Mesoporous Oxidized Mn-Ca Nanoparticles as Potential Antimicrobial Agents for Wound Healing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of HMn-Ca Nanoparticles
2.2. HMn-Ca Promotes Antimicrobial Activity In Vitro
2.3. HMn-Ca Accelerated Wound Healing in MRSA-Infected Mice
2.4. Biocompatibility of HMn-Ca
3. Conclusions
4. Experimental
4.1. Materials Synthesis
4.2. Synthesis and Characterization of HMn-Ca
4.3. Physical Characterization
4.4. ICPMS
4.5. Particle Size and Zeta Potential Assay
4.6. Morphology Observation of Bacteria
4.7. Generation of Reactive Oxygen Species (ROS)
4.8. Growth-Inhibition Assay in Liquid Medium
4.9. Plate Counting Method
4.10. In Vivo Wound Healing Model
4.11. Histology
4.12. Data Validity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Scott, G.I.; Porter, D.E.; Norman, R.S.; Scott, C.H.; Uyaguari-Diaz, M.I.; Maruya, K.A.; Weisberg, S.B.; Fulton, M.H.; Wirth, E.F.; Moore, J.; et al. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance. Front. Mar. Sci. 2016, 3, 24–36. [Google Scholar] [CrossRef]
- Beardmore, R.E.; Peña-Miller, R.; Gori, F.; Iredell, J. Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance? Mol. Biol. Evol. 2017, 34, 802–817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yang, S.; An, Y.; Wang, Y.; Lei, Y.; Song, L. Antibiotics and antibiotic resistance genes in landfills: A review. Sci. Total Environ. 2022, 806, 150647. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Price, L.S.; Frencken, J.F.; Tarima, S.; Bonten, M. Handling Time-dependent Variables: Antibiotics and Antibiotic Resistance. Clin. Infect. Dis. 2016, 12, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Torraca, V.; Mostowy, S. Septins and Bacterial Infection. Front. Cell Dev. Biol. 2016, 11, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Van Elsland, D.; Neefjes, J. Bacterial infections and cancer. EMBO Rep. 2018, 19, e46632. [Google Scholar] [CrossRef] [PubMed]
- Upadhayay, A.; Ling, J.; Pal, D.; Kumar, A. Resistance-proof antimicrobial drug discovery to combat global antimicrobial resistance threat. Drug Resist. Updates 2023, 66, 100890. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, Y.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-based local antimicrobial drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 46–57. [Google Scholar] [CrossRef]
- Chifiriuc, M.C.; Filip, R.; Constantin, M.; Pircalabioru, G.G.; Bleotu, C.; Burlibasa, L.; Ionica, E.; Corcionivoschi, N.; Mihaescu, G. Common themes in antimicrobial and anticancer drug resistance. Front. Microbiol. 2022, 13, 960693. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, J.; Xiao, W.; Liu, S. Efficacy and mechanism of actions of natural antimicrobial drugs. J. Vet. Pharmacol. Ther. 2020, 216, 107671. [Google Scholar] [CrossRef]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. BioMedicine 2015, 5, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Rhomberg, P.R.; Fuhrmeister, A.S.; Mendes, R.E.; Flamm, R.K.; Jones, R.N. Antimicrobial Resistance Surveillance and New Drug Development. Open Forum Infect. Dis. 2019, 6, e51034. [Google Scholar] [CrossRef] [PubMed]
- Yimeng, S.; Huilun, X.; Ziming, L.; Kejun, L.; Chaima, M.; Yinchun, H.; Yan, W.; Di, H. Copper-Based Nanoparticles as Antibacterial Agents. Eur. J. Inorg. Chem. 2023, 15, e1888. [Google Scholar] [CrossRef]
- Shrestha, A.; Kishen, A. Antibacterial Nanoparticles in Endodontics: A Review. J. Endod. 2016, 42, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Neogi, S. Antibacterial properties of doped nanoparticles. Rev. Chem. Eng. 2019, 35, 861–876. [Google Scholar] [CrossRef]
- Huang, X.; Lu, B.; Zhao, Y.; Wang, Z.; Wang, H.; Yuan, L. The Antibacterial Effect of Bacteriophage-Like Gold Nanoparticles. Nano Brief. Rep. Rev. 2021, 16, 2150075. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar]
- Smirnov, N.A.; Kudryashov, S.I.; Nastulyavichus, A.A.; Rudenko, A.A.; Saraeva, I.N.; Tolordava, E.R.; Gonchukov, S.A.; Romanova, Y.M.; Ionin, A.A.; Zayarny, D.A. Antibacterial properties of silicon nanoparticles. Laser Phys. Lett. 2018, 15, 105602. [Google Scholar] [CrossRef]
- Ciabocco, M.; Cancemi, P.; Saladino, M.L.; Caponetti, E.; Alduina, R.; Berrettoni, M. Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles. J. Biol. Inorg. Chem. 2018, 23, 385–398. [Google Scholar] [CrossRef]
- Qamer, S.; Romli, M.H.; Che-Hamzah, F.; Misni, N.; Joseph, N.M.; Al-Haj, N.A.; Amin-Nordin, S. Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules 2021, 26, 50–57. [Google Scholar] [CrossRef]
- Lv, P.; Zhu, L.; Yu, Y.; Wang, W.; Liu, G.; Lu, H. Effect of NaOH concentration on antibacterial activities of Cu nanoparticles and the antibacterial mechanism. Mater. Sci. Eng. C-Mater. 2020, 110, 110669. [Google Scholar] [CrossRef] [PubMed]
- Precious Ayanwale, A.; Reyes-López, S.Y. ZrO2-ZnO Nanoparticles as Antibacterial Agents. ACS Omega 2019, 21, 19216–19224. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.C.; Biver, E.; Kaufman, J.M.; Bauer, J.; Branco, J.; Brandi, M.L.; Cooper, C. The role of calcium supplementation in healthy musculoskeletal ageing: An expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundat. Osteoporosis Int. 2017, 28, 447–462. [Google Scholar] [CrossRef]
- Tang, N.H.; Kim, K.W.; Xu, S.; Blazie, S.M.; Yee, B.A.; Yeo, G.W.; Jin, Y.; Chisholm, A.D. The mRNA decay factor CAR-1/LSM14 regulates axon regeneration via mitochondrial calcium dynamics. Curr. Biol. 2020, 30, 865–876.e7. [Google Scholar] [CrossRef] [PubMed]
- Pirouz, M.; Wang, C.H.; Liu, Q.; Ebrahimi, A.G.; Shamsi, F.; Tseng, Y.H.; Gregory, R.I. The Perlman syndrome DIS3L2 exoribonuclease safeguards endoplasmic reticulum-targeted mRNA translation and calcium ion homeostasis. Nat. Commun. 2020, 11, 2619–2633. [Google Scholar] [CrossRef] [PubMed]
- Molina-Hernandez, J.B.; Aceto, A.; Bucciarelli, T.; Paludi, D.; Valbonetti, L.; Zilli, K.; Scotti, L.; Chaves-López, C. The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death. Sci. Rep. 2021, 11, 21557. [Google Scholar]
- Liu, S.; Zheng, Z.; Wang, S.; Chen, S.; Ma, J.; Liu, G.; Li, J. Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent. Carbohydr. Polym. 2019, 224, 115–175. [Google Scholar] [CrossRef] [PubMed]
- Abinaya, S.; Kavitha, H.P. Magnesium oxide nanoparticles: Effective antilarvicidal and antibacterial agents. ACS Omega 2023, 8, 5225–5233. [Google Scholar]
- Davidson, E.; Pereira, J.; Gan Giannelli, G.; Murphy, Z.; Anagnostopoulos, V.; Santra, S. Multi-Functional chitosan nanovesicles loaded with bioactive manganese for potential wound healing applications. Molecules 2023, 28, 6098–6124. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Li, Y.; Qiu, L.; Zhou, S.; Cui, P.; Jiang, P.; Ni, X.; Liu, R.; Du, X.; et al. Manganese dioxide nanozyme for reactive oxygen therapy of bacterial infection and wound healing. Biomater. Sci. 2021, 9, 5965–5976. [Google Scholar] [CrossRef]
- Mesaros, A.; Vasile, B.S.; Toloman, D.; Pop, O.L.; Marinca, T.; Unguresan, M.; Perhaita, I.; Filip, M.; Iordache, F. Towards understanding the enhancement of antibacterial activity in manganese doped ZnO nanoparticles. Appl. Surf. Sci. 2019, 471, 960–972. [Google Scholar] [CrossRef]
- Radhi Devi, K.; Bruno Chandrasekar, L.; Kasirajan, K.; Karunakaran, M.; Divya Gnaneswari, M.; Usha, S. Enhanced in vitro antibacterial activity of ZnO and Mn–Mg co-doped ZnO nanoparticles: Investigation of synthesis, characterization, and impact of dopant. Appl. Phys. A 2022, 128, 368–384. [Google Scholar] [CrossRef]
- Jimenez, J.; Chakraborty, I.; Carrington, S.J.; Mascharak, P.K. Light-triggered CO delivery by a water-soluble and biocompatible manganese photoCORM. Dalton Trans. 2016, 45, 13204–13213. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Sun, M.; Zhang, J.; Chang, Y.; Gao, W.; Ma, G.; Guo, Y. Fenton-like reaction and glutathione depletion by chiral manganese dioxide nanoparticles for enhanced chemodynamic therapy and chemotherapy. J. Colloid Interface Sci. 2022, 616, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, Q.; Wang, G.; Han, B.; Zhou, C. Unique electron reservoir properties of manganese in Mn(II)-doped CeO2 for reversible electron transfer and enhanced Fenton-like catalytic performance. Appl. Surf. Sci. 2020, 502, 144295.1–144295.9. [Google Scholar]
- Zhu, C.; Ma, Q.; Gong, L.; Di, S.; Gong, J.; Wang, Y.; Lin, Z. Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer. Acta Biomater. 2022, 141, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, M.; Zhai, T.; Zhou, H.; Zhou, Z.; Liu, X.; Yang, S.; Yang, H. Glutathione-Responsive Chemodynamic Therapy of Manganese(III/IV) Cluster Nanoparticles Enhanced by Electrochemical Stimulation via Oxidative Stress Pathway. Bioconjug. Chem. 2022, 33, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Kurtan, U.; Güner, A.; Amir, M.D.; Baykal, A. Enhanced antibacterial performance of Fe3O4–Ag and MnFe2O4–Ag nanocomposites. Bull. Mater. Sci. 2017, 40, 147–155. [Google Scholar] [CrossRef]
- Hartati, H.; Subaer, S.; Hasri, H.; Wibawa, T.; Hasriana, H. Microstructure and Antibacterial Properties of Chitosan-Fe3O4-AgNP Nanocomposite. J. Nanomater. 2022, 12, 3652–3658. [Google Scholar] [CrossRef]
- Wang, D.; Han, S.; Dai, X. AIEgens functionalized hollow mesoporous silica nanospheres for selective detection of the antimicrobial furazolidone. Inorg. Chem. Commun. 2022, 143, 109740. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Y.; Yang, X.; Ni, S.; Hong, F.; Ni, S. Construction of selenium-embedded mesoporous silica with improved antibacterial activity. Colloids Surf. B 2020, 190, 110910. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Su, L.; Luan, Y.; Du, X.; Zhang, X. Effect of surface topology morphologies of silica nanocarriers on the loading of Ag nanoparticles and antibacterial performance. J. Alloys Compd. 2019, 783, 136–144. [Google Scholar] [CrossRef]
- Li, Y.; Yan, Y.; Wang, J.; Li, L.; Tang, F. Preparation of silver nanoparticles decorated mesoporous silica nanorods with photothermal antibacterial property. Colloids Surf. A 2022, 648, 129242. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Y.; Li, J.; Li, Y.; Wu, H.; Li, H.; Ma, X.; Tang, Y.; Tong, Y.; Yi, K.; et al. A Molecular Switch-Integrated Nanoplatform Enables Photo-Unlocked Antibacterial Drug Delivery for Synergistic Abscess Therapy. Adv. Healthc. Mater. 2023, 12, e2301157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, M.; Lin, X.; Li, L.; Li, Z.; Ren, X.; Sun, Y. Tailored synthesis of polymer-brush-grafted mesoporous silicas with N-halamine and quaternary ammonium groups for antimicrobial applications. J. Colloid Interface Sci. 2019, 533, 6004–6011. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chen, F.; Chang, Z.; Waqar, K.; Hu, H.; Zheng, X.; Wang, Y.; Dong, W.F.; Yang, C. Silver Mesoporous Silica Nanoparticles: Fabrication to Combination Therapies for Cancer and Infection. Chem. Rec. 2022, 22, e202100287. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, M.; Sorzabal-Bellido, I.; Adamidou, E.A.; Diaz-Fernandez, Y.A.; Aveyard, J.; Wengier, R.; Grigoriev, D.; Raval, R.; Benayahu, Y.; D’Sa, R.A.; et al. Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect. ACS Appl. Mater. Interfaces 2017, 9, 38364–38372. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Sun, J.; Liu, X.; Wu, Q.; Shen, W.; Gao, Y.; Liu, Y.; Wu, C. Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. Eur. J. Pharm. Sci. 2023, 180, 106338. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhuang, H.; Ma, B. Manganese-Doped Calcium Silicate Nanowire Composite Hydrogels for Melanoma Treatment and Wound Healing. Research 2021, 7, 9780943. [Google Scholar] [CrossRef]
- Haag, S.L.; Schiele, N.R.; Bernards, M.T. Enhancement and mechanisms of MC3T3-E1 osteoblast-like cell adhesion to albumin through calcium exposure. Biotechnol. Appl. Biochem. 2022, 69, 492–502. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lee, S.E.; Kang, I.C.; Nam, K.I.; Choy, H.E.; Rhee, J.H. A bacterial RTX toxin causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction. J. Infect. Dis. 2013, 207, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Festjens, N.; Vanden Berghe, T.; Vandenabeele, P. Necrosis, a well-or-chestrated form of cell demise: Signalling cascades, important media- tors and concomitant immune response. Biochim. Biophys. Acta. 2006, 1757, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Golstein, P.; Kroemer, G. Cell death by necrosis: Towards a molecular definition. Trends. Biochem. Sci. 2007, 32, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Wang, Z.; Lu, M.; Li, M.; Li, L.; Zhang, Y.; Shao, D.; Dong, W. Magnetic Janus nanorods for efficient capture, separation and elimination of bacteria. RSC Adv. 2017, 7, 3550–3553. [Google Scholar] [CrossRef]
- Astuti, S.D.; Puspita, P.S.; Putra, A.P.; Zaidan, A.H.; Fahmi, M.Z.; Syahrom, A.; Suhariningsih. The antifungal agent of silver nanoparticles activated by diode laser as light source to reduce C. albicans biofilms: An in vitro study. Lasers Med. Sci. 2019, 34, 929–937. [Google Scholar] [PubMed]
- Wilson, W.W.; Wade, M.M.; Holman, S.C. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbial. Meth. 2001, 43, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.L.; Yu, G.H.; Kappler, A.; Liu, C.Q.; Gadd, G.M. Fungal–mineral interactions modulating intrinsic peroxidase-like activity of iron nanoparticles: Implications for the biogeochemical cycles of nutrient elements and attenuation of contaminants. Environ. Sci. Technol. 2021, 56, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. Chem. Eng. J. 2023, 466, 143147. [Google Scholar] [CrossRef]
- He, J.; Zheng, Z.; Lo, I.M. Different responses of gram-negative and gram-positive bacteria to photocatalytic disinfection using solar-light-driven magnetic TiO2-based material, and disinfection of real sewage. Water Res. 2021, 207, 117816. [Google Scholar]
- Wu, V.M.; Tang, S.; Uskokovic, V. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: The antibacterial effect. ACS Appl. Mater. Interfaces 2018, 10, 34013–34028. [Google Scholar] [CrossRef]
- Talebpour, C.; Fani, F.; Ouellette, M.; Salimnia, H.; Alamdari, H. Nondegradable Antimicrobial Silver-Based Perovskite. ACS Sustain. Chem. Eng. 2022, 10, 4922–4928. [Google Scholar] [CrossRef]
- Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbial. 2015, 13, 605–619. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Yuan, H.; Bu, Y.; Hu, J.; Olatunde, O.Z.; Gong, L.; Wang, P.; Hu, T.; Li, Y.; Lu, C. Mesoporous Oxidized Mn-Ca Nanoparticles as Potential Antimicrobial Agents for Wound Healing. Molecules 2024, 29, 2960. https://doi.org/10.3390/molecules29132960
He Q, Yuan H, Bu Y, Hu J, Olatunde OZ, Gong L, Wang P, Hu T, Li Y, Lu C. Mesoporous Oxidized Mn-Ca Nanoparticles as Potential Antimicrobial Agents for Wound Healing. Molecules. 2024; 29(13):2960. https://doi.org/10.3390/molecules29132960
Chicago/Turabian StyleHe, Qianfeng, Hui Yuan, Youshen Bu, Jiangshan Hu, Olagoke Zacchaeus Olatunde, Lijie Gong, Peiyuan Wang, Ting Hu, Yuhang Li, and Canzhong Lu. 2024. "Mesoporous Oxidized Mn-Ca Nanoparticles as Potential Antimicrobial Agents for Wound Healing" Molecules 29, no. 13: 2960. https://doi.org/10.3390/molecules29132960
APA StyleHe, Q., Yuan, H., Bu, Y., Hu, J., Olatunde, O. Z., Gong, L., Wang, P., Hu, T., Li, Y., & Lu, C. (2024). Mesoporous Oxidized Mn-Ca Nanoparticles as Potential Antimicrobial Agents for Wound Healing. Molecules, 29(13), 2960. https://doi.org/10.3390/molecules29132960