Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties
Abstract
:1. Introduction
2. Results
2.1. 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives Demonstrated Structure-Dependent Anticancer Activity
2.2. 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives 1–36 Shows Promising Antioxidant Properties
3. Discussion
4. Materials and Methods
4.1. Test Compounds and Screening Library Preparation
4.2. Cell Lines and Culture Conditions
4.3. Compound-Induced Cytotoxicity Evaluation Using MTT Assay
4.4. Cell Migration Assay
4.5. Determination of the Antioxidant Activity
4.5.1. Ferric ion (Fe3+) Reducing Antioxidant Power Determination Assay
4.5.2. Ferric Reducing Antioxidant Power Assay
4.5.3. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Assay
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.T.; Farhat, Z.; Livinski, A.A.; Loftfield, E.; Zanetti, K.A. Characteristics of Cancer Epidemiology Studies That Employ Metabolomics: A Scoping Review. Cancer Epidemiol. Biomark. Prev. 2023, 32, 1130–1145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boldrini, J.L.; Costa, M.I. Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy. IMA J. Math. Appl. Med. Biol. 2000, 17, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Derbal, Y. The Adaptive Complexity of Cancer. BioMed Res. Int. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mithoowani, H.; Febbraro, M. Non-Small-Cell Lung Cancer in 2022: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 1828–1839. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giustini, N.P.; Jeong, A.-R.; Buturla, J.; Bazhenova, L. Advances in Treatment of Locally Advanced or Metastatic Non–Small Cell Lung Cancer. Clin. Chest Med. 2020, 41, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.-E.F.; Moustafa, M.S.; El-Wahed, A.A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peters, C.; Brown, S. Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 2015, 35, e00225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, S.; Zhou, J. Harnessing Plant Biodiversity for the Discovery of Novel Anticancer Drugs Targeting Microtubules. Front. Plant Sci. 2017, 8, 720. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, W.W.; Adjei, A.A. Novel Agents on the Horizon for Cancer Therapy. CA A Cancer J. Clin. 2009, 59, 111–137. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B. SAR Analysis of Various Heterocyclic Compounds in Medicinal Chemistry: Recent Updates-Part-I. Curr. Top. Med. Chem. 2021, 21, 2694. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, O.; Jordaan, M.A.; Carena, G.; Bono, T.; Shapi, M.; Tuszynski, J.A. An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int. J. Mol. Sci. 2022, 23, 8117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khwaza, V.; Mlala, S.; Oyedeji, O.O.; Aderibigbe, B.A. Pentacyclic Triterpenoids with Nitrogen-Containing Heterocyclic Moiety, Privileged Hybrids in Anticancer Drug Discovery. Molecules 2021, 26, 2401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mathew, B. SAR Analysis of Various Heterocyclic Compounds in Medicinal Chemistry: Recent Updates-Part-II. Curr. Top. Med. Chem. 2022, 22, 435. [Google Scholar] [CrossRef] [PubMed]
- Rehulka, J.; Subtelna, I.; Kryshchyshyn-Dylevych, A.; Cherniienko, A.; Ivanova, A.; Matveieva, M.; Polishchuk, P.; Gurska, S.; Hajduch, M.; Zagrijtschuk, O.; et al. Anticancer 5-arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones as tubulin inhibitors. Arch. Pharm. 2022, 355, e2200419. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, M.W.; Hergenrother, P.J. Evolution of 3-(4-hydroxyphenyl)indoline-2-one as a scaffold for potent and selective anticancer activity. RSC Med. Chem. 2022, 13, 711–725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takahashi, N. Antioxidant Properties of N-(4-Hydroxyphenyl)retinamide (Fenretinide). Biol. Pharm. Bull. 2000, 23, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, F.Z.; El-Aziz, R.M.A.; El-Deen, I.M.; Abd-Rahman, M.S.; AlGhannam, S.M. In vivo biological evaluation of sodium salt of ethyl (E)-2-cyano-3-(7-hydroxy-4-methyl-2-oxoquinoline-1(2H)-yl)-3-(4-hydroxyphenyl) acrylate as anticancer agent. Clin. Exp. Pharmacol. Physiol. 2022, 49, 145–174. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davalli, P.; Marverti, G.; Lauriola, A.; D’arca, D. Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies. Oxidative Med. Cell. Longev. 2018, 2018, 1–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kavaliauskas, P.; Grybaitė, B.; Sapijanskaitė-Banevič, B.; Vaickelionienė, R.; Petraitis, V.; Petraitienė, R.; Naing, E.; Garcia, A.; Grigalevičiūtė, R.; Mickevičius, V. Synthesis of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Promising Scaffolds for the Development of Antimicrobial Candidates Targeting Multidrug-Resistant Bacterial and Fungal Pathogens. Antibiotics 2024, 13, 193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rasband, W.S.; Image, J.U.S. National Institutes of Health, Bethesda, Maryland, USA. 1997–2018. Available online: https://imagej.net/ij/ (accessed on 25 April 2024).
- Siebert, A.; Deptuła, M.; Cichorek, M.; Ronowska, A.; Cholewiński, G.; Rachon, J. Anticancer Properties of Amino Acid and Peptide Derivatives of Mycophenolic Acid. Anti-Cancer Agents Med. Chem. 2021, 21, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Yuk, N.; Kim, Y.J.; Xu, H.; Li, X.; Wang, L.; Liu, Y.; Jung, H.J. Novel terpestacin derivatives with l-amino acid residue as anticancer agents against U87MG-derived glioblastoma stem cells. Bioorganic Chem. 2023, 132, 106392. [Google Scholar] [CrossRef] [PubMed]
- Biliz, Y.; Hasdemir, B.; Küçük, H.B.; Zaim, M.; Şentürk, A.M.; Kırmızıbekmez, A.M.; Kara, I. Novel N-Acyl Hydrazone Compounds as Promising Anticancer Agents: Synthesis and Molecular Docking Studies. ACS Omega 2023, 8, 20073–20084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, M.I.; İmamoğlu, N. Design, Synthesis, and Anticancer Evaluation of Novel Tetracaine Hydrazide-Hydrazones. ACS Omega 2023, 8, 9198–9211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chou, L.-C.; Huang, L.-J.; Hsu, M.-H.; Fang, M.-C.; Yang, J.-S.; Zhuang, S.-H.; Lin, H.-Y.; Lee, F.-Y.; Teng, C.-M.; Kuo, S.-C. Synthesis of 1-benzyl-3-(5-hydroxymethyl-2-furyl)selenolo[3,2-c]pyrazole derivatives as new anticancer agents. Eur. J. Med. Chem. 2010, 45, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Marques, K.M.R.; Desterro, M.R.D.; de Arruda, S.M.; Neto, L.N.d.A.; de Lima, M.D.C.A.; de Almeida, S.M.V.; da Silva, E.C.D.; de Aquino, T.M.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X.; et al. 5-Nitro-Thiophene-Thiosemicarbazone Derivatives Present Antitumor Activity Mediated by Apoptosis and DNA Intercalation. Curr. Top. Med. Chem. 2019, 19, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matulja, D.; Vranješević, F.; Markovic, M.K.; Pavelić, S.K.; Marković, D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022, 27, 1449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tatipamula, V.B.; Kukavica, B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem. Funct. 2021, 39, 926–944. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M. Carboxylic acid reductase enzymes (CARs). Curr. Opin. Chem. Biol. 2018, 43, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Gong, M.; Lv, X.; Huang, Z.; Gu, Y.; Li, J.; Du, G.; Liu, L. Current advance in biological production of short-chain organic acid. Appl. Microbiol. Biotechnol. 2020, 104, 9109–9124. [Google Scholar] [CrossRef] [PubMed]
- Knights, K.M.; Sykes, M.J.; O Miners, J. Amino acid conjugation: Contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Expert. Opin. Drug Metab. Toxicol. 2007, 3, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, P.; Žukauskas, Š.; Anusevičius, K.; Balandis, B.; Vaickelionienė, R.; Petraitis, V.; Mickevičius, V. A N-(4-chlorophenyl)-γ-amino acid derivatives exerts in vitro anticancer activity on non-small cell lung carcinoma cells and enhances citosine arabinoside (AraC)-induced cell death via mitochondria-targeted pathway. Results Chem. 2021, 3, 100193. [Google Scholar] [CrossRef]
- Sidoryk, K.; Świtalska, M.; Wietrzyk, J.; Jaromin, A.; Piętka-Ottlik, M.; Cmoch, P.; Zagrodzka, J.; Szczepek, W.; Kaczmarek, Ł.; Peczyńska-Czoch, W. Synthesis and Biological Evaluation of New Amino Acid and Dipeptide Derivatives of Neocryptolepine as Anticancer Agents. J. Med. Chem. 2012, 55, 5077–5087. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, U.; Gorlach, S.; Owczarek, K.; Hrabec, E.; Szewczyk, K. Synergistic Interactions Between Anticancer Chemotherapeutics and Phenolic Compounds and Anticancer Synergy Between Polyphenols. Postepy Hig. I Med. Doswiadczalnej 2014, 68, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-D.; Luo, M.; Huang, S.-Y.; Saimaiti, A.; Shang, A.; Gan, R.-Y.; Li, H.-B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxidative Med. Cell. Longev. 2021, 2021, 1–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hazafa, A.; Rehman, K.-U.; Jahan, N.; Jabeen, Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr. Cancer 2019, 72, 386–397. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2020, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | No. | Compound |
---|---|---|---|
1 | 19 | ||
2 | 20 | ||
3 | 21 | ||
4 | 22 | ||
5 | 23 | ||
6 | 24 | ||
7 | 25 | ||
8 | 26 | ||
9 | 27 | ||
10 | 28 | ||
11 | 29 | ||
12 | 30 | ||
13 | 31 | ||
14 | 32 | ||
15 | 33 | ||
16 | 34 | ||
17 | 35 | ||
18 | 36 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavaliauskas, P.; Grybaitė, B.; Sapijanskaite-Banevič, B.; Anusevičius, K.; Jonuškienė, I.; Stankevičienė, R.; Petraitienė, R.; Petraitis, V.; Grigalevičiūtė, R.; Meškinytė, E.; et al. Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties. Molecules 2024, 29, 3125. https://doi.org/10.3390/molecules29133125
Kavaliauskas P, Grybaitė B, Sapijanskaite-Banevič B, Anusevičius K, Jonuškienė I, Stankevičienė R, Petraitienė R, Petraitis V, Grigalevičiūtė R, Meškinytė E, et al. Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties. Molecules. 2024; 29(13):3125. https://doi.org/10.3390/molecules29133125
Chicago/Turabian StyleKavaliauskas, Povilas, Birutė Grybaitė, Birute Sapijanskaite-Banevič, Kazimieras Anusevičius, Ilona Jonuškienė, Rima Stankevičienė, Rūta Petraitienė, Vidmantas Petraitis, Ramunė Grigalevičiūtė, Edita Meškinytė, and et al. 2024. "Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties" Molecules 29, no. 13: 3125. https://doi.org/10.3390/molecules29133125
APA StyleKavaliauskas, P., Grybaitė, B., Sapijanskaite-Banevič, B., Anusevičius, K., Jonuškienė, I., Stankevičienė, R., Petraitienė, R., Petraitis, V., Grigalevičiūtė, R., Meškinytė, E., Stankevičius, R., & Mickevičius, V. (2024). Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties. Molecules, 29(13), 3125. https://doi.org/10.3390/molecules29133125