Synergistic Catalytic Effects on Nitrogen Transformation during Biomass Pyrolysis: A Focus on Proline as a Model Compound
Abstract
:1. Introduction
2. Result and Discussion
2.1. Effect of Catalysts at Different Temperatures
2.1.1. Nitrogen Distribution
2.1.2. Release of NH3 and HCN
2.1.3. Formation of N-Containing Compounds
2.2. Effects of Different Ratios of Composite Catalysts
2.2.1. Nitrogen Distribution
2.2.2. Release of NH3 and HCN
2.2.3. Formation of N-Containing Compounds
2.3. Synergistic Effect of Composite Catalysts
2.4. Effect of Composite Catalysts on Pyrolysis Paths
3. Materials and Methods
3.1. Sample Preparation
3.2. Pyrolysis Experiments
3.3. Analysis Methods
3.4. Synergistic Effect Evaluation Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leng, L.; Yang, L.; Chen, J.; Leng, S.; Li, H.; Li, H.; Yuan, X.; Zhou, W.; Huang, H. A Review on Pyrolysis of Protein-Rich Biomass: Nitrogen Transformation. Bioresour. Technol. 2020, 315, 123801. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Lin, N.; Li, Y.; Xue, J.; Li, F.; Wei, L.; Yu, M.; Zha, X.; Li, W. Research on the Application of Catalytic Materials in Biomass Pyrolysis. J. Anal. Appl. Pyrolysis 2024, 177, 106321. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Yuan, H.; Zhuang, X.; Yuan, S.; Yin, X.; Wu, C. Release and Transformation Pathways of Various K Species during Thermal Conversion of Agricultural Straw. Part 1: Devolatilization Stage. Energy Fuels 2018, 32, 9605–9613. [Google Scholar] [CrossRef]
- Chen, W.H.; Farooq, W.; Shahbaz, M.; Naqvi, S.R.; Ali, I.; Al-Ansari, T.; Saidina Amin, N.A. Current Status of Biohydrogen Production from Lignocellulosic Biomass, Technical Challenges and Commercial Potential through Pyrolysis Process. Energy 2021, 226, 120433. [Google Scholar] [CrossRef]
- Tian, H.; Wei, Y.; Huang, Z.; Chen, Y.; Tursunov, O.; Cheng, S.; Yang, H.; Yang, Y. The Nitrogen Transformation and Controlling Mechanism of NH3 and HCN Conversion during the Catalytic Pyrolysis of Amino Acid. Fuel 2023, 333, 126215. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C. Evolution of Fuel-N in Gas Phase during Biomass Pyrolysis. Renew. Sustain. Energy Rev. 2015, 50, 408–418. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C.; Wu, X.; Liang, C.; Chen, X.; Shen, J.; Wang, Z. Catalytic Effects of Fe, Al and Si on the Formation of NOx Precursors and HCl during Straw Pyrolysis. J. Therm. Anal. Calorim. 2010, 99, 301–306. [Google Scholar] [CrossRef]
- Ma, W.; Ma, C.; Liu, X.; Gu, T.; Thengane, S.K.; Bourtsalas, A.; Chen, G. Nox Formation in Fixed-Bed Biomass Combustion: Chemistry and Modeling. Fuel 2021, 290, 119694. [Google Scholar] [CrossRef]
- Chen, H.; Si, Y.; Chen, Y.; Yang, H.; Chen, D.; Chen, W. NOx Precursors from Biomass Pyrolysis: Distribution of Amino Acids in Biomass and Tar-N during Devolatilization Using Model Compounds. Fuel 2017, 187, 367–375. [Google Scholar] [CrossRef]
- Wei, F.; Cao, J.P.; Zhao, X.Y.; Ren, J.; Gu, B.; Wei, X.Y. Formation of Aromatics and Removal of Nitrogen in Catalytic Fast Pyrolysis of Sewage Sludge: A Study of Sewage Sludge and Model Amino Acids. Fuel 2018, 218, 148–154. [Google Scholar] [CrossRef]
- Liu, G.; Wright, M.M.; Zhao, Q.; Brown, R.C.; Wang, K.; Xue, Y. Catalytic Pyrolysis of Amino Acids: Comparison of Aliphatic Amino Acid and Cyclic Amino Acid. Energy Convers. Manag. 2016, 112, 220–225. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C.; Chen, X.; Duan, L.; Li, Y.; Ma, C. NOx and N2O Precursors (NH3 and HCN) from Biomass Pyrolysis: Co-Pyrolysis of Amino Acids and Cellulose, Hemicellulose and Lignin. Proc. Combust. Inst. 2011, 33, 1715–1722. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Taweekun, J.; Rahman, M.M.; Rasul, M.G.; Mahlia, T.M.I.; Ashrafur, S.M. An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C.; Wu, X.; Liang, C.; Chen, X.; Shen, J.; Tang, G.; Wang, Z. Effect of Mineral Matter on the Formation of NOx Precursors during Biomass Pyrolysis. J. Anal. Appl. Pyrolysis 2009, 85, 447–453. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C. NOx and N2O Precursors (NH3 and HCN) from Biomass Pyrolysis: Interaction between Amino Acid and Mineral Matter. Appl. Energy 2013, 112, 170–174. [Google Scholar] [CrossRef]
- Tian, H.; Zhu, J.; Yang, Y.; Cheng, S.; Yin, Y.; Qin, F.; Liu, L. The Catalytic Effect of Alkali and Alkaline Earth Metals on the Transformation of Nitrogen during Phenylalanine Pyrolysis. Fuel 2023, 339, 126967. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Yang, H.; Li, K.; Chen, X.; Chen, H. Investigation on Biomass Nitrogen-Enriched Pyrolysis: Influence of Temperature. Bioresour. Technol. 2018, 249, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yi, L.; Hu, H.; Xu, K.; Zhang, Q.; Lu, G.; Yao, H. Emission Control of NOx Precursors during Sewage Sludge Pyrolysis Using an Integrated Pretreatment of Fenton Peroxidation and CaO Conditioning. Fuel 2017, 195, 208–216. [Google Scholar] [CrossRef]
- Yi, L.; Liu, H.; Lu, G.; Zhang, Q.; Wang, J.; Hu, H.; Yao, H. Effect of Mixed Fe/Ca Additives on Nitrogen Transformation during Protein and Amino Acid Pyrolysis. Energy Fuels 2017, 31, 9484–9490. [Google Scholar] [CrossRef]
- Yao, D.; Hu, Q.; Wang, D.; Yang, H.; Wu, C.; Wang, X.; Chen, H. Hydrogen Production from Biomass Gasification Using Biochar as a Catalyst/Support. Bioresour. Technol. 2016, 216, 159–164. [Google Scholar] [CrossRef]
- Zamboni, I.; Courson, C.; Kiennemann, A. Fe-Ca Interactions in Fe-Based/CaO Catalyst/Sorbent for CO2 Sorption and Hydrogen Production from Toluene Steam Reforming. Appl. Catal. B 2017, 203, 154–165. [Google Scholar] [CrossRef]
- Xu, Z.X.; Xu, L.; Cheng, J.H.; He, Z.X.; Wang, Q.; Hu, X. Investigation of Pathways for Transformation of N-heterocycle Compounds during Sewage Sludge Pyrolysis Process. Fuel Process. Technol. 2018, 182, 37–44. [Google Scholar] [CrossRef]
- Meng, J.; Wang, J.; Yang, F.; Cheng, F. Unveiling the Complex Effect of Fe2O3 on NOx Precursors Evolution Mechanism during Sludge Protein Pyrolysis Based on Product Characteristics. Fuel 2024, 358, 130105. [Google Scholar] [CrossRef]
- Meng, J.; Wang, J.; Yang, F.; Cheng, F. Study on the Multiple Roles of CaO on Nitrogen Evolution Mechanism of Protein inside Sewage Sludge Pyrolysis. Chem. Eng. J. 2023, 458, 141039. [Google Scholar] [CrossRef]
- Tao, J.; Yin, X.; Yao, X.; Cheng, Z.; Yan, B.; Chen, G. Prediction of NH3 and HCN Yield from Biomass Fast Pyrolysis: Machine Learning Modeling and Evaluation. Sci. Total Environ. 2023, 885, 163743. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Chan, W.G.; Seeman, J.I.; Hajaligol, M.R. Formation of Low Molecular Weight Heterocycles and Polycyclic Aromatic Compounds (PACs) in the Pyrolysis of a-Amino Acids. J. Anal. Appl. Pyrolysis 2003, 66, 97–121. [Google Scholar] [CrossRef]
- Chen, W.; Yang, H.; Chen, Y.; Xia, M.; Chen, X.; Chen, H. Transformation of Nitrogen and Evolution of N-Containing Species during Algae Pyrolysis. Environ. Sci. Technol. 2017, 51, 6570–6579. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, M.; Wang, H.; Tan, M.; Zhang, G.; Huang, Z.; Yuan, X. A Review on Migration and Transformation of Nitrogen during Sewage Sludge Thermochemical Treatment: Focusing on Pyrolysis, Gasification and Combustion. Fuel Process. Technol. 2023, 240, 107562. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Hu, H.; Liu, P.; Hu, X.; Li, A.; Yao, H. Catalytic Role of Conditioner CaO in Nitrogen Transformation during Sewage Sludge Pyrolysis. Proc. Combust. Inst. 2015, 35, 2759–2766. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Z.; Zeng, K.; Zhong, D.; Zhang, X.; Chen, W.; Nzihou, A.; Flamant, G.; Yang, H.; Chen, H. Characteristics and Evolution of Nitrogen in the Heavy Components of Algae Pyrolysis Bio-Oil. Environ. Sci. Technol. 2021, 55, 6373–6385. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Zuo, W.; Chen, L.; Cui, Y.; Tan, T. Nitrogen Conversion in Relation to NH3 and HCN during Microwave Pyrolysis of Sewage Sludge. Environ. Sci. Technol. 2013, 47, 3498–3505. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.S.; Chen, H.Y.; Chuang, K.H.; Yang, R.X.; Wey, M.Y. Hydrogen Production by Biomass Gasification in a Fluidized-Bed Reactor Promoted by an Fe/CaO Catalyst. Int. J. Hydrogen Energy 2012, 37, 6511–6518. [Google Scholar] [CrossRef]
- Zheng, A.; Li, L.; Tippayawong, N.; Huang, Z.; Zhao, K.; Wei, G.; Zhao, Z.; Li, H. Reducing Emission of NOx and SOx Precursors While Enhancing Char Production from Pyrolysis of Sewage Sludge by Torrefaction Pretreatment. Energy 2020, 192, 116620. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Li, K.; Lin, F.; Tian, W.; Che, L.; Yan, B.; Ma, W.; Song, Y. Nitrogen, Sulfur, Chlorine Containing Pollutants Releasing Characteristics during Pyrolysis and Combustion of Oily Sludge. Fuel 2020, 273, 117772. [Google Scholar] [CrossRef]
- Leng, E.; Costa, M.; Gong, X.; Zheng, A.; Liu, S.; Xu, M. Effects of KCl and CaCl2 on the Evolution of Anhydro Sugars in Reaction Intermediates during Cellulose Fast Pyrolysis. Fuel 2019, 251, 307–315. [Google Scholar] [CrossRef]
- Xu, D.; Lin, J.; Sun, S.; Ma, R.; Wang, M.; Yang, J.; Luo, J. Microwave Pyrolysis of Biomass Model Compounds for Bio-Oil: Formation Mechanisms of the Nitrogenous Chemicals and DFT Calculations. Energy Convers. Manag. 2022, 262, 115676. [Google Scholar] [CrossRef]
- Cervantes, C.; Mora, J.R.; Rincón, L.; Rodríguez, V. Theoretical Study of the Mechanism of 2,5-Diketopiperazine Formation during Pyrolysis of Proline. Mol. Phys. 2020, 118, e1594422. [Google Scholar] [CrossRef]
- Rawadieh, S.E.; Altarawneh, M.; Altarawneh, I.S.; Shiroudi, A.; El-Nahas, A.M. Exploring Reactions of Amines-Model Compounds with NH2: In Relevance to Nitrogen Conversion Chemistry in Biomass. Fuel 2021, 291, 120076. [Google Scholar] [CrossRef]
- Mckenzie, L.J.; Tian, F.J.; Li, C.Z. NH3 Formation and Destruction during the Gasification of Coal in Oxygen and Steam. Environ. Sci. Technol. 2007, 41, 5505–5509. [Google Scholar] [CrossRef]
- Wei, F.; Cao, J.P.; Zhao, X.Y.; Ren, J.; Wang, J.X.; Fan, X.; Wei, X.Y. Nitrogen Evolution during Fast Pyrolysis of Sewage Sludge under Inert and Reductive Atmospheres. Energy Fuels 2017, 31, 7191–7196. [Google Scholar] [CrossRef]
- Cheng, S.; Tian, H.; Huang, J.; Wei, Y.; Yang, T.; Qiao, Y. Effect of NaCl/MgCl2 on Generation of NOx Precursors during Aspartic Acid Pyrolysis: A Experimental and Theoretical Study. Fuel 2023, 354, 129335. [Google Scholar] [CrossRef]
- HJ536-2009; Water Quality—Determination of Ammonia Nitrogen—Salicylic acid Spectrophotometry. Ministry of Environmental Protection: Beijing, China, 2009.
- HJ484-2009; Water Quality—DETERMINATION of Cyanide—Volumetric and Spectrophotometry Method. Ministry of Environmental Protection: Beijing, China, 2009.
- Chen, H.; Xie, Y.; Chen, W.; Xia, M.; Li, K.; Chen, Z.; Chen, Y.; Yang, H. Investigation on Co-Pyrolysis of Lignocellulosic Biomass and Amino Acids Using TG-FTIR and Py-GC/MS. Energy Convers. Manag. 2019, 196, 320–329. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, Z.; Xiang, H.; Yang, Y.; Tian, H.; Wang, J. Characteristics and Synergistic Effects of Co-Pyrolysis of Microalgae with Polypropylene. Fuel 2022, 314, 122765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Yao, K.; Tian, H.; Yang, T.; Chen, L. Synergistic Catalytic Effects on Nitrogen Transformation during Biomass Pyrolysis: A Focus on Proline as a Model Compound. Molecules 2024, 29, 3118. https://doi.org/10.3390/molecules29133118
Cheng S, Yao K, Tian H, Yang T, Chen L. Synergistic Catalytic Effects on Nitrogen Transformation during Biomass Pyrolysis: A Focus on Proline as a Model Compound. Molecules. 2024; 29(13):3118. https://doi.org/10.3390/molecules29133118
Chicago/Turabian StyleCheng, Shan, Kehui Yao, Hong Tian, Ting Yang, and Lianghui Chen. 2024. "Synergistic Catalytic Effects on Nitrogen Transformation during Biomass Pyrolysis: A Focus on Proline as a Model Compound" Molecules 29, no. 13: 3118. https://doi.org/10.3390/molecules29133118
APA StyleCheng, S., Yao, K., Tian, H., Yang, T., & Chen, L. (2024). Synergistic Catalytic Effects on Nitrogen Transformation during Biomass Pyrolysis: A Focus on Proline as a Model Compound. Molecules, 29(13), 3118. https://doi.org/10.3390/molecules29133118