Theoretical Analysis of Coordination Geometries in Transition Metal–Histidine Complexes Using Quantum Chemical Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conformational Changes and Coordination Sites of Histidine
2.2. Coordination Modes of His Ligand to Metal Centers ([ML]2+)
2.3. Coordination Modes of Two His Ligands to Metal Centers ([ML2]2+)
2.4. Coordiantion Modes of Deprotonated His Ligand to Metal Centers ([M(L-H)]+)
2.5. Coordiantion Modes of Two Deprotonated His Ligands to Metal Centers ([M(L-H)2])
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Severin, K.; Bergs, R.; Beck, W. Bioorganometallic Chemistry—Transition Metal Complexes with α-Amino Acids and Peptides. Angew. Chem. Int. Ed. 1998, 37, 1634–1654. [Google Scholar] [CrossRef]
- Wang, Y.; R-Lazar, S.; Zhou, H.; Yin, Y.; Jiang, X.; Cai, K.; Gazit, E.; Ji, W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS Nano 2024, 18, 1257–1288. [Google Scholar] [CrossRef] [PubMed]
- Titova, Y. Transition Metal Complexes with Amino Acids, Peptides and Carbohydrates in Catalytic Asymmetric Synthesis: A Short Review. Processes 2024, 12, 214. [Google Scholar] [CrossRef]
- Nagy, P.I. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution. Int. J. Mol. Sci. 2014, 15, 19562–19633. [Google Scholar] [CrossRef]
- Giubertoni, G.; Sofronov, O.O.; Bakker, H.J. Effect of intramolecular hydrogen-bond formation on the molecular conformation of amino acids. Commun. Chem. 2020, 3, 84. [Google Scholar] [CrossRef]
- Alvarez, S. Coordinating Ability of Anions, Solvents, Amino Acids, and Gases towards Alkaline and Alkaline-Earth Elements, Transition Metals, and Lanthanides. Chem. Eur. J. 2020, 26, 4350–4377. [Google Scholar] [CrossRef]
- Sóvágó, I.; Kállay, C.; Várnagy, K. Peptides as complexing agents: Factors influencing the structure and thermodynamic stability of peptide complexes. Coord. Chem. Rev. 2012, 256, 2225–2233. [Google Scholar] [CrossRef]
- Chakraborty, P.; Gazit, E. Amino Acid Based Self-Assembled Nanostructures: Complex Structures from Remarkably Simple Building Blocks. ChemNanoMat 2018, 4, 730. [Google Scholar] [CrossRef]
- Zou, Q.; Yan, X. Amino Acid Coordinated Self-Assembly. Chem. Eur. J. 2018, 24, 755. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810–6918. [Google Scholar] [CrossRef]
- Cook, T.R.; Stang, P.J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001–7045. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Maeda, S.; Mita, T. Quantum chemical calculations for reaction prediction in the development of synthetic methodologies. Chem. Sci. 2023, 14, 11601–11616. [Google Scholar] [CrossRef] [PubMed]
- Odoh, S.O.; Cramer, C.J.; Truhlar, D.G.; Gagliardi, L. Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chem. Rev. 2015, 115, 6051–6111. [Google Scholar] [CrossRef] [PubMed]
- Daniel, C. Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coord. Chem. Rev. 2015, 282, 19–32. [Google Scholar] [CrossRef]
- Kishimoto, N.; Waizumi, H. An automated and efficient conformation search of L-cysteine and L,L- cystine using the scaled hypersphere search method. Chem. Phys. Lett. 2017, 685, 69–76. [Google Scholar] [CrossRef]
- Kishimoto, N.; Harayama, M.; Ohno, K. An automated efficient conformation search of L-serine by the scaled hypersphere search method. Chem. Phys. Lett. 2016, 652, 209–215. [Google Scholar] [CrossRef]
- Kishimoto, N. An automated and efficient conformational search of glycine and a glycine-water heterodimer both in vacuum and in aqueous solution. Chem. Phys. Lett. 2017, 667, 172–179. [Google Scholar] [CrossRef]
- Zrilić, S.S.; Živković, J.M.; Zarić, S.D. Hydrogen bonds of a water molecule in the second coordination sphere of amino acid metal complexes: Influence of amino acid coordination. J. Inorg. Biochem. 2023, 242, 112151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Kishimoto, N.; Miyake, R. Quantum Chemical Calculations of Flexible Tripeptide-Ni(II) Ion-Mediated Supramolecular Fragments and Comparative Analysis of Tripeptide Complexes with Various Metal(II) Ions. J. Phys. Chem. A 2023, 127, 9733–9742. [Google Scholar] [CrossRef]
- Marino, T.; Toscano, M.; Russo, N.; Grand, A. Structural and Electronic Characterization of the Complexes Obtained by the Interaction between Bare and Hydrated First-Row Transition-Metal Ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and Glycine. J. Phys. Chem. B 2006, 110, 24666–24673. [Google Scholar] [CrossRef]
- Shankar, R.; Kolandaivel, P.; Senthilkumar, L. Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cation complexes. J. Phys. Org. Chem. 2011, 24, 553–567. [Google Scholar] [CrossRef]
- Pál, P.; Veres, M.; Holomb, R.; Szalóki, M.; Szöllősi, A.G.; Csarnovics, I. Identification of histidine-Ni (II) metal complex by Raman spectroscopy. J. Raman Spectrosc. 2023, 54, 278–287. [Google Scholar] [CrossRef]
- Umadevia, P.; Senthilkumar, L. Influence of metal ions (Zn2+, Cu2+, Ca2+, Mg2+ and Na+) on the water coordinated neutral and zwitterionic l-histidine dimer. RSC Adv. 2014, 4, 49040–49052. [Google Scholar] [CrossRef]
- Franklin, L.M.; Walker, S.M.; Hill, G. A DFT study of isolated histidine interactions with metal ions (Ni2+, Cu2+, Zn2+) in a six-coordinated octahedral complex. J. Mol. Model. 2020, 26, 116. [Google Scholar] [CrossRef]
- Zhou, L.; Li, S.; Su, Y.; Yi, X.; Zheng, A.; Deng, F. Interaction between Histidine and Zn(II) Metal Ions over a Wide pH as Revealed by Solid-State NMR Spectroscopy and DFT Calculations. J. Phys. Chem. B 2013, 117, 8954–8965. [Google Scholar] [CrossRef] [PubMed]
- Yoshinari, N.; Kuwamura, N.; Kojima, T.; Konno, T. Development of coordination chemistry with thiol-containing amino acids. Coord. Chem. Rev. 2023, 474, 214857. [Google Scholar] [CrossRef]
- Li, S.; Hong, M. Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-Angle-Spinning Solid-State NMR. J. Am. Chem. Soc. 2011, 133, 1534–1544. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, N.; Li, H.; Li, H.; Lee, J.Y. Probing the water mediated proton transfer in histidine tautomerization. J. Mol. Liq. 2023, 387, 122639. [Google Scholar] [CrossRef]
- Murphy, J.M.; Powell, B.A.; Brumaghim, J.L. Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord. Chem. Rev. 2020, 412, 213253. [Google Scholar] [CrossRef]
- Deschamps, P.; Kulkarni, P.P.; Sarkar, B. X-ray Structure of Physiological Copper(II)−Bis(l-histidinato) Complex. Inorg. Chem. 2004, 43, 3338–3340. [Google Scholar] [CrossRef]
- Maeda, S.; Taketsugu, T.; Morokuma, K.; Ohno, K. Anharmonic Downward Distortion Following for Automated Exploration of Quantum Chemical Potential Energy Surfaces. Bull. Chem. Soc. Jpn. 2014, 87, 1315–1334. [Google Scholar] [CrossRef]
- Ohno, K.; Maeda, S. A Scaled Hypersphere Search Method for the Topography of Reaction Pathways on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277–282. [Google Scholar] [CrossRef]
- Maeda, S.; Ohno, K. Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method: Applications to Ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 5742–5753. [Google Scholar] [CrossRef]
- Ohno, K.; Maeda, S. Global Reaction Route Mapping on Potential Energy Surfaces of Formaldehyde, Formic Acid, and their Metal Substituted Analogues. J. Phys. Chem. A 2006, 110, 8933–8941. [Google Scholar] [CrossRef]
- Becke, D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Vosko, H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Stephens, J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. Accuracy of AH equilibrium geometries by single determinant molecular-orbital theory. Mol. Phys. 1974, 27, 209–214. [Google Scholar] [CrossRef]
- Gordon, M.S. The isomers of silacyclopropane. Chem. Phys. Lett. 1980, 76, 163–168. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; DeFrees, D.J.; Pople, J.A.; Gordon, M.S. Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Binning, R.C., Jr.; Curtiss, L.A. Compact contracted basis-sets for 3rd-row atoms—GA-KR. J. Comp. Chem. 1990, 11, 1206–1216. [Google Scholar] [CrossRef]
- Blaudeau, J.-P.; McGrath, M.P.; Curtiss, L.A.; Radom, L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 1997, 107, 5016–5021. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* Basis Set for Third-Row Atoms. J. Comp. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-Consistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Maeda, S.; Harabuchi, Y.; Sumiya, Y.; Takagi, M.; Suzuki, K.; Hatanaka, M.; Osada, Y.; Taketsugu, T.; Morokuma, K.; Ohno, K. GRRM17. Available online: http://iqce.jp/GRRM/index_e.shtml (accessed on 1 May 2024).
- Maeda, S.; Ohno, K.; Morokuma, K. Systematic Exploration of the Mechanism of Chemical Reactions: The Global Reaction Route Mapping (GRRM) Strategy by the ADDF and AFIR Methods. Phys. Chem. Chem. Phys. 2013, 15, 3683–3701. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, UK, 2016. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Weigenda, F.; Ahlrichsb, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. [Google Scholar] [CrossRef]
- Goerigk, L.; Kruse, H.; Grimme, S. Benchmarking Density Functional Methods against the S66 and S66x8 Datasets for Non-Covalent Interactions. ChemPhysChem. 2011, 12, 3421–3433. [Google Scholar] [CrossRef]
- Bursch, M.; Mewes, J.-M.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed. 2022, 61, e202205735. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Maeda, S.; Ohno, K. Conversion Pathways between a Fullerene and a Ring among C20 Clusters by a Sphere Contracting Walk Method: Remarkable Difference in Local Potential Energy Landscapes around the Fullerene and the Ring. J. Chem. Phys. 2006, 124, 174306. [Google Scholar] [CrossRef]
- Maeda, S.; Ohno, K. A New Approach for Finding a Transition State Connecting a Reactant and a Product without Initial Guess: Applications of the Scaled Hypersphere Search Method to Isomerization Reactions of HCN, (H2O)2, and Alanine Dipeptide. Chem. Phys. Lett. 2005, 404, 95–99. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Sánchez, P.M.; García, J.C.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Alvareza, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef] [PubMed]
- Brinck, T.; Carlqvist, P.; Stenlid, J.H. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding. J. Phys. Chem. A 2016, 120, 10023–10032. [Google Scholar] [CrossRef] [PubMed]
- Frączyk, T. Cu(II)-Binding N-Terminal Sequences of Human Proteins. Chem. Biodivers. 2021, 18, e2100043. [Google Scholar] [CrossRef]
- Badea, M.; Uivarosi, V.; Olar, R. Improvement in the Pharmacological Profile of Copper Biological Active Complexes by Their Incorporation into Organic or Inorganic Matrix. Molecules 2020, 25, 5830. [Google Scholar] [CrossRef]
Complex | Metal Center | Charge and Spin Multiplicity | ΔG (kcal/mol, 298.15 K) | Coordination Mode | Atomic Distances of N3-M2+, N4-M2+, O1-M2+ (Å) |
---|---|---|---|---|---|
1 | Mn2+ | 2, 6 (HS) | 0 | Tridentate | 2.03, 2.14, 2.15 |
1_PCM | −221.81 | Bidentate | 2.11, 2.20, 2.98 | ||
1_SMD | −257.84 | 2.17, 2.25, 3.00 | |||
2 | 2, 2 (LS) | 0 | Tridentate | 1.97, 2.04, 2.05 | |
2_PCM | −214.49 | 2.04, 2.11, 2.23 | |||
2_SMD | −246.66 | 2.05, 2.12, 2.32 | |||
3 | Fe2+ | 2, 5 (HS) | 0 | Tridentate | 1.97, 2.08, 2.09 |
3_PCM | −216.58 | 2.05, 2.15, 2.37 | |||
3_SMD | −249.35 | 2.09, 2.17, 2.33 | |||
4 | 2, 1 (LS) | 0 | Tridentate | 1.89, 1.95, 1.93 | |
4_PCM | −209.09 | 1.93, 1.97, 1.98 | |||
4_SMD | −238.05 | 1.93, 1.98, 2.01 | |||
5 | Co2+ | 2, 4 (HS) | 0 | Tridentate | 1.93, 2.05, 2.05 |
5_PCM | −214.69 | 2.01, 2.09, 2.36 | |||
5_SMD | −246.78 | 2.04, 2.12, 2.33 | |||
6 | 2, 2 (LS) | 0 | Tridentate | 1.88, 1.91, 2.06 | |
6_PCM | −210.08 | 1.90, 1.94, 2.42 | |||
6_SMD | −241.21 | Bidentate | 1.90, 1.94, 2.96 | ||
7 | Ni2+ | 2, 3 | 0 | Tridentate | 1.91, 2.00, 2.00 |
7_PCM | −210.77 | 1.97, 2.03, 2.16 | |||
7_SMD | −220.15 | 1.95, 2.01, 2.08 | |||
8 | Cu2+ | 2, 2 | 0 | Tridentate | 1.92, 2.00, 2.11 |
8_PCM | −188.23 | 1.90, 1.97, 2.35 | |||
8_SMD | −243.20 | Bidentate | 1.94, 1.99, 3.03 | ||
9 | Zn2+ | 2, 1 | 0 | Tridentate | 1.92, 2.01, 2.09 |
9_PCM | −220.68 | Bidentate | 1.98, 2.06, 3.37 | ||
9_SMD | −254.26 | 2.02, 2.07, 3.15 |
Complex | Metal Center | Charge and Spin Multiplicity | ΔG (kcal/mol, 298.15 K) | Coordination Mode | Distances of N4-M2+, O1-M2+, N3-M2+ (Å) | Distances of N25-M2+, O23-M2+, N24-M2+ (Å) |
---|---|---|---|---|---|---|
10 | Mn2+ | 2, 6 (HS) | 0 | Distorted octahedral | 2.28, 2.41, 2.17 | 2.28, 2.41, 2.17 |
10_PCM | −162.14 | - | 2.22, 3.50, 2.14 | 2.25, 3.52, 2.15 | ||
10_SMD | −191.85 | 2.25, 2.96, 2.21 | 2.27, 3.13, 2.21 | |||
11 | 2, 2 (LS) | 0 | Distorted octahedral | 2.12, 2.13, 2.06 | 2.12, 2.13, 2.06 | |
11_PCM | −155.97 | 2.10, 2.12, 2.05 | 2.10, 2.12, 2.04 | |||
11_SMD | −180.76 | - | 2.10, 3.02, 2.06 | 2.10, 3.01, 2.07 | ||
12 | Fe2+ | 2, 5 (HS) | 0 | Distorted octahedral | 2.24, 2.27, 2.11 | 2.23, 2.34, 2.13 |
12_PCM | −160.80 | - | 2.17, 3.46, 2.06 | 2.17, 3.39, 2.06 | ||
12_SMD | −188.95 | 2.18, 3.10, 2.10 | 2.19, 3.09, 2.11 | |||
13 | 2, 1 (LS) | 0 | Octahedral | 2.06, 2.03, 2.02 | 2.06, 2.03, 2.02 | |
13_PCM | −156.69 | Distorted octahedral | 2.04, 2.02, 2.00 | 2.04, 2.03, 2.00 | ||
13_SMD | −177.56 | Octahedral | 2.04, 2.02, 2.00 | 2.04, 2.02, 2.00 | ||
14 | Co2+ | 2, 4 (HS) | 0 | Octahedral | 2.19, 2.24, 2.10 | 2.19, 2.24, 2.10 |
14_PCM | −165.09 | - | 2.10, 3.46, 2.01 | 2.11, 3.48, 2.01 | ||
14_SMD | −190.57 | 2.10, 3.12, 2.04 | 2.12, 3.41, 2.03 | |||
15 | 2, 2 (LS) | 0 | Distorted octahedral | 2.02, 2.40, 1.97 | 2.02, 2.41, 1.97 | |
15_PCM | −156.80 | 2.01, 2.35, 1.96 | 2.01, 2.35, 1.96 | |||
15_SMD | −179.80 | - | 2.00, 2.76, 1.98 | 2.00, 2.94, 1.97 | ||
16 | Ni2+ | 2, 3 | 0 | Distorted octahedral | 2.16, 2.23, 2.08 | 2.16, 2.24, 2.08 |
16_PCM | −155.25 | 2.14, 2.26, 2.07 | 2.14, 2.26, 2.07 | |||
16_SMD | −176.98 | 2.13, 2.27, 2.07 | 2.13, 2.27, 2.07 | |||
17 | Cu2+ | 2, 2 | 0 | - | 2.09, 3.34, 1.97 | 2.07, 2.37, 2.03 |
17_PCM | −149.58 | 2.06, 2.84, 1.99 | 2.05, 2.50, 2.02 | |||
17_SMD | −175.83 | 2.07, 3.00, 2.01 | 2.04, 2.93, 2.03 | |||
18 | Zn2+ | 2, 1 | 0 | - | 2.10, 3.56, 1.99 | 2.10, 3.56, 1.99 |
18_PCM | −158.65 | 2.10, 3.45, 2.02 | 2.11, 3.47, 2.02 | |||
18_SMD | −184.42 | 2.12, 3.43, 2.05 | 2.11, 3.26, 2.06 |
Complex | Metal Center | Charge and Spin Multiplicity | ΔG (kcal/mol, 298.15 K) | Coordination Mode | Distances of N3-M2+, N4-M2+, O1-M2+ (Å) |
---|---|---|---|---|---|
19 | Mn2+ | 1, 6 (HS) | 0 | 2.08, 2.17, 1.92 | |
19_PCM | −93.39 | Tridentate | 2.16, 2.22, 2.08 | ||
19_SMD | −119.16 | 2.19, 2.26, 2.18 | |||
20 | 1, 2 (LS) | 0 | 2.00, 2.05, 1.85 | ||
20_PCM | −84.73 | Tridentate | 2.04, 2.09, 1.99 | ||
20_SMD | −108.40 | 2.08, 2.11, 2.06 | |||
21 | Fe2+ | 1, 5 (HS) | 0 | 2.02, 2.12, 1.86 | |
21_PCM | −85.64 | Tridentate | 2.08, 2.16, 1.98 | ||
21_SMD | −110.15 | 2.12, 2.19, 2.06 | |||
22 | 1, 1 (LS) | 0 | Tridentate | 1.90, 1.95, 1.81 | |
22_PCM | −81.45 | 1.92, 1.96, 1.89 | |||
22_SMD | −101.77 | 1.93, 1.97, 1.92 | |||
23 | Co2+ | 1, 4 (HS) | 0 | Tridentate | 1.99, 2.07, 1.85 |
23_PCM | −85.35 | 2.03, 2.11, 1.97 | |||
23_SMD | −109.29 | 2.08, 2.13, 2.06 | |||
24 | 1, 2 (LS) | 0 | Tridentate | 1.96, 2.00, 1.79 | |
24_PCM | −77.51 | 2.00, 2.02, 1.84 | |||
24_SMD | −99.29 | 1.93, 1.92, 2.09 | |||
25 | Ni2+ | 1, 3 | 0 | Tridentate | 1.94, 2.01, 1.85 |
25_PCM | −83.07 | 1.98, 2.03, 1.95 | |||
25_SMD | −88.11 | 1.97, 2.01, 1.96 | |||
26 | Cu2+ | 1, 2 | 0 | Tridentate | 1.97, 2.00, 1.87 |
26_PCM | −64.37 | 1.95, 1.98, 1.92 | |||
26_SMD | −98.13 | 2.06, 1.97, 2.09 | |||
27 | Zn2+ | 1, 1 | 0 | Tridentate | 1.97, 2.06, 1.89 |
27_PCM | −89.92 | 2.02, 2.09, 2.03 | |||
27_SMD | −113.68 | 2.08, 2.11, 2.06 |
Complex | Metal Center | Charge and Spin Multiplicity | ΔG (kcal/mol, 298.15 K) | Coordination Mode | Distances of N4-M2+, O1-M2+, N3-M2+ (Å) | Distances of N24-M2+, O21-M2+, N23-M2+ (Å) |
---|---|---|---|---|---|---|
28 | Mn2+ | 0, 6 (HS) | 0 | Distorted octahedral | 2.34, 2.12, 2.27 | 2.34, 2.12, 2.27 |
28_PCM | −34.35 | 2.31, 2.18, 2.25 | 2.30, 2.18, 2.25 | |||
28_SMD | −50.26 | 2.31, 2.31, 2.28 | 2.30, 2.29, 2.32 | |||
29 | 0, 2 (LS) | 0 | Distorted octahedral | 2.10, 1.99, 2.03 | 2.10, 1.99, 2.03 | |
29_PCM | −33.16 | 2.10, 2.02, 2.05 | 2.10, 2.02, 2.05 | |||
29_SMD | −50.29 | 2.12, 2.08, 2.07 | 2.12, 2.08, 2.07 | |||
30 | Fe2+ | 0, 5 (HS) | 0 | Distorted octahedral | 2.29, 2.03, 2.21 | 2.29, 2.04, 2.21 |
30_PCM | −32.28 | 2.25, 2.09, 2.20 | 2.25, 2.09, 2.20 | |||
30_SMD | −47.59 | 2.25, 2.16, 2.20 | 2.23, 2.19, 2.21 | |||
31 | 0, 1 (LS) | 0 | Distorted octahedral | 2.04, 1.98, 1.99 | 2.04, 1.98, 1.99 | |
31_PCM | −33.89 | 2.04, 2.01, 2.01 | 2.04, 2.00, 2.01 | |||
31_SMD | −47.87 | 2.04, 2.02, 2.01 | 2.04, 2.02, 2.01 | |||
32 | Co2+ | 0, 4 (HS) | 0 | Distorted octahedral | 2.22, 2.03, 2.16 | 2.22, 2.03, 2.16 |
32_PCM | −33.85 | 2.20, 2.09, 2.15 | 2.20, 2.09, 2.15 | |||
32_SMD | −48.63 | 2.19, 2.16, 2.15 | 2.20, 2.15, 2.14 | |||
33 | 0, 2 (LS) | 0 | Distorted octahedral | 2.28, 1.95, 1.97 | 2.00, 1.93, 2.44 | |
33_PCM | −33.96 | 2.01, 2.25, 1.98 | 2.01, 2.25, 1.98 | |||
33_SMD | −50.40 | 2.00, 2.29, 1.98 | 2.00, 2.29, 1.98 | |||
34 | Ni2+ | 0, 3 | 0 | Distorted octahedral | 2.15, 2.04, 2.10 | 2.15, 2.04, 2.10 |
34_PCM | −35.41 | 2.14, 2.09, 2.10 | 2.14, 2.09, 2.10 | |||
34_SMD | −49.63 | 2.12, 2.11, 2.10 | 2.12, 2.12, 2.10 | |||
35 | Cu2+ | 0, 2 | 0 | - | 2.05, 1.95, 2.96 | 2.41, 1.98, 2.03 |
35_PCM | −31.00 | 2.04, 1.98, 3.23 | 2.30, 2.01, 2.01 | |||
35_SMD | −54.38 | 2.04, 2.00, 3.72 | 2.05, 3.96, 1.99 | |||
36 | Zn2+ | 0, 1 | 0 | Distorted octahedral | 2.24, 2.04, 2.20 | 2.24, 2.04, 2.20 |
36_PCM | −34.00 | 2.21, 2.13, 2.16 | 2.21, 2.13, 2.16 | |||
36_SMD | −50.38 | 2.16, 2.39, 2.15 | 2.19, 2.24, 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Kishimoto, N. Theoretical Analysis of Coordination Geometries in Transition Metal–Histidine Complexes Using Quantum Chemical Calculations. Molecules 2024, 29, 3003. https://doi.org/10.3390/molecules29133003
Zhang D, Kishimoto N. Theoretical Analysis of Coordination Geometries in Transition Metal–Histidine Complexes Using Quantum Chemical Calculations. Molecules. 2024; 29(13):3003. https://doi.org/10.3390/molecules29133003
Chicago/Turabian StyleZhang, Dapeng, and Naoki Kishimoto. 2024. "Theoretical Analysis of Coordination Geometries in Transition Metal–Histidine Complexes Using Quantum Chemical Calculations" Molecules 29, no. 13: 3003. https://doi.org/10.3390/molecules29133003
APA StyleZhang, D., & Kishimoto, N. (2024). Theoretical Analysis of Coordination Geometries in Transition Metal–Histidine Complexes Using Quantum Chemical Calculations. Molecules, 29(13), 3003. https://doi.org/10.3390/molecules29133003