High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Synthesis of PAVO and HVO Cathode Materials
3.2. Preparation of GO Modified Separator
3.3. Materials Characterizations
3.4. Electrochemical Measurements
3.5. pH Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Hou, Y.; Liu, Z.; Zheng, Y.; Wen, L.; Su, J.; Li, L.; Liu, N.; Zhang, Z.; Gao, Y. The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 2022, 91, 106651. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, J. Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries. Mater. Today Adv. 2020, 7, 100078. [Google Scholar] [CrossRef]
- Xie, M.; Lin, M.; Feng, C.; Liu, Z.; Xu, Y.; Wang, N.; Zhang, X.; Jiao, Y.; Chen, J. Coupling Zn2+ doping and rich oxygen vacancies in MnO2 nanowire toward advanced aqueous zinc-ion batteries. J. Colloid Interface Sci. 2023, 645, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Xi, B.; Chen, W.; Jia, Y.; Feng, J.; Xiong, S. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano 2021, 15, 9244–9272. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, L.; Wei, T.; Zhao, H.; Wang, C.; Wei, X. Laser-induced oxygen vacancy defect Mn7O13·5H2O as binder-free cathode for high performance all-in-one zinc-ion battery. Appl. Surf. Sci. 2023, 639, 158219. [Google Scholar] [CrossRef]
- Zhou, T.; Zhu, L.; Xie, L.; Han, Q.; Yang, X.; Chen, L.; Wang, G.; Cao, X. Cathode materials for aqueous zinc-ion batteries: A mini review. J. Colloid Interface Sci. 2022, 605, 828–850. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Fan, Z.; Huang, Z.; Liu, X.; Qian, J.; Ni, M.; Zhang, P.; Hu, L.; Sun, Z. A Li+ and PANI co-intercalation strategy for hydrated V2O5 to enhance zinc ion storage performance. J. Mater. Chem. A 2022, 10, 18962–18971. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.-C.; Zou, Z.-G.; Zhong, S.-L.; Ling, W.-Q.; Geng, J.; Liang, F.-A.; Peng, X.-X.; Gao, Y.; Yu, F.-G. Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Met. 2023, 42, 2868–2905. [Google Scholar] [CrossRef]
- Liang, H.; Cao, Z.; Ming, F.; Zhang, W.; Anjum, D.H.; Cui, Y.; Cavallo, L.; Alshareef, H.N. Aqueous Zinc-Ion Storage in MoS2 by Tuning the Intercalation Energy. Nano Lett. 2019, 19, 3199–3206. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.; Dong, Y.; Yao, H.; Kuang, Q.; Fan, Q.; Zhao, Y. A new Li2Mn3O7 cathode for aqueous Zn-Ion battery with high specific capacity and long cycle life based on the realization of the reversible Li+ and H+ co-extraction/insertion. Chem. Eng. J. 2022, 433, 134507. [Google Scholar] [CrossRef]
- Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; et al. Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hou, X.; Fang, T.; Zhang, Q.; Gong, N.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Boosting zinc-ion storage in hydrated vanadium oxides via migration regulation. Energy Storage Mater. 2023, 55, 279–288. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, T.; Sun, S.; van den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, D.; Gan, Y. Traditional Electrochemical Zn2+ Intercalation/Extraction Mechanism Revisited: Unveiling Ion-Exchange Mediated Irreversible Zn2+ Intercalation for the δ-MnO2 Cathode in Aqueous Zn Ion Batteries. Adv. Energy Mater. 2024, 14, 2302655. [Google Scholar] [CrossRef]
- Zhao, X.; Mao, L.; Cheng, Q.; Liao, F.; Yang, G.; Lu, X.; Chen, L. Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: Zinc and beyond. Energy Storage Mater. 2021, 38, 397–437. [Google Scholar] [CrossRef]
- Chen, F.; Guo, S.; Yu, S.; Zhang, C.; Guo, M.; Li, C. Hierarchical N-doped carbon nanofiber-loaded NiCo alloy nanocrystals with enhanced methanol electrooxidation for alkaline direct methanol fuel cells. J. Colloid Interface Sci. 2023, 646, 43–53. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, X.; Guo, C.; Huo, L.; Gao, S.; Zheng, Z.; Cheng, X.; Xu, Y. Template-free synthesis of a wafer-sized polyaniline nanoscale film with high electrical conductivity for trace ammonia gas sensing. J. Mater. Chem. A 2022, 10, 12150–12156. [Google Scholar] [CrossRef]
- Yan, X.; Feng, X.; Hao, B.; Liu, J.; Yu, Y.; Qi, J.; Wang, H.; Wang, Z.; Hu, Y.; Fan, X.; et al. Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries. J. Colloid Interface Sci. 2022, 628 Pt B, 204–213. [Google Scholar] [CrossRef]
- Tan, S.; Sang, Z.; Yi, Z.; Guo, J.; Zhang, X.; Li, P.; Si, W.; Liang, J.; Hou, F. Conductive coating, cation-intercalation, and oxygen vacancies co-modified vanadium oxides as high-rate and stable cathodes for aqueous zinc-ion batteries. EcoMat 2023, 5, e12326. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, J.; Liu, Y.; Jiang, H.; Hu, T.; Cui, M.; Tian, F.; Meng, C.; Zhang, Y. Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J. Power Sources 2022, 536, 231489. [Google Scholar] [CrossRef]
- Tao, L.; Guan, K.; Yang, R.; Guo, Z.; Wang, L.; Xu, L.; Wan, H.; Zhang, J.; Wang, H.; Hu, L.; et al. Dual-protected zinc anodes for long-life aqueous zinc ion battery with bifunctional interface constructed by zwitterionic surfactants. Energy Storage Mater. 2023, 63, 102981. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Zhang, S.; Bo, G.; Wang, C.; Guo, Z. Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Adv. Funct. Mater. 2020, 30, 2001263. [Google Scholar] [CrossRef]
- Hao, J.; Yuan, L.; Zhu, Y.; Bai, X.; Ye, C.; Jiao, Y.; Qiao, S.-Z. Low-cost and Non-flammable Eutectic Electrolytes for Advanced Zn-I(2) Batteries. Angew. Chem. Int. Ed. Engl. 2023, 62, e202310284. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Gu, C.; Wang, X.; Wang, S.; Zhang, X.; Qin, J.; Wu, Z. Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-free Zinc Ion Batteries. Adv. Energy Mater. 2021, 11, 2101299. [Google Scholar] [CrossRef]
- Yuan, Y.; Pu, S.D.; Pérez-Osorio, M.A.; Li, Z.; Zhang, S.; Yang, S.; Liu, B.; Gong, C.; Menon, A.S.; Piper, L.F.J.; et al. Diagnosing the Electrostatic Shielding Mechanism for Dendrite Suppression in Aqueous Zinc Batteries. Adv. Mater. 2023, 36, 2307708. [Google Scholar] [CrossRef]
- Ren, Q.; Tang, X.; Zhao, X.; Wang, Y.; Li, C.; Wang, S.; Yuan, Y. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy 2023, 109, 108306. [Google Scholar] [CrossRef]
- Luo, M.; Li, T.C.; Wang, P.; Zhang, D.; Lin, C.; Liu, C.; Li, D.-S.; Chen, W.; Yang, H.Y.; Zhou, X. Dynamic Regulation of the Interfacial pH for Highly Reversible Aqueous Zinc Ion Batteries. Nano Lett. 2023, 23, 9491–9499. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Liu, M.; Liu, J. Construction of novel polyaniline-intercalated hierarchical porous V2O5 nanobelts with enhanced diffusion kinetics and ultra-stable cyclability for aqueous zinc-ion batteries. Chem. Eng. J. 2023, 463, 142425. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, H.; Zhang, B.; Li, G.; Zhu, H.; Ren, Y.; Geng, H.; Yang, Y.; Liu, Q.; Li, C.C. Tuning the Kinetics of Zinc-Ion Insertion/Extraction in V2O5 by In Situ Polyaniline Intercalation Enables Improved Aqueous Zinc-Ion Storage Performance. Adv. Mater. 2020, 32, e2001113. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Y.; Yang, M.; Zou, S.; Song, X.; Fu, Y.; Li, J.; Li, Y.; He, D. Poly(3,4-ethylenedioxythiophene)–Polystyrenesulfonate-Added Layered Vanadium Oxide Cathode for High-Performance Zinc-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 14582–14589. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Zhang, L.; Li, J.; Wang, W.; Yang, Z.; Zhang, L.; Wang, Y.; Chen, J.; Huang, Y.; et al. Graphene-like Vanadium Oxygen Hydrate (VOH) Nanosheets Intercalated and Exfoliated by Polyaniline (PANI) for Aqueous Zinc-Ion Batteries (ZIBs). ACS Appl. Mater. Interfaces 2020, 12, 31564–31574. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, K.; Hui, K.S.; Zhang, J. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2020, 30, 2003890. [Google Scholar] [CrossRef]
- Li, W.; Han, C.; Gu, Q.; Chou, S.; Wang, J.; Liu, H.; Dou, S. Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2020, 10, 2001852. [Google Scholar] [CrossRef]
- Li, Y.; Shaffer, M.S.P. Confocal Microscopy for In Situ Multi-Modal Characterization and Patterning of Laser-Reduced Graphene Oxide. Adv. Funct. Mater. 2023, 33, 2300479. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Kim, M.; Lee, J.; Kim, K.J.; Choi, J.W. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 2022, 13, 2371. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Euchner, H.; Zarrabeitia, M.; Gao, X.; Elia, G.A.; Groß, A.; Passerini, S. Operando pH Measurements Decipher H+/Zn2+ Intercalation Chemistry in High-Performance Aqueous Zn/delta-V2O5 Batteries. ACS Energy Lett. 2020, 5, 2979–2986. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Mao, J.; Li, S.; Zhang, W.; Wang, X.; Shen, Z.; Zhang, S.; Guo, J.; Xu, Y.; Lu, Y.; et al. Amphoteric Polymer Strategy with Buffer-Adsorption Mechanism for Long-Life Aqueous Zinc Ion Batteries. Adv. Funct. Mater. 2024, 34, 2315855. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Zhang, X.; Sawangphruk, M.; Qin, J.; Liu, R. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 2020, 8, 9331–9344. [Google Scholar] [CrossRef]
- Zheng, Z.; Guo, S.; Yan, M.; Luo, Y.; Cao, F. A Functional Janus Ag Nanowires/Bacterial Cellulose Separator for High-Performance Dendrite-Free Zinc Anode Under Harsh Conditions. Adv. Mater. 2023, 35, e2304667. [Google Scholar] [CrossRef]
- Cai, X.; Liu, Y.; Zha, J.; Tan, F.; Zhang, B.; Yan, W.; Zhao, J.; Lu, B.; Zhou, J.; Tan, C. A Flexible and Safe Planar Zinc-Ion Micro-Battery with Ultrahigh Energy Density Enabled by Interfacial Engineering for Wearable Sensing Systems. Adv. Funct. Mater. 2023, 33, 2303009. [Google Scholar] [CrossRef]
- He, H.; Luo, D.; Zeng, L.; He, J.; Li, X.; Yu, H.; Zhang, C. 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery. Sci. Bull. 2022, 67, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, Z.; Zhou, Z.; Xi, S.; Xia, Y.; Zhang, Q.; Huang, L.; Mei, L.; Jiang, Y.; Gao, J.; et al. A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO(2−x) Nanosheet-Based Zinc-Ion Batteries with Perovskite Solar Cells. ACS Nano 2021, 15, 10597–10608. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Sun, K.; Liu, J.; Li, Z.; Cao, J.; Liao, S. High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering. Molecules 2024, 29, 3147. https://doi.org/10.3390/molecules29133147
Deng L, Sun K, Liu J, Li Z, Cao J, Liao S. High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering. Molecules. 2024; 29(13):3147. https://doi.org/10.3390/molecules29133147
Chicago/Turabian StyleDeng, Ling, Kailing Sun, Jie Liu, Zeyang Li, Juexian Cao, and Shijun Liao. 2024. "High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering" Molecules 29, no. 13: 3147. https://doi.org/10.3390/molecules29133147
APA StyleDeng, L., Sun, K., Liu, J., Li, Z., Cao, J., & Liao, S. (2024). High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering. Molecules, 29(13), 3147. https://doi.org/10.3390/molecules29133147