Direct Defluorination and Amination of Polytetrafluoroethylene and Other Fluoropolymers by Lithium Alkylamides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Lithium Alkylamides in Aliphatic Primary Di- or Triamines
2.2. Reactivity of Lithium Alkylamides towards the C-F Bond in PTFE
2.3. Surface and Spectroscopic Characterizations
2.4. Energy Dispersive Spectroscopy Measurements
3. Materials and Methods
3.1. Materials
3.2. Experimental Conditions for the Reaction between PTFE, PVDF or Nafion, and Lithium Alkylamides
3.3. Analytical Methods
3.4. Ab Initio Calculations
3.5. Contact Angle Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ameduri, B. From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef] [PubMed]
- Puts, G.J.; Crouse, P.; Ameduri, B.M. Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer. Chem. Rev. 2019, 119, 1763–1805. [Google Scholar] [CrossRef]
- Améduri, B. Fluoropolymers as Unique and Irreplaceable Materials: Challenges and Future Trends in These Specific Per or Poly-Fluoroalkyl Substances. Molecules 2023, 28, 7564. [Google Scholar] [CrossRef]
- Combellas, C.; Kanoufi, F.; Mazouzi, D.; Thiébault, A. Surface modification of halogenated polymers: 5. Localized electroless deposition of metals on poly(tetrafluoroethylene) surfaces. J. Electroanal. Chem. 2003, 556, 43–52. [Google Scholar] [CrossRef]
- Ohkubo, Y.; Ishihara, K.; Shibahara, M.; Nagatani, A.; Honda, K.; Endo, K.; Yamamura, K. Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater. Sci. Rep. 2017, 7, 9476. [Google Scholar] [CrossRef]
- Boittiaux, V.; Boucetta, F.; Combellas, C.; Kanoufi, F.; Thiébault, A.; Delamar, M.; Bertrand, P. Surface modification of halogenated polymers: 3. Influence of additives such as alkali cations or nucleophiles on the magnesium reductive treatment of polytetrafluoroethylene. Polymer 1999, 40, 2011–2026. [Google Scholar] [CrossRef]
- Yanagihara, N.; Katoh, T. Mineralization of poly(tetrafluoroethylene) and other fluoropolymers using molten sodium hydroxide. Green Chem. 2022, 24, 6255–6263. [Google Scholar] [CrossRef]
- Hamaura, J.; Hori, H.; Fujishima, A.; Mukae, H. Efficient Mineralization of Fluoroelastomers Using Superheated Water in the Presence of Potassium Hydroxide. Molecules 2023, 28, 7057. [Google Scholar] [CrossRef] [PubMed]
- Chaban, V.V.; Prezhdo, O.V. Electron Solvation in Liquid Ammonia: Lithium, Sodium, Magnesium, and Calcium as Electron Sources. J. Phys. Chem. B 2016, 120, 2500–2506. [Google Scholar] [CrossRef]
- Dye, J.L. The alkali metals: 200 years of surprises. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140174. [Google Scholar] [CrossRef]
- Roina, Y.; Gonçalves, A.-M.; Fregnaux, M.; Auber, F.; Herlem, G. Sodium Naphthalenide Diglyme Solution for Etching PTFE, Characterizations and Molecular Modelization. ChemistrySelect 2022, 7, e202200153. [Google Scholar] [CrossRef]
- Graziani, E.I.; McKeown, N.B.; Kalman, P.G.; Thompson, M. Surface selective modification of fluoropolymer biomaterial. Int. Biodeterior. Biodegrad. 1992, 30, 217–231. [Google Scholar] [CrossRef]
- Sheldon, D.J.; Parr, J.M.; Crimmin, M.R. Room Temperature Defluorination of Poly(tetrafluoroethylene) by a Magnesium Reagent. J. Am. Chem. Soc. 2023, 145, 10486–10490. [Google Scholar] [CrossRef] [PubMed]
- Vesel, A.; Zaplotnik, R.; Primc, G.; Mozetič, M.; Katan, T.; Kargl, R.; Mohan, T.; Kleinschek, K.S. Rapid Functionalization of Polytetrafluorethylene (PTFE) Surfaces with Nitrogen Functional Groups. Polymers 2021, 13, 4301. [Google Scholar] [CrossRef] [PubMed]
- Coupe, B.; Chen, W. A New Approach to Surface Functionalization of Fluoropolymers. Macromolecules 2001, 34, 1533–1535. [Google Scholar] [CrossRef]
- Liang, F.; Sadana, A.K.; Peera, A.; Chattopadhyay, J.; Gu, Z.; Hauge, R.H.; Billups, W.E. A Convenient Route to Functionalized Carbon Nanotubes. Nano Lett. 2004, 4, 1257–1260. [Google Scholar] [CrossRef]
- Burrows, J.; Kamo, S.; Koide, K. Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science 2021, 374, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Benkeser, R.A.; Agnihotri, R.K.; Burrous, M.L. Reduction of organic compounds by lithium in low molecular weight amines. Highly selective lithium-amine reducing systems. Tetrahedron Lett. 1960, 1, 1–3. [Google Scholar] [CrossRef]
- Benkeser, R.A.; Burrous, M.L.; Hazdra, J.J.; Kaiser, E.M. Reduction of Organic Compounds by Lithium in Low Molecular Weight Amines. VII. The Preparation of Dihydroaromatics. A Comparison of the Lithium-Amine and Birch Reduction Systems. J. Org. Chem. 1963, 28, 1094–1097. [Google Scholar] [CrossRef]
- Benkeser, R.A.; Agnihotri, R.K.; Burrous, M.L.; Kaiser, E.M.; Mallan, J.M.; Ryan, P.W. Highly Selective Lithium—Amine Reducing Systems. The Selective Reduction of Aromatic Compounds by Lithium in Mixed Amine Solvents1a. J. Org. Chem. 1964, 29, 1313–1316. [Google Scholar] [CrossRef]
- Benkeser, R.A.; Rappa, A.; Wolsieffer, L.A. Calcium and lithium reductions of epoxides in ethylenediamine. A comparison study. J. Org. Chem. 1986, 51, 3391–3393. [Google Scholar] [CrossRef]
- Garst, M.E.; Dolby, L.J.; Esfandiari, S.; Fedoruk, N.A.; Chamberlain, N.C.; Avey, A.A. Reductions with Lithium in Low Molecular Weight Amines and Ethylenediamine. J. Org. Chem. 2000, 65, 7098–7104. [Google Scholar] [CrossRef] [PubMed]
- Reggel, L.; Friedel, R.A.; Wender, I. Lithium in Ethylenediamine: A New Reducing System for Organic Compounds1. J. Org. Chem. 1957, 22, 891–894. [Google Scholar] [CrossRef]
- Xinliang, T.; Qingze, J.; Yong, C.; Pei, Z.; Hongbo, L.; Hongyu, W.; Mingji, Z.; Xuefei, L.; Yun, Z. Reductive Alkylation and Arylation of Single-walled Carbon Nanotubes in Ethylenediamine via Benkeser Reaction. Chem. Lett. 2009, 38, 220–221. [Google Scholar]
- Tang, X.; Zhao, Y.; Jiao, Q.; Cao, Y. Hydrogenation of Multi-walled Carbon Nanotubes in Ethylenediamine. Fuller. Nanotub. Carbon NanoStruct. 2010, 18, 14–23. [Google Scholar] [CrossRef]
- Sarkar, A.K.; Saha, S.; Ganguly, S.; Banerjee, D.; Kargupta, K. Hydrogen storage on graphene using Benkeser reaction. Int. J. Energy Res. 2014, 38, 1889–1895. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhang, W.; Ji, J.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Ethylenediamine Modified Graphene and Its Chemically Responsive Supramolecular Hydrogels. Ind. Eng. Chem. Res. 2014, 53, 13205–13209. [Google Scholar] [CrossRef]
- Pettersen, D.; Amedjkouh, M.; Ahlberg, P. Chiral Lithium Amides in Asymmetric Synthesis. In The Chemistry of Organolithium Compounds; Wiley: Hoboken, NJ, USA, 2005; pp. 411–476. [Google Scholar]
- Slavík, P.; Trowse, B.R.; O’Brien, P.; Smith, D.K. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat. Chem. 2023, 15, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Connelly, N.G.; Geiger, W.E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877–910. [Google Scholar] [CrossRef]
- Reiß, A.; Donsbach, C.; Feldmann, C. Insights into the naphthalenide-driven synthesis and reactivity of zerovalent iron nanoparticles. Dalton Trans. 2021, 50, 16343–16352. [Google Scholar] [CrossRef]
- Kowach, G.R.; Warren, C.J.; Haushalter, R.C.; DiSalvo, F.J. Synthesis and Structure of the One-Dimensional Polymer Li(NHCH2CH2NH2). Inorg. Chem. 1998, 37, 156–159. [Google Scholar] [CrossRef]
- Beumel, O.F.; Harris, R.F. The Preparation of Lithium Acetylide-Ethylenediamine. J. Org. Chem. 1963, 28, 2775–2779. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 2020. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, E.; Pérez, P.; Domingo, L.R. On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem. Phys. Lett. 2013, 582, 141–143. [Google Scholar] [CrossRef]
- Pino-Rios, R.; Inostroza, D.; Cárdenas-Jirón, G.; Tiznado, W. Orbital-Weighted Dual Descriptor for the Study of Local Reactivity of Systems with (Quasi-) Degenerate States. J. Phys. Chem. A 2019, 123, 10556–10562. [Google Scholar] [CrossRef] [PubMed]
- Garst, J.F.; Barbas, J.T.; Barton, F.E. Radical mechanism of alkylation of sodium naphthalenide. J. Am. Chem. Soc. 1968, 90, 7159–7160. [Google Scholar] [CrossRef]
- Sargent, G.D.; Lux, G.A. Reactions of aromatic radical anions. III. Evidence for an alkyl radical-radical anion combination mechanism for alkylation of sodium naphthalenide with alkyl halides. J. Am. Chem. Soc. 1968, 90, 7160–7162. [Google Scholar] [CrossRef]
- Newcomb, M.; Reeder, R.A. Reactions of trans-2-tert-butyl-3-phenyloxaziridine with lithium amide bases. J. Org. Chem. 1980, 45, 1489–1493. [Google Scholar] [CrossRef]
- Renaud, P.; Fox, M.A. Electrochemical behavior of lithium dialkylamides: The effect of aggregation. J. Am. Chem. Soc. 1988, 110, 5702–5705. [Google Scholar] [CrossRef]
- Jahn, U.; Müller, M.; Aussieker, S. The Combination of Anionic and Radical Reactions to Oxidative Tandem Processes Exemplified by the Synthesis of Functionalized Pyrrolidines. J. Am. Chem. Soc. 2000, 122, 5212–5213. [Google Scholar] [CrossRef]
- Yan, H.; Wu, B.; Zhao, X.-K.; Yu, C.; Wei, J.; Hu, H.-S.; Zhang, W.-X.; Xi, Z. Rare-Earth Metal Boroxide with Formal Triple Metal–Oxygen Orbital Interaction: Synthesis from B(C6F5)3·H2O and Radical-Anion Ligated Rare-Earth Metal Amides. CCS Chem. 2021, 3, 2772–2781. [Google Scholar] [CrossRef]
- Müller, A.; Heinrich, T.; Tougaard, S.; Werner, W.S.M.; Hronek, M.; Kunz, V.; Radnik, J.; Stockmann, J.M.; Hodoroaba, V.-D.; Benemann, S.; et al. Determining the Thickness and Completeness of the Shell of Polymer Core–Shell Nanoparticles by X-ray Photoelectron Spectroscopy, Secondary Ion Mass Spectrometry, and Transmission Scanning Electron Microscopy. J. Phys. Chem. C 2019, 123, 29765–29775. [Google Scholar] [CrossRef]
- Hunke, H.; Soin, N.; Shah, T.H.; Kramer, E.; Pascual, A.; Karuna, M.S.L.; Siores, E. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis. Materials 2015, 8, 2258–2275. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons Ltd.: Chichester, UK, 2015. [Google Scholar]
- Oran, U.; Swaraj, S.; Lippitz, A.; Unger, W.E.S. Surface Analysis of Plasma Deposited Polymer Films, 7. Pasma Process. Polym. 2006, 3, 288–298. [Google Scholar] [CrossRef]
- Anderegg, R.J. Derivatization in mass spectrometry: Strategies for controlling fragmentation. Mass Spectrosc. Rev. 1988, 7, 395–424. [Google Scholar] [CrossRef]
- Truica-Marasescu, F.; Girard-Lauriault, P.-L.; Lippitz, A.; Unger, W.E.S.; Wertheimer, M.R. Nitrogen-rich plasma polymers: Comparison of films deposited in atmospheric- and low-pressure plasmas. Thin Solid Film. 2008, 516, 7406–7417. [Google Scholar] [CrossRef]
- Wu, S. Polymer Interface and Adhesion; Dekker: New York, NY, USA ; Basel, Switzerland , 1982. [Google Scholar]
- Pino-Rios, R.; Yañez, O.; Inostroza, D.; Ruiz, L.; Cardenas, C.; Fuentealba, P.; Tiznado, W. Proposal of a simple and effective local reactivity descriptor through a topological analysis of an orbital-weighted fukui function. J. Comput. Chem. 2017, 38, 481–488. [Google Scholar] [CrossRef]
Atom | f+ | f− | fo | Δf | |
---|---|---|---|---|---|
LiDETA | C4 | 0.0432 | 0.0068 | 0.025 | −0.0365 |
C3 | 0.0326 | 0.0045 | 0.0186 | −0.0281 | |
N2 | 0.0582 | 0.0028 | 0.0305 | −0.0554 | |
N3 | 0.2706 | −0.0054 | 0.1326 | −0.276 | |
Li | 0.2039 | 0.9015 | 0.5527 | 0.6975 | |
C2 | 0.0109 | 0.002 | 0.0064 | −0.0089 | |
C1 | 0.0082 | 0.0026 | 0.0054 | −0.0057 | |
N1 | 0.0225 | 0.0036 | 0.0131 | −0.0189 | |
LiDAP | C3 | 0.0434 | 0.0069 | 0.0251 | −0.0365 |
C2 | 0.0288 | 0.0042 | 0.0165 | −0.0246 | |
N2 | 0.3062 | −0.005 | 0.1506 | −0.3112 | |
Li | 0.2165 | 0.9029 | 0.5597 | 0.6863 | |
C1 | 0.0206 | 0.0049 | 0.0128 | −0.0157 | |
N1 | 0.0516 | 0.0062 | 0.0289 | −0.0454 | |
LiEDA | C2 | 0.048 | 0.0071 | 0.0276 | −0.0408 |
C1 | 0.0362 | 0.0058 | 0.021 | −0.0304 | |
N1 | 0.0491 | 0.009 | 0.029 | −0.0402 | |
N2 | 0.3213 | −0.005 | 0.1582 | −0.3263 | |
Li | 0.2202 | 0.9042 | 0.5622 | 0.684 | |
PTFE | C | 0.2567 | 0.2269 | 0.2418 | 0.0297 |
F | 0.1216 | 0.1365 | 0.1291 | −0.0149 |
Sample | Carbon | Fluorine | Lithium | Nitrogen | Oxygen |
---|---|---|---|---|---|
PTFE | 35.3 | 64.5 | - | 0.1 | 0.1 |
PTFE LiEDA | 36.6 | 30.8 | 18.8 | 7.7 | 5.3 |
PTFE LiDETA | 75.1 | 6.0 | 0.5 | 4.1 | 13.8 |
PVDF | 54.2 | 40.8 | - | 0.1 | 4.8 |
PVDF LiEDA | 71.2 | 2.5 | 0.5 | 12.8 | 12.2 |
PVDF LiDETA | 84.0 | 1.4 | 0.1 | 7.5 | 6.9 |
Nafion | 31.9² | 60.0 | - | 0.1 | 7.5 |
Nafion LiEDA | 20.3 | 13.0 | 12.4 | 6.0 | 4.8 |
Nafion LiDETA | 60.6 | 14.0 | 0.9 | 13.2 | 8.5 |
PTFE | LiEDA-Modified PTFE | LiDETA-Modified PTFE | ||||
---|---|---|---|---|---|---|
Element | Weight % | Atom % | Weight % | Atom % | Weight % | Atom % |
C K | 17.2 ± 0.3 | 24.5 ± 0.4 | 23.2 ±0.4 | 29.5 ± 0.5 | 33.5 ± 0.4 | 40.3 ± 0.5 |
N k | - | - | 15.2 ± 1.7 | 16.5 ± 1.9 | 16.1 ± 2.0 | 16.6 ± 2.1 |
O K | 5.4 ± 0.8 | 5.8 ± 0.8 | 30.2 ± 2.4 | 28.8 ± 2.3 | 33.6 ± 2.2 | 30.4 ± 2.0 |
F K | 77.4 ± 1.5 | 69.7 ± 1.3 | 31.4 ± 2.1 | 25.2 ± 1.7 | 16.8 ± 1.7 | 12.8 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herlem, G.; Roina, Y.; Fregnaux, M.; Gonçalves, A.-M.; Cattey, H.; Picaud, F.; Auber, F. Direct Defluorination and Amination of Polytetrafluoroethylene and Other Fluoropolymers by Lithium Alkylamides. Molecules 2024, 29, 3045. https://doi.org/10.3390/molecules29133045
Herlem G, Roina Y, Fregnaux M, Gonçalves A-M, Cattey H, Picaud F, Auber F. Direct Defluorination and Amination of Polytetrafluoroethylene and Other Fluoropolymers by Lithium Alkylamides. Molecules. 2024; 29(13):3045. https://doi.org/10.3390/molecules29133045
Chicago/Turabian StyleHerlem, Guillaume, Yaelle Roina, Mathieu Fregnaux, Anne-Marie Gonçalves, Hélène Cattey, Fabien Picaud, and Frédéric Auber. 2024. "Direct Defluorination and Amination of Polytetrafluoroethylene and Other Fluoropolymers by Lithium Alkylamides" Molecules 29, no. 13: 3045. https://doi.org/10.3390/molecules29133045
APA StyleHerlem, G., Roina, Y., Fregnaux, M., Gonçalves, A. -M., Cattey, H., Picaud, F., & Auber, F. (2024). Direct Defluorination and Amination of Polytetrafluoroethylene and Other Fluoropolymers by Lithium Alkylamides. Molecules, 29(13), 3045. https://doi.org/10.3390/molecules29133045