15897. [Google Scholar] [CrossRef]
- Abdurahman, A.; Shen, L.; Wang, J.; Niu, M.; Li, P.; Peng, Q.; Lu, G. A highly efficient open-shell singlet luminescent diradical with strong magnetoluminescence properties. Light Sci. Appl. 2023, 12, 272. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, R.; Kimura, S.; Miura, T.; Ikoma, T.; Kusamoto, T. Single-molecule magnetoluminescence from a spatially confined persistent diradical emitter. J. Am. Chem. Soc. 2023, 145, 13615–13622. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, A.; Matsuoka, R.; Mibu, T.; Kusamoto, T. Luminescent Radicals. Chem. Rev. 2024, 124, 1034–1121. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Kusamoto, T.; Kimura, S.; Kato, K.; Teki, Y.; Nishihara, H. Inside Cover: Magnetoluminescence in a Photostable, Brightly Luminescent Organic Radical in a Rigid Environment. Angew. Chem. Int. Ed. 2018, 57, 12588. [Google Scholar] [CrossRef]
- Gorgon, S.; Lv, K.; Grüne, J.; Drummond, B.H.; Myers, W.K.; Londi, G.; Evans, E.W. Reversible spin-optical interface in luminescent organic radicals. Nature 2023, 620, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chen, Z.; Yu, C.; Cao, J.; Ke, G.; Zhu, W.; Guo, X. Regulation of quantum spin conversions in a single molecular radical. Nat. Nanotechnol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Mothika, V.S.; Baumgarten, M.; Scherf, U. Neutral, π-radical-conjugated microporous polymer films of nanoscale thickness for potential use in magnetoelectronics and sensor devices. ACS Appl. Nano Mater. 2019, 2, 4832–4841. [Google Scholar] [CrossRef]
- Mesa, J.A.; Velázquez-Palenzuela, A.; Brillas, E.; Coll, J.; Torres, J.L.; Juliá, L. Preparation and characterization of persistent maltose-conjugated triphenylmethyl radicals. J. Org. Chem. 2012, 77, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Mao, H.; Lin, C.; Feng, Y.; Stoddart, J.F.; Young, R.M.; Wasielewski, M.R. Quantum sensing of electric fields using spin-correlated radical ion pairs. J. Am. Chem. Soc. 2023, 145, 14922–14931. [Google Scholar] [CrossRef] [PubMed]
- Blasi, D.; Gonzalez-Pato, N.; Rodriguez Rodriguez, X.; Diez-Zabala, I.; Srinivasan, S.Y.; Camarero, N.; Ratera, I. Ratiometric nanothermometer based on a radical excimer for in vivo sensing. Small 2023, 19, 2207806. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, I.; Ikawa, K.; Takimiya, N.; Wang, A. Tetraphenylethene Derivatives Bearing Alkylammonium Substituents: Synthesis, Chemical Properties, and Application as BSA, Telomere DNA, and Hydroxyl Radical Sensors. Molecules 2023, 28, 5663. [Google Scholar] [CrossRef]
- Guo, H.; Peng, Q.; Chen, X.K.; Gu, Q.; Dong, S.; Evans, E.W.; Li, F. High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle. Nat. Mater. 2019, 18, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Obolda, A.; Li, W.; Abdulahat, M.; Ma, F.; Li, B.; Ai, X.; Li, F. High-efficiency deep-red organic radical crystals and OLEDs with solid-state fluorescence and excellent photostability. Org. Electron. 2022, 107, 106564. [Google Scholar] [CrossRef]
- Dong, S.; Xu, W.; Guo, H.; Yan, W.; Zhang, M.; Li, F. Effects of substituents on luminescent efficiency of stable triaryl methyl radicals. Phys. Chem. Chem. Phys. 2018, 20, 18657–18662. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Zhou, M.; Shi, X.; Yang, H.B. Triphenylamine (TPA) radical cations and related macrocycles. Chin. Chem. Lett. 2021, 32, 3331–3341. [Google Scholar] [CrossRef]
- Gross, M.; Zhang, F.; Arnold, M.E.; Ravat, P.; Kuehne, A.J. Aza [7] helicene Functionalized Triphenylmethyl Radicals with Circularly Polarized Doublet Emission. Adv. Opt. Mater. 2024, 12, 2301707. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, L.; Cui, Z.; Ai, X. Improving the Luminescence and Stability of Carbon-Centered Radicals by Kinetic Isotope Effect. Molecules 2023, 28, 4805. [Google Scholar] [CrossRef] [PubMed]
- Rui, X.; Ota, W.; Sato, T.; Furukori, M.; Nakayama, Y.; Hosokai, T.; Albrecht, K. Carbazole-Dendronized Luminescent Radicals. Angew. Chem. Int. Ed. 2023, 135, e202302550. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kusamoto, T.; Nishihara, H. Highly photostable luminescent open-shell (3, 5-dihalo-4-pyridyl) bis (2, 4, 6-trichlorophenyl) methyl radicals: Significant effects of halogen atoms on their photophysical and photochemical properties. RSC Adv. 2015, 5, 64802–64805. [Google Scholar] [CrossRef]
- Ai, X.; Chen, Y.; Feng, Y.; Li, F. A Stable Room-Temperature Luminescent Biphenylmethyl Radical. Angew. Chem. Int. Ed. 2018, 57, 2869–2873. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Ai, X.; Chen, Y.; Cui, Z.; Li, F. Effects of Introducing Halogen Atoms to Biphenylmethyl Radical on Photostability, Photophysical and Electroluminescent Properties. Chem. J. Chin. Univ. 2020, 41, 972–980. (In Chinese) [Google Scholar] [CrossRef]
- Abdurahman, A.; Chen, Y.; Ai, X.; Ablikim, O.; Gao, Y.; Dong, S.; Li, F. A pure red luminescent β-carboline-substituted biphenylmethyl radical: Photophysics, stability and OLEDs. J. Mater. Chem. C 2018, 6, 11248–11254. [Google Scholar] [CrossRef]
- Turro, N.J. Modern Molecular Photochemistry; University Science Books: Melville, NY, USA, 1991. [Google Scholar]
- Mattiello, S.; Hattori, Y.; Kitajima, R.; Matsuoka, R.; Kusamoto, T.; Uchida, K.; Beverina, L. Enhancement of fluorescence and photostability of luminescent radicals by quadruple addition of phenyl groups. J. Mater. Chem. C 2022, 10, 15028–15034. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.02; Gaussian, Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
Radicals | λa (nm) | λf (nm) | Φf (%) | τ (ns) | kr (s−1) | knr (s−1) |
---|---|---|---|---|---|---|
CzBTM | 284, 387, 554 a | 713 | 2.0 a | 4.0 a | 0.5 × 107 a | 24.5 × 107 a |
Ph2CzBTM | 277, 353, 545 | 683 | 9.9 | 9.3 | 1.1 × 107 | 9.6 × 107 |
Mes2CzBTM | 284, 340, 543 | 672 | 21.0 | 15.2 | 1.4 × 107 | 5.1 × 107 |
PyIDBTM b | 260, 383, 550 | 664 | 19.5 | 12.8 | 1.4 × 107 | 6.4 × 107 |
Ph2PyIDBTM | 276, 355, 522 | 650 | 6.4 | 6.4 | 1.0 × 107 | 14.5 × 107 |
Mes2PyIDBTM | 276, 385, 535 | 630 | 9.8 | 8.6 | 1.1 × 107 | 10.5 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, Q.; Guan, J.; Zhang, L.; Ai, X. Phenyl Derivatives Modulate the Luminescent Properties and Stability of CzBTM-Type Radicals. Molecules 2024, 29, 2900. https://doi.org/10.3390/molecules29122900
Gou Q, Guan J, Zhang L, Ai X. Phenyl Derivatives Modulate the Luminescent Properties and Stability of CzBTM-Type Radicals. Molecules. 2024; 29(12):2900. https://doi.org/10.3390/molecules29122900
Chicago/Turabian StyleGou, Quanquan, Jiahao Guan, Lintao Zhang, and Xin Ai. 2024. "Phenyl Derivatives Modulate the Luminescent Properties and Stability of CzBTM-Type Radicals" Molecules 29, no. 12: 2900. https://doi.org/10.3390/molecules29122900
APA StyleGou, Q., Guan, J., Zhang, L., & Ai, X. (2024). Phenyl Derivatives Modulate the Luminescent Properties and Stability of CzBTM-Type Radicals. Molecules, 29(12), 2900. https://doi.org/10.3390/molecules29122900