Atomic Layer Deposition of CeO2 Film with a Novel Heteroleptic Ce(III) Complex
Abstract
:1. Introduction
2. Result and Discussion
2.1. Crystal Structure Descriptions
2.2. Thermal Properties of Complexes
2.3. Growth Characteristics of CeOx Deposition
2.4. Characterization of CeOx Films
3. Experimental
3.1. Materials
3.2. Characterization
3.3. Synthesis
3.3.1. Synthesis of Ce(thd)3phen (1)
3.3.2. Synthesis of Ce(thd)3-MEDA (2)
3.3.3. Synthesis of Ce(thd)3-MOMA (3)
3.3.4. Synthesis of Ce(thd)3-DMDE (4)
3.4. Thermogravimetric Analysis
3.5. ALD of CeO2 Film Details
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Data
References
- Sharma, R.K.; Kumar, A.; Anthony, J.M. Advances in high-k dielectric gate materials for future ULSI devices. JOM 2001, 53, 53–55. [Google Scholar] [CrossRef]
- Logothetidis, S.; Patsalas, P.; Evangelou, E.K.; Konofaos, N.; Tsiaoussis, I.; Frangis, N. Dielectric properties and electronic transitions of porous and nanostructured cerium oxide films. Mater. Sci. Eng. B 2004, 109, 69–73. [Google Scholar] [CrossRef]
- Wang, J.C.; Hung, Y.P.; Lee, C.L.; Lei, T.F. Improved characteristics of ultrathin CeO2 by using postnitridation annealing. J. Electrochem. Soc. 2004, 151, F17. [Google Scholar] [CrossRef]
- Quah, H.J.; Cheong, K.Y.; Hassan, Z.; Lockman, Z.; Jasni, F.A.; Lim, W.F. Effects of Postdeposition Annealing in Argon Ambient on Metallorganic Decomposed CeO2 Gate Spin Coated on Silicon. J. Electrochem. Soc. 2010, 157, H6. [Google Scholar] [CrossRef]
- Quah, H.J.; Cheong, K.Y.; Hassan, Z.; Lockman, Z.; Jasni, F.A.; Lim, W.F. Electrical Properties of Single Crystalline CeO2 High-k Gate Dielectrics Directly Grown on Si (111). J. Appl. Phys. 2002, 41, 2480–2483. [Google Scholar]
- Chiu, F.C.; Lai, C.M. Optical and electrical characterizations of cerium oxide thin films. Appl. Phys. 2010, 43, 075104. [Google Scholar] [CrossRef]
- Chiu, F.C. Current conduction mechanisms in CeO2 thin films. Electrochem. Solid-State Lett. 2008, 11, H135. [Google Scholar] [CrossRef]
- Xu, Y.; Li, R.; Zhou, Y. An eco-friendly route for template-free synthesis of high specific surface area mesoporous CeO2 powders and their adsorption for acid orange 7. Rsc. Adv. 2019, 9, 22366–22375. [Google Scholar] [CrossRef] [PubMed]
- Kitsou, I.; Arkas, M.; Tsetsekou, A. Synthesis and characterization of ceria-coated silica nanospheres: Their application in heterogeneous catalysis of organic pollutants. SN Appl. Sci. 2019, 1, 1557. [Google Scholar] [CrossRef]
- Kugai, J.; Velu, S.; Song, C. Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catal. Lett. 2005, 101, 255–264. [Google Scholar] [CrossRef]
- Trinchi, A.; Li, Y.X.; Wlodarski, W.; Kaciulis, S.; Pandolfi, L.; Viticoli, S.; Comini, E.; Sberveglieri, G. Investigation of sol–gel prepared CeO2-TiO2 thin films for oxygen gas sensing. Sens. Actuators B Chem. 2003, 95, 145–150. [Google Scholar] [CrossRef]
- Barreca, D.; Comini, E.; Gasparotto, A.; Maccato, C.; Maragno, C.; Sberveglieri, G.; Tondello, E. Gas sensing properties of columnar CeO2 nanostructures prepared by chemical vapor deposition. J. Nanosci. Nanotech. 2008, 8, 1012–1016. [Google Scholar] [CrossRef]
- Lv, Q.; Zhang, S.; Deng, S.; Xu, Y.; Li, G.; Li, Q.; Jin, Y. Transparent and water repellent ceria film grown by atomic layer deposition. Surf. Coat. Technol. 2017, 320, 190–195. [Google Scholar] [CrossRef]
- Dvořák, F.; Szabová, L.; Johánek, V.; Farnesi Camellone, M.; Stetsovych, V.; Vorokhta, M.; Tovt, A.; Skála, T.; Matolínová, I.; Tateyama Matolín, V.Y. Bulk hydroxylation and effective water splitting by highly reduced cerium oxide: The role of O vacancy coordination. ACS Catal. 2018, 8, 4354–4363. [Google Scholar] [CrossRef]
- Munoz-Batista, M.J.; Gómez-Cerezo, M.N.; Kubacka, A.; Tudela, D.; Fernández-García, M. Role of interface contact in CeO2-TiO2 photocatalytic composite materials. ACS Catal. 2013, 4, 63–72. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, B.; Xia, C.; Niklasson, G.A.; Granqvist, C.G. Transparent ion-conducting ceria-zirconia films made by sol-gel technology. Sol. Energy Mater. Sol. Cells 1998, 53, 341–347. [Google Scholar] [CrossRef]
- Han, J.; Zeng, Y.; Xomeritakis, G.; Lin, Y.S. Electrochemical vapor deposition synthesis and oxygen permeation properties of dense zirconia-yttria-ceria membranes. Solid State Ion. 1997, 98, 63–72. [Google Scholar] [CrossRef]
- Inoue, T.; Yamamoto, Y.; Koyama, S.; Suzuki, S.; Ueda, Y. Epitaxial growth of CeO2 layers on silicon. Appl. Phys. Lett. 1990, 56, 1332–1333. [Google Scholar] [CrossRef]
- Sawka, A.; Kwatera, A.; Andreasik, P. Deposition and characterization of ceria layers using the MOCVD method. Mater. Lett. 2017, 204, 39–41. [Google Scholar] [CrossRef]
- Maruyama, T. Cerium dioxide thin films prepared by chemical vapor deposition from cerium dipivaloylmethanate. J. Mater. Sci. Lett. 2000, 19, 1723–1725. [Google Scholar] [CrossRef]
- Aspinall, H.C.; Bacsa, J.; Jones, A.C.; Wrench, J.S. Ce(IV) Complexes with Donor-Functionalized Alkoxide Ligands: Improved Precursors for Chemical Vapor Deposition of CeO2. Inorg. Chem. 2011, 50, 11644–11652. [Google Scholar] [CrossRef]
- Wang, F.; Wördenweber, R. Large-area epitaxial CeO2 buffer layers on sapphire substrates for the growth of high quality YBa2Cu3O7 films. Thin Solid Films 1993, 227, 200–204. [Google Scholar] [CrossRef]
- Kotelyanskii, I.M.; Luzanov, V.A.; Dikaev, Y.M.; Kravchenko, V.B.; Melekh, B.T. Deposition of CeO2 films including areas with the different orientation and sharp border between them. Thin Solid Films 1996, 280, 163–166. [Google Scholar] [CrossRef]
- Celik, E.; Cop, P.; Negi, R.S.; Mazilkin, A.; Ma, Y.; Klement, P.; Schörmann, J.; Chatteerjee, S.; Brezesinski, T.; Elm, M.T. Design of ordered mesoporous CeO2-YSZ nanocomposite thin films with mixed ionic/electronic conductivity via surface engineering. ACS. nano. 2022, 16, 3182–3193. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Liang, X. Significant photocatalytic performance enhancement of TiO2 by CeO2 atomic layer deposition. Nanotechnology 2017, 28, 505709. [Google Scholar] [CrossRef]
- Shin, J.W.; Oh, S.; Lee, S.; Yu, J.G.; Park, J.; Go, D.; Yang, B.C.; Kim, H.J.; An, J. Ultrathin atomic layer-deposited CeO2 overlayer for high-performance fuel cell electrodes. ACS Appl. Mater. Inter. 2019, 11, 46651–46657. [Google Scholar] [CrossRef] [PubMed]
- King, P.J.; Werner, M.; Chalker, P.R.; Jones, A.C.; Aspinall, H.C.; Basca, J.; Wrench, J.S.; Black, K.; Davies, H.O.; Heys, P.N. Effect of deposition temperature on the properties of CeO2 films grown by atomic layer deposition. Thin Solid Films 2011, 519, 4192–4195. [Google Scholar] [CrossRef]
- Kaur, P.; Mai, L.; Muriqi, A.; Zanders, D.; Ghiyasi, R.; Safdar, M.; Boysen, N.; Winter, M.; Nolan, M.; Karppinen, M.; et al. Rational Development of Guanidinate and Amidinate Based Cerium and Ytterbium Complexes as Atomic Layer Deposition Precursors: Synthesis, Modeling, and Application. Chem.—A Eur. J. 2021, 27, 4913–4926. [Google Scholar] [CrossRef]
- Maeng, W.J.; Oh, I.K.; Kim, W.H.; Kim, M.K.; Lee, C.W.; Lansalot-Matras, C.; Thompson, D.; Chu, S.; Kim, H. Atomic layer deposition of CeO2/HfO2 gate dielectrics on Ge substrate. Appl. Surf. Sci. 2014, 321, 214–218. [Google Scholar] [CrossRef]
- Abdul Shekkeer, K.M.; Cheong, K.Y.; Quah, H.J. Effects of post-deposition annealing of cerium oxide passivation layer in nitrogen-oxygen-nitrogen ambient. Int. J. Energy Res. 2022, 46, 14814–14826. [Google Scholar] [CrossRef]
- Wrench, J.S.; Black, K.; Aspinall, H.C.; Jones, A.C.; Bacsa, J.; Chalker, P.R.; King, P.J.; Werner, M.; Davies, H.O.; Heys, P.N. MOCVD and ALD of CeO2 thin films using a novel monomeric CeIV alkoxide precursor. Chem. Vap. Depos. 2009, 15, 259–261. [Google Scholar] [CrossRef]
- Kim, W.H.; Maeng, W.J.; Kim, M.K.; Gatineau, J.; Kim, H. Electronic structure of cerium oxide gate dielectric grown by plasma-enhanced atomic layer deposition. J. Electrochem. Soc. 2011, 158, G217–G220. [Google Scholar] [CrossRef]
- Quintana, L.M.A.; Jiang, N.; Bacsa, J.; La Pierre, H.S. Homoleptic cerium tris(dialkylamido)imidophosphorane guanidinate complexes. Dalton Trans. 2020, 49, 14908–14913. [Google Scholar] [CrossRef]
- Terlecki, M.; Justyniak, I.; Leszczyński, M.K.; Bernatowicz, P.; Lewiński, J. Factors controlling the structure of alkylzinc amidinates: On the role of N-substituents. Dalton Trans. 2023, 52, 2712–2721. [Google Scholar] [CrossRef] [PubMed]
- Kouda, M.; Ozawa, K.; Kakushima, K.; Ahmet, P.; Iwai, H.; Urabe, Y.; Yasuda, T. Preparation and electrical characterization of CeO2 films for gate dielectrics application: Comparative study of chemical vapor deposition and atomic layer deposition processes. Jpn. J. Appl. Phys. 2011, 50, 10PA06. [Google Scholar] [CrossRef]
- Avril, L.; Zanfoni, N.; Simon, P.; Imhoff, L.; Bourgeois, S.; Domenichini, B. MOCVD growth of porous cerium oxide thin films on silicon substrate. Surf. Coat. Technol. 2015, 280, 148–153. [Google Scholar] [CrossRef]
- Kaur, P.; Muriqi, A.; Wree, J.L.; Ghiyasi, R.; Safdar, M.; Nolan, M.; Karppinen, M.; Devi, A. Atomic/molecular layer deposition of cerium (III) hybrid thin films using rigid organic precursors. Dalton Trans. 2022, 51, 5603–5611. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wang, K.; Zhong, Y.; Liu, B.; Liu, X.; Ding, Y. A high growth rate process of ALD CeOx with amidinato-cerium [(N-iPr-AMD)3Ce] and O3 as precursors. J. Mater. Sci. 2020, 55, 5378–5389. [Google Scholar] [CrossRef]
- Golalikhani, M.; James, T.; Van Buskirk, P.; Noh, W.; Lee, J.; Wang, Z.; Roeder, J.F. Atomic layer deposition of CeO2 using a heteroleptic cyclopentadienyl-amidinate precursor. J. Vac. Sci. Technol. A 2018, 36, 051502. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Wang, C.; Gong, Y.; Wang, R.; Wang, H.; Jin, J.; Zhao, L.; He, B. Enhancing the electrocatalytic activity of perovskite electrodes by atomic layer-deposited doped CeO2 for symmetrical solid oxide fuel cells. Sep. Purif. Technol. 2022, 302, 122135. [Google Scholar] [CrossRef]
- Sawka, A.; Kwatera, A. Low temperature synthesis of Y2O3-doped CeO2 layers using MOCVD. Mater. Sci. Eng. B 2022, 276, 115580. [Google Scholar] [CrossRef]
- Ballée, E.; Ringuedé, A.; Cassir, M.; Putkonen, M.; Niinistö, L. Synthesis of a thin-layered ionic conductor, CeO2-Y2O3, by atomic layer deposition in view of solid oxide fuel cell applications. Chem. Mater. 2009, 21, 4614–4619. [Google Scholar] [CrossRef]
- Han, S.H.; George, S.M.; Lee, G.Y.; Han, J.H.; Park, B.K.; Kim, C.G.; Son, S.U.; Lah, M.S.; Chung, T.M. New heteroleptic cobalt precursors for deposition of cobalt-based thin films. ACS Omega 2017, 2, 5486–5493. [Google Scholar] [CrossRef] [PubMed]
- Benedet, M.; Barreca, D.; Fois, E.; Seraglia, R.; Tabacchi, G.; Roverso, M.; Pagot, G.; Invernizzi, C.; Gasparotto, A.; Heidecker, A.A.; et al. Interplay between coordination sphere engineering and properties of nickel diketonate-diamine complexes as vapor phase precursors for the growth of NiO thin films. Dalton Trans. 2023, 52, 10677–10688. [Google Scholar] [CrossRef]
- Luo, J.Q.; Lun, M.M.; Jia, Q.Q.; Wang, Z.J.; Lu, H.F.; Zhang, Y.; Fu, D.W. Molecular Ferroelastic Induced by Mono-/Double-Protonation Strategy. Chin. J. Chem. 2024, 42, 1706–1712. [Google Scholar] [CrossRef]
- Park, C.; Choi, H.; Lee, G.Y.; Park, B.K.; Chung, T.M. Novel Volatile Heteroleptic Barium Complexes Using Tetradentate Ligand and β-Diketonato Ligand. ACS Omega 2023, 8, 22783–22787. [Google Scholar] [CrossRef] [PubMed]
- Baxter, I.; Darr, J.A.; Hursthouse, M.B.; Malik, K.A.; McAleese, J.; Mingos, D.M.P. The synthesis and characterisation of some stable CeIII β-diketonate compounds; X-ray crystal structures of [Ce2(etbd)6(tetraglyme)] and [NH4][Ce(etbd)4] [etbd = 1-ethoxy-4,4,4-trifluorobutane-1,3-dionate and tetraglyme = CH3O(CH2CH2O)4CH3]. Polyhedron 1998, 17, 1329–1341. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, J.; Luo, Y.; Li, J.; Ding, Y. Atomic Layer Deposition of La2O3 Film with Precursor La(thd)3-DMEA. Coatings 2023, 13, 870. [Google Scholar] [CrossRef]
- Leskelä, T.; Vasama, K.; Härkönen, G.; Sarkio, P.; Lounasmaa, M. Potential cerium precursors for blue colour in thin film electroluminescent devices grown by atomic layer epitaxy. Adv. Mater. Opt. Electron. 1996, 6, 169–174. [Google Scholar] [CrossRef]
- Malandrino, G.; Nigro, R.L.; Benelli, C.; Castelli, F.; Fragalà, I.L. Volatile CeIII hexafluoroacetylacetonate glyme adducts as promising precursors for the MOCVD of CeO2 thin films. Chem. Vap. Depos. 2000, 6, 233–238. [Google Scholar] [CrossRef]
- Ivanova, T.V.; Toivonen, J.; Maydannik, P.S.; Kääriäinen, T.; Sillanpää, M.; Homola, T.; Cameron, D.C. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion. J. Vac. Sci. Technol. A 2016, 34, 031506. [Google Scholar] [CrossRef]
- Vangelista, S.; Piagge, R.; Ek, S.; Sarnet, T.; Ghidini, G.; Martella, C.; Lamperti, A. Structural, chemical and optical properties of cerium dioxide film prepared by atomic layer deposition on TiN and Si substrates. Thin Solid Films 2017, 636, 78–84. [Google Scholar] [CrossRef]
- Jiang, H.; Li, M.; Liu, J.; Li, X.; Tian, L.; Chen, P. Alkali-free synthesis of a novel heterostructured CeO2-TiO2 nanocomposite with high performance to reduce Cr(VI) under visible light. Ceram. Int. 2018, 44, 2709–2717. [Google Scholar] [CrossRef]
- Chen, F.; Ho, P.; Ran, R.; Chen, W.; Si, Z.; Wu, X.; Weng, D.; Huang, Z.; Lee, C. Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J. Alloys Compd. 2017, 714, 560–566. [Google Scholar] [CrossRef]
- Holgado, J.P.; Alvarez, R.; Munuera, G. Study of CeO2 XPS spectra by factor analysis: Reduction of CeO2. Appl. Surf. Sci. 2000, 161, 301–315. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.F.; Dollimore, D.; Dunn, J.G.; Alexander, K. Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis. Thermochim. Acta 2004, 421, 25–30. [Google Scholar] [CrossRef]
- Van den Oetelaar, L.C.A.; Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; Brongersma, H.H. A Surface Science Study of Model Catalysts. 2. Metal-Support Interactions in Cu/SiO2 Model Catalysts. J. Phys. Chem. B 1998, 102, 9541–9549. [Google Scholar] [CrossRef]
Complex | 2 | 3 | 4 |
---|---|---|---|
Formula | C36H65CeN2O6 | C37H68CeNO7 | C37H67CeNO7 |
Mw | 762.02 | 779.04 | 778.03 |
Temperature (K) | 250 | 250 | 250 |
Crystal system | Monoclinic | Triclinic | Triclinic |
Space group | P21/c | P-1 | P-1 |
a/Å | 10.6469(15) | 10.6918(14) | 10.5769(15) |
b/Å | 26.595(4) | 13.965(2) | 12.1716(17) |
c/Å | 15.309(2) | 16.193(2) | 19.222(3) |
α/o | 90 | 70.330(7) | 82.194(6) |
β/o | 99.693(6) | 76.444(6) | 75.500(6) |
γ/o | 90 | 75.569(6) | 65.980(4) |
V/Å3 | 4272.9(10) | 2174.6(5) | 2186.7(5) |
Z | 4 | 2 | 2 |
No. of refins | 7848 | 7470 | 7909 |
Dx/g.cm−3 | 1.185 | 1.190 | 1.182 |
2θ rang/o | 3.3–68.4 | 2.9–66.6 | 2.4–68.4 |
Refins. (Rint) | 62,503 (0.073) | 20,497 (0.073) | 30,012 (0.060) |
R, WR2 (I > 2σ(I)) | 0.0544 (0.1526) | 0.0826 (0.2235) | 0.0486 (0.1343) |
R, WR2 (all data) | 0.0569 (0.1564) | 0.0894 (0.2361) | 0.0512 (0.1378) |
CCDC number | 2,320,884 | 2,320,885 | 2,320,881 |
Complex 2 | Complex 3 | Complex 4 | |||
---|---|---|---|---|---|
Bond Length | (Å) | Bond Length | (Å) | Bond Length | (Å) |
Ce(1)-O(1) | 2.386(3) | Ce(1)-O(1) | 2.374(6) | Ce(1)-O(1) | 2.382(3) |
Ce(1)-O(2) | 2.463(3) | Ce(1)-O(2) | 2.397(5) | Ce(1)-O(2) | 2.407(3) |
Ce(1)-O(3) | 2.405(3) | Ce(1)-O(3) | 2.404(6) | Ce(1)-O(3) | 2.660(4) |
Ce(1)-O(4) | 2.443(3) | Ce(1)-O(4) | 2.433(5) | Ce(1)-O(4) | 2.452(3) |
Ce(1)-O(5) | 2.420(3) | Ce(1)-O(5) | 2.435(6) | Ce(1)-O(5) | 2.397(3) |
Ce(1)-O(6) | 2.442(3) | Ce(1)-O(6) | 2.486(5) | Ce(1)-O(6) | 2.411(3) |
Ce(1)-N(1) | 2.753(5) | Ce(1)-O(7) | 2.675(6) | Ce(1)-O(7) | 2.428(3) |
Ce(1)-N(2) | 2.722(5) | Ce(1)-N(1) | 2.709(7) | Ce(1)-N(1) | 2.792(4) |
Complex | Melting Point (°C) | Residual Mass (%) | T50 (°C) | Sample Sise/mg |
---|---|---|---|---|
1 | 208.1–209.8 | 0.96 | 318 | 8.395 |
2 | 157.3–161.3 | 1.97 | 268.9 | 8.567 |
3 | 137.2–141.5 | 0.01 | 8.519 | |
4 | 126.1–130.4 | 1.02 | 8.329 |
Atomic Conc. (%) | Ce3d | O1s | C1s | N1s |
---|---|---|---|---|
As deposited | 13.14 | 42.82 | 42.05 | 0 |
After sputtering for 2 min | 35.23 | 64.77 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Zhou, H.; Li, J.; Lu, Y.; Ding, Y. Atomic Layer Deposition of CeO2 Film with a Novel Heteroleptic Ce(III) Complex. Molecules 2024, 29, 2987. https://doi.org/10.3390/molecules29132987
Zhao W, Zhou H, Li J, Lu Y, Ding Y. Atomic Layer Deposition of CeO2 Film with a Novel Heteroleptic Ce(III) Complex. Molecules. 2024; 29(13):2987. https://doi.org/10.3390/molecules29132987
Chicago/Turabian StyleZhao, Wenyong, Hong Zhou, Jiahao Li, Yuchen Lu, and Yuqiang Ding. 2024. "Atomic Layer Deposition of CeO2 Film with a Novel Heteroleptic Ce(III) Complex" Molecules 29, no. 13: 2987. https://doi.org/10.3390/molecules29132987
APA StyleZhao, W., Zhou, H., Li, J., Lu, Y., & Ding, Y. (2024). Atomic Layer Deposition of CeO2 Film with a Novel Heteroleptic Ce(III) Complex. Molecules, 29(13), 2987. https://doi.org/10.3390/molecules29132987