Formation and Reactions of Brønsted and Lewis Acid Adducts with Electron-Rich Heteroaromatic Compounds
Abstract
:1. Introduction
2. General Remarks on Electrophilic Substitution in Heteroaromatic Compounds
3. Reaction of Electron-Rich Heteroaromatic Compounds with Brønsted Acids
3.1. Formation and Properties of Proton Adducts
3.2. Properties of Proton Adducts of Simple Heteroaromatic Compounds
3.2.1. Proton Migration
3.2.2. Alkyl or Aryl Group Migration
3.2.3. H/D-Exchange at (Hetero)aromatic Compounds
3.2.4. Brønsted Acid-Catalysed Oligomerisation of (Hetero)aromatic Compounds
3.3. Formation and Reactions of Lewis Acid Adducts with Simple Heteroaromatic Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, R.J.K. Electrophilic Aromatic Substitution; Wiley: Chichester, UK, 1990. [Google Scholar] [CrossRef]
- Becker, H.G. Einführung in die Elektronentheorie Organisch—Chemischer Reaktionen, 3rd ed.; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1975; p. 174. [Google Scholar]
- Feng, Q.; Luo, S.; Olmstead, M.; Rauchfuss, T.B.; Stafford, P.R. Activation of Thiophenes by Superacids: Protonation and Polymerization. Chem. Mater. 1979, 9, 641–643. [Google Scholar] [CrossRef]
- Galabov, B.; Nalbantova, D.; Schleyer, P.V.; Schaefer, H.F. Electrophilic Aromatic Substitution: New Insights into an Old Class of Reactions. Acc. Chem. Res. 2016, 49, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.; Marshall, D.R. An Alternative Approach to the Nomenclature of Cyclic Conjugated Polyolefines, Together with Some Observations on the Use of the Term “Aromatic”. Angew. Chem. Int. Ed. 1972, 11, 404–408. [Google Scholar] [CrossRef]
- Zweig, A.; Fischer, R.G.; Lancester, J.E. New Methods for Selective Monofluorination of Aromatics Using Silver Difluoride. J. Org. Chem. 1980, 45, 3597–3603. [Google Scholar] [CrossRef]
- Kanda, J. On the Yield of Eight Isomers of Benzene Hexachloride. J. Am. Chem. Soc. 1960, 82, 3085–3090. [Google Scholar] [CrossRef]
- Belenkii, L.I. Positional Selectivity in Electrophilic Substitution in pi-Excessive Heteroaromatics. Adv. Heterocycl. Chem. 2010, 99, 143–183. [Google Scholar]
- Schatz, J. Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-oxides. In Science of Synthesis; Maas, G., Ed.; Georg Thieme Verlag KG: Stuttgart, Germany, 2002; Volume 9, pp. 287–422. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Scriven, E.F.V.; Majumder, S.; Akhmedova, R.G.; Akhmedov, N.G.; Vakulenko, A.V. Direct Nitration of Five Membered Heterocycles. Arkivoc 2005, 3, 179–191. [Google Scholar] [CrossRef]
- Hogeveen, H. Chemistry and Spectroscopy in Strongly Acidic Solutions I. NMR Spectroscopic Observation of Protonated Thiophenes. Rec. Trav. Chim. Pays-Bas 1966, 85, 1072–1076. [Google Scholar] [CrossRef]
- Hartmann, H. On the Protonation and Deuteration of 2-Methylmercaptothiophene: Formation of a 2′,3′-Dihydro-2,3′-bithiophene Dimer. Tetrahedron Lett. 2023, 117, 154379. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Yamashita, Y.; Takahashi, K.; Sone, T. NMR Study of Protonated Halothiophenes. I. 1H NMR Study of Chlorothiophenium Ions. Bull. Chem. Soc. Jpn. 1983, 56, 2208–2211. [Google Scholar] [CrossRef]
- Yamashita, Y.; Kobayashi, H.; Yoshino, A. NMR Study of Protonated Halothiophenens. II. An Ab Initio Self-Consistent Field Calculation of Protonation of Chlorothiophenes. Bull. Chem. Soc. Jpn. 1984, 57, 1312–1316. [Google Scholar] [CrossRef]
- Wiersum, U.E.; Wynberg, H. Stable Furanonium Ions. Tetrahedron Lett. 1967, 8, 2951–2956. [Google Scholar] [CrossRef]
- Brouwer, D.M.; van Doorn, J.A. Reactions of Hydroxycarbonium Ions in Strong Acids. III. Effect of Structure and Solvent on the Rate of ß-Fission of Dialkyl Hydroxcarbonium Ions. Rec. Trav. Chim. Pays-Bas 1971, 90, 535–548. [Google Scholar] [CrossRef]
- Brouwer, D.M.; van Doorn, J.A. Cracking and Dehydrogenation of Protonated Mesityl oxide. Rec. Trav. Chim. Pays-Bas 1970, 89, 553–568. [Google Scholar] [CrossRef]
- Gassner, R.; Krumbholz, E.; Steuber, F.W. Stable Protonated Pyrroles. Liebigs Ann. Chem. 1981, 1981, 789–791. [Google Scholar] [CrossRef]
- Whipple, E.B.; Chiang, Y.; Hinman, R.L. The Conjugate Acid of 2,5-Dimethylpyrrole. J. Am. Chem. Soc. 1963, 85, 26–30. [Google Scholar] [CrossRef]
- Chiang, Y.; Whipple, E.B. The Protonation of Pyrrole. J. Am. Chem. Soc. 1963, 85, 2763–2767. [Google Scholar] [CrossRef]
- Belenkii, L.I.; Kim, T.G.; Suslov, I.A.; Chuvylkin, N.D. Positional Selectivity in Reactions of Pyrrole and its N-Substituted Derivatives with Electrophiles. Arkivoc 2003, 13, 59–67. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, Y.; Chen, D.; Zhu, J. Probing Reaction Mechanism of [1,5] Migration on Pyrrolium and Pyrroles: Activation of a Stronger Bond in Electropositive Groups Becomes Easier. Asian J. Chem. 2019, 14, 2604–2613. [Google Scholar] [CrossRef] [PubMed]
- Sigalov, M.V.; Toyota, S.; Oki, M.; Trofimov, B.A. Dynamic Nmr as a Non-destructive Method for Determination of Rates of Dissociation. 21. Dissociation in 1-(1-Haloethyl)Pyrrolium Cations. Bull. Chem. Soc. Jpn. 1994, 67, 1161–1169. [Google Scholar] [CrossRef]
- Bullock, E. The Structure of Pyrrole Salts and the Basic Strength of Simple Pyrroles. Canad. J. Chem. 1958, 36, 1686–1690. [Google Scholar] [CrossRef]
- Abraham, R.J.; Bullock, E.; Mitra, S.S. Physical Properties of Alkyl Pyrroles and Their salts. Canad. J. Chem. 1959, 37, 1859–1869. [Google Scholar] [CrossRef]
- Bean, G.P. Acid-Catalysed Proton Exchange on Pyrrole and N-Methylpyrrole. Chem. Commun. 1971, 421–422. [Google Scholar] [CrossRef]
- Naqvi, N.; Fernando, Q. The Basic Strength of Pyrrole. J. Org. Chem. 1960, 25, 551–554. [Google Scholar] [CrossRef]
- Mosley, J.D.; Ricks, A.M.; Schleyer, P.V.R.; Wu, J.I.; Duncan, M.A. IR Spectroscopy of α- and β-Protonated Pyrrole via Argon Complex Photodissociation. J. Phys. Chem. A 2012, 116, 9689–9695. [Google Scholar] [CrossRef] [PubMed]
- Lui, K.H.; Sammes, M.P. Synthesis and Chemistry of Azolenines. 19. Basicities of Some 2H-Pyrroles and 3H-Pyrroles and the Remarkably Large pKa of 2,2,3,5-Tetramethyl-2H-Pyrrole. J. Phys. Org. Chem. 1990, 3, 555–557. [Google Scholar] [CrossRef]
- Treibs, A.; Kolm, H.G. Über die Basischen und Sauren Eigenschaften des Pyrrolkerns. Liebigs Ann. Chem. 1957, 606, 166–183. [Google Scholar] [CrossRef]
- Hartmann, H.; Schönewerk, J. On the Protonation and Deuteration of Pyrroles. ChemistrySelect 2023, 8, e202301087. [Google Scholar] [CrossRef]
- Marchand, E.; Morel, G.; Sinbandhit, S. A New Access to 2-(Alkylamino)- and 2-(Arylamino)pyrroles by Addition of Isocyanides to Protonated 1-Azabutadienes. Eur. J. Org. Chem. 1999, 1999, 1729–1738. [Google Scholar] [CrossRef]
- Abuelhalawa, R.; Jochims, J.C. On the Reaction of N-Alkylnitrilium Salts with Acetylenes—A New Synthesis of 2-Azoniaallene Salts. Synthesis 1992, 1992, 871–874. [Google Scholar] [CrossRef]
- Sigalov, M.V.; Schmidt, E.Y.; Trofimov, A.B.; Trofimov, B.A. Protonated Forms of 2-(2-Furyl)pyrroles and Their Interconversion—Proton NMR and Quantum-Chemical (MNDO) Study. J. Org. Chem. 1992, 57, 3934–3938. [Google Scholar] [CrossRef]
- Lorenz, U.J.; Lemaire, J.; Maitre, P.; Crestoni, M.E.; Fornarini, S.; Dopfer, O. Protonation of Heterocyclic Aromatic Molecules: IR Signature of the Protonation Site of Furan and Pyrrole. Int. J. Mass Spectrom. 2007, 267, 43–53. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Turecek, F. Protonation Sites in Gaseous Pyrrole and Imidazole: A Neutralization-Reionization and Ab Initio Study. J. Mass Spectrom. 1996, 31, 1173–1184. [Google Scholar] [CrossRef]
- Robin, D.; Hoppilliard, Y.; Audier, H. Gas-Phase Alkylation of 2-Methylfuran under Chemical Ionization Conditions. Org. Mass Spectrom. 1988, 23, 370–374. [Google Scholar] [CrossRef]
- Nikbin, N.; Caratzoulas, S.; Vlachos, D.G. On the Bronsted Acid-Catalyzed Homogeneous Hydrolysis of Furans. ChemSusChem 2013, 6, 2066–2068. [Google Scholar] [CrossRef] [PubMed]
- Gubina, T.I.; Labunskaya, V.I.; Pankratov, A.N.; Trushin, S.A.; Harchenko, V.G. Recyclization Mechanism of Furans into Thiophenes and Selenophenes in Conditions of Acid Catalysis. 3. Investigation of Recyclization of Furan Homologs and Functional-Derivatives—Quantum-Chemical Calculations of Recyclization Objects. Khim. Geterotsikl. Soedin. 1993, 1614–1620. [Google Scholar] [CrossRef]
- Gubina, T.I.; Labunskaya, V.I.; Pankratov, A.N.; Trushin, S.A.; Kharchenko, V.G. Studies of the Mechanism of Recyclization of Furans into Thiophenes and Selenophenes in Conditions of Acid Catalysis; 5. Direction of Protonation. Khim. Geterotsikl. Soedin. 1993, 12, 898–902. [Google Scholar] [CrossRef]
- Gubina, T.I.; Pankratov, A.N.; Labunskaya, V.I.; Voronin, S.P.; Kharchenko, V.G. Studies on the Mechanism of Recyclization of Furans into Thiophenes and Selenophenes in Conditions of Acid Catalysis; 6. Experiments with Labelled Atoms. Quantum Chemical Calculations of Intermediates of Recyclization and Hydrolysis. Khim. Geterotsikl. Soedin. 1998, 33, 903–909. [Google Scholar] [CrossRef]
- Houriet, R.; Rolli, E.; Bouchoux, G.; Hoppilliard, Y. Gas-Phase Basicities of Furan Compounds—The Role of Alkyl Substitution on Proton Affinity and on the Site of Protonation. Helv. Chim. Acta 1985, 68, 2037–2045. [Google Scholar] [CrossRef]
- Hinman, R.L.; Whipple, E.B. The Protonation of Indoles: Position of Protonation. J. Am. Chem. Soc. 1962, 84, 2534–2539. [Google Scholar] [CrossRef]
- Andonovski, B.; Stojkovic, G.M. UV study of Indole and 3-Acetylindole in Phosphoric Acid and Hydrochloric Acid Solution. Acta Chim. Slov. 2000, 47, 349–362. [Google Scholar]
- Budylin, V.A.; Kost, A.N.; Mateevy, E.D. Indole Chemistry XXIX: Prototropic Rearrangement of 3-Alkyl- and 3-Arylindoles. Chem. Het. Comp. 1972, 8, 52–56. [Google Scholar] [CrossRef]
- Andonovski, B.; Spirevska, I.; Nikolovski, A. UV Study of the Protonation of Indole and 3-Substituted Indoles in Perchloric Acid Media. Croat. Chem. Acta 1996, 69, 1201–1213. [Google Scholar]
- Olah, G.A.; Brydon, D.L.; Porter, R.D. Stable Carbonium ions. LXXXIII. Protonation of Amino Acids, Simple Peptides and Insulin in Superacidic Solutions. J. Org. Chem. 1970, 35, 317–328. [Google Scholar] [CrossRef]
- McAllister, T. Possible Heterocyclic Ions in the Reaction Zones of Flames with Added Nitrogen or Sulfur. Aust. J. Chem. 1984, 37, 511–516. [Google Scholar] [CrossRef]
- Takhistov, V.V.; Ponomarev, D.A.; Misharev, A.D.; Orlov, V.M.; Pikhlaiya, K. Isomerization and Fragmentation of Certain Ionized Allyl and 1-Propenyl Ethers of Phenols—Determination of Enthalpies of Formation of C8H7O+, C9H9O+ Isomeric Ions and Series of Model Ions by the Photoionization Technique and Calculating Methods. Zh. Obshch. Khim. 1994, 64, 110–118. [Google Scholar]
- Okazaki, T.; Nakagawa, M.; Kitagawa, T.; Laali, K.K. Experimental NMR and DFT Studies of Persistent Carbocations Derived from Hetero-Polycyclic Aromatic Hydrocarbons Containing Oxygen Atom: Dibenzo[b,d]furan, Benzo[b]Naphtho[1,2-d]furan, Benzo[b]naphtho[2,3-d]furan, Benzo[b]naphtho[2,1-d]furan, and Dinaphtho[2,1-b:1′2′-d]furan. Bull. Chem. Soc. Jpn. 2014, 87, 1235–1244. [Google Scholar] [CrossRef]
- Laali, K.K.; Chun, J.H.; Okazaki, T.; Kumar, S.; Borosky, G.L.; Swartz, C. Electrophilic Chemistry of Thia-PAHs: Stable Carbocations (NMR and DFT), S-Alkylated Onium Salts, Model Electrophilic Substitutions (Nitration and Bromination), and Mutagenicity Assay. J. Org. Chem. 2007, 72, 8383–8393. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Heichert, C. On the Protonation and Deuteration of Per-Arylated Amines. ChemistrySelect 2021, 6, 13773–13780. [Google Scholar] [CrossRef]
- Chen, H.J.; Hakka, L.E.; Hinman, R.L.; Kresge, A.J.; Whipple, E.B. The Basic Strength of Carbazole. An Estimation of the Nitrogen Basicity of Pyrrole and Indole. J. Am. Chem. Soc. 1971, 93, 5102–5107. [Google Scholar] [CrossRef]
- Olah, G.A.; Schlosberg, R.H.; Porter, R.D.; Mo, Y.K.; Kelly, D.P.; Matescu, G.D. Stable Carbocations. CXXIV. The Benzenium Ion and Monoalkylbenzenium Ions. J. Am. Chem. Soc. 1972, 94, 2034–2043. [Google Scholar] [CrossRef]
- Koptyug, V.A. Contemporary Problems in Carbonium Ion Chemistry III: Arenium Ions-Structure and Reactivity. In Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 1984; Volume 122, p. 250. [Google Scholar]
- Roberts, R.M.G. Studies in Trifluoromethanesulfonic Acid. 2. Kinetics and Mechanism of Isomerization of Xylenes. J. Org. Chem. 1982, 47, 4050–4053. [Google Scholar] [CrossRef]
- Bakoss, H.J.; Roberts, R.M.G.; Sadri, A.R. Studies in Trifluoromethanesulfonic Acid. 3. Kinetics and Mechanism of Transalkylation Reactions. J. Org. Chem. 1982, 47, 4053–4055. [Google Scholar] [CrossRef]
- Rozanska, X.; Saintigny, X.; van Santen, R.A.; Hutschka, F. A DFT Study of Isomerization and Transalkylation Reactions of Aromatic Species Catalyzed by Acidic Zeolites. J. Catal. 2001, 202, 141–155. [Google Scholar] [CrossRef]
- Rozanska, X.; van Santen, R.A.; Hutschka, F.; Hafner, J. A Periodic DFT Study of the Isomerization of Thiophenic Derivatives Catalyzed by Acidic Mordenite. J. Catal. 2002, 205, 388–397. [Google Scholar] [CrossRef]
- Richard, F.; Boita, T.; Moreau, M.; Bachmann, C.; Pérot, G. Transformation of Thiophenic Compounds Over HY Zeolite Study of the Acid-Catalyzed Isomerization and Disproportionation Mechanisms by Quantum Chemical Calculations. J. Mol. Catal. A-Chem. 2007, 273, 48–54. [Google Scholar] [CrossRef]
- Boita, T.; Moreau, M.; Richard, F.; Pérot, G. Transformation of Thiophenic Compounds Over Acidic Zeolites. Appl. Catal. A-Gen. 2006, 305, 90–101. [Google Scholar] [CrossRef]
- Patterson, J.M.; Ferry, J.D.; Dehaan, J.W.; Boyd, M.R. Thermal Rearrangements of (Substituted Allyl)Dialkyl-2H-Pyrroles. J. Am. Chem. Soc. 1975, 97, 360–362. [Google Scholar] [CrossRef]
- Fischer, E.; Schmidt, T. Über 3-Phenylindol. Ber. Dtsch. Chem. Ges. 1888, 21, 1811–1812. [Google Scholar] [CrossRef]
- Hamel, P.; Girard, Y.; Atkinson, J.G.; Bernstein, M.A. Unexpected Acid-Catalyzed Rearrangement of Certain 3-(Arylthio)Indoles to 2-(2-Aminophenyl)Benzothiophenes. J. Chem. Soc. Chem. Comm. 1990, 1072–1074. [Google Scholar] [CrossRef]
- Jackson, A.H.; Smith, P. Electrophilic Substitution in Indoles. III. Rearrangement of 3,3-Dialkyl indolenines. Tetrahedron 1968, 24, 2227–2239. [Google Scholar] [CrossRef]
- Jackson, A.H.; Lynch, P.P. Electrophilic Substitution in Indoles. 12. Kinetic-Studies of the Rearrangement of 3,3-Disubstituted Indolenines to 2,3-Disubstituted Indoles. J. Chem. Soc. Perk. Trans. 2 1987, 1215–1219. [Google Scholar] [CrossRef]
- Allen, C.F.H.; Young, D.M.; Gilbert, G.M. Indole Formation from Pyrroles. J. Org. Chem. 1937, 2, 235–244. [Google Scholar] [CrossRef]
- Brouwer, D.M.; Van Doorn, J.A.; Kiffen, A.A. Reactions of Hydrocarbonium Ions. VII. Rearrangement of the 2,5,5-Trimethyldihydrofuryl Ion, a Heteroaromatic Carbonium-Ion Rearrangement. Rec. Trav. Chim. Pays-Bas 1972, 91, 1359–1363. [Google Scholar] [CrossRef]
- Nakahara, H.; Yamaguchi, J. Aryl Dance Reaction of Arylbenzoheteroles. Org. Lett. 2022, 24, 8083–8087. [Google Scholar] [CrossRef] [PubMed]
- Bunnett, J.F. The Base-Catalysed Halogen Dance, and Other Reactions of Aryl Halides. Acc. Chem. Res. 1972, 5, 139–147. [Google Scholar] [CrossRef]
- Liu, L.H.; Doucet, H. One Pot Access to 2′-Aryl-2,3′-bithiophenes via Twofold Palladium-Catalyzed C-X/C-H Coupling Associated to a Pd-1,4-Migration. Adv. Synth. Catal. 2022, 364, 2783–2795. [Google Scholar] [CrossRef]
- Schreiner, H. Darstellung von Deuterothiophenen durch Wasserstoffaustausch. Monatsh. Chem. 1951, 82, 702–707. [Google Scholar] [CrossRef]
- Mikaya, A.I.; Romanov, G.D.; Zaikin, V.G. Gas-Phase Deuterium-Exchange of Fluorenes, Furans, and Thiophenes in the Inlet System of a Gas-Chromatograph Mass-Spectrometer. Bull. Acad. Sci. USSR 1991, 40, 653–654. [Google Scholar] [CrossRef]
- Fajer, J.; Borg, D.C.; Forman, A.; Felton, R.H.; Vegh, L.; Dolphin, D. ESR Studies of Porphyrin pi-Cations: The 2A1u and 2A2u States. Ann. N. Y. Acad. Sci. 1973, 206, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Fischer, O.; Hubert, A.; Heinrich, M.R. Shifted Selectivity in Protonation Enables the Mild Deuteration of Arenes Through Catalytic Amounts of Bronsted Acids in Deuterated Methanol. J. Org. Chem. 2020, 85, 11856–11866. [Google Scholar] [CrossRef] [PubMed]
- Darshana, D.; Sureram, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Spontaneous Conversion of Prenyl Halides to Acids: Application in Metal-Free Preparation of Deuterated Compounds Under Mild Conditions. Org. Biomol. Chem. 2021, 19, 7390–7402. [Google Scholar] [CrossRef] [PubMed]
- Schwetlick, K.; Unverferth, K. Die Relativen Geschwindigkeiten für den sauer katalysierten Wasserstoffisotopenaustausch von substituierten Benzolen, Thiophen, Furan, Selenophen und Pyrrol. J. Prakt. Chem. 1972, 314, 603–611. [Google Scholar] [CrossRef]
- Li, E.C.; Hu, G.Q.; Zhu, Y.X.; Zhang, H.H.; Shen, K.; Hang, X.C.; Zhang, C.; Huang, W. Ag2CO3-Catalyzed H/D Exchange of Five-Membered Heteroarenes at Ambient Temperature. Org. Lett. 2019, 21, 6745–6749. [Google Scholar] [CrossRef] [PubMed]
- Sheng, F.; Li, E.C.; Bai, J.-W.; Wang, C.X.; Hu, G.Q.; Liu, K.-H.; Sun, Z.Y.; Shen, K.; Zhang, H.H. Silver Salt Enabled H/D Exchange at the β-Position of Thiophene Rings: Synthesis of Fully Deuterated Thiophene Derivatives. Org. Biomol. Chem. 2022, 20, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.D.; Primax, A. Studies on the Deuteration of Aromatic Organosulfur Compounds Using Aqueous Transition Metal Species. Phosphorous Sulfur Silicon Relat. Elem. 1993, 84, 149–157. [Google Scholar] [CrossRef]
- Heichert, C.; Hartmann, H. On the Protonation and Deuteration of Disubstituted 2-Aminothiophenes, 2-Aminothiazoles, and Some 3-Amino Substituted Analogues. J. Heterocycl. Chem. 2021, 58, 1531–1540. [Google Scholar] [CrossRef]
- Dennstedt, M.; Zimmermann, J. Über die Durch Einwirkung von Salzsäure auf die Pyrrole Entstehenden Basen. Ber. Dtsch. Chem. Ges. 1888, 21, 1478–1481. [Google Scholar] [CrossRef]
- Potts, H.A.; Smith, G.F. The Structure of Pyrrole Trimer. J. Chem. Soc. 1957, 4018–4022. [Google Scholar] [CrossRef]
- Xiang, Y.B.; Drenkard, S.; Baumann, K.; Hickey, D.; Eschenmoser, A. Chemistry of Alpha-Amino Nitriles. 12. Exploratory Experiments on Thermal-Reactions of Alpha-Amino Nitriles. Helv. Chim. Acta 1994, 77, 2209–2250. [Google Scholar] [CrossRef]
- Smith, G.F. The Acid-Catalysed Polymerisation of Pyrroles and Indoles. Adv. Heterocycl. Chem. 1962, 2, 287–309. [Google Scholar] [CrossRef]
- Curtis, R.F.; Jones, D.M.; Ferguson, G.; Hawley, D.M.; Sime, J.G.; Cheung, K.K.; German, G. The Structure of the “Trimer” and “Pentamer” Obtained on Polymerisation of Thiophen und Phosphoric Acid. Chem. Commun. 1969, 165–166. [Google Scholar] [CrossRef]
- Meisel, S.L.; Johnson, G.C.; Hartouch, H.D. Polymerisation of Thiophene and Alkylthiophene. J. Am. Chem. Soc. 1950, 72, 1910–1912. [Google Scholar] [CrossRef]
- Armour, M.; Davies, A.G.; Upadhyay, J.; Wassermann, A. Colored Electrically Conducting Polymers from Furan, Pyrrole, and Thiophene. J. Polymer Sci. A, Polymer Chem. 1967, 5, 1527–1538. [Google Scholar] [CrossRef]
- Kovacic, P.; Mcfarland, K.N. Polymerization of Aromatic Nuclei. 19. Polymerization of Thiophene by Aluminum-Chloride. J. Polym. Sci. A Polym. Chem. 1979, 17, 1963–1976. [Google Scholar] [CrossRef]
- Geobaldo, F.; Palomino, G.T.; Bordiga, S.; Zecchina, A.; Areán, C.O. Spectroscopic Study in the UV-Vis, Near and Mid IR of Cationic Species Formed by Interaction of Thiophene, Dithiophene and Terthiophene with the Zeolite H-Y. Phys. Chem. Chem. Phys. 1999, 1, 561–569. [Google Scholar] [CrossRef]
- Ong, C.; Bayley, P.M.; Winther-Jensen, O.; Winther-Jensen, B. Toward a Trace-Free Oxidant-Insight into Unexpected High Yields of Vapor Phase Polymerized Polyterthiophene. Polym. J. 2013, 45, 391–395. [Google Scholar] [CrossRef]
- So, J.H.; Mayevsky, D.; Winther-Jensen, O.; Winther-Jensen, B. A Novel Route for Polymerisation of Thiophene Based Conducting Polymers Using Trace-Free Oxidants. Polym. Chem. 2014, 5, 361–364. [Google Scholar] [CrossRef]
- Piancatelli, G.; Dauria, M.; Donofrio, F. Synthesis of 1,4-Dicarbonyl Compounds and Cyclopentenones from Furans. Synthesis 1994, 1994, 867–889. [Google Scholar] [CrossRef]
- Grandmaison, J.L.; Chantal, P.D.; Kaliaguine, S.C. Conversion of Furanic Compounds Over H-ZSM-5 Zeolite. Fuel 1990, 69, 1058–1061. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Huber, G.W. Chemistry of Furan Conversion into Aromatics and Olefins Over H-ZSM-5: A Model Biomass Conversion Reaction. ACS Catal. 2011, 1, 611–628. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Espindola, J.S.; Conner, W.C.; Trierweiler, J.O.; Huber, G.W. The Effect of Water on Furan Conversion over ZSM-5. ChemCatChem 2014, 6, 2497–2500. [Google Scholar] [CrossRef]
- Vaitheeswaran, S.; Green, S.K.; Dauenhauer, P.; Auerbach, S.M. On the Way to Biofuels from Furan: Discriminating Diels Alder and Ring-Opening Mechanisms. ACS Catal. 2013, 3, 2012–2019. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, S.J.; Kadarwati, S.; Dong, D.H.; Li, C.Z. Effects of Water and Alcohols on the Polymerization of Furan During its Acid-Catalyzed Conversion into Benzofuran. RSC Adv. 2016, 6, 40489–40501. [Google Scholar] [CrossRef]
- Abe, T.; Shimizu, T. Acid-Catalyzed Dimerization Reactions of 2- and 3-Methylbenzofuranes. Nippon Kagaku Zasshi 1970, 91, 753–759. [Google Scholar] [CrossRef]
- Clark, P.D.; Clarke, K.; Ewing, D.F.; Scrowston, R.M. Addition-Reactions of Benzo[b]Thiophen. 1. Self-Addition and Addition of Simple Aromatic-Hydrocarbons. J. Chem. Soc. Perk. Trans. 1 1980, 677–685. [Google Scholar] [CrossRef]
- Smith, G.F.; Walters, A.E. Indoles. V. 3-Alkylindole Dimers. J. Chem. Soc. 1961, 940–943. [Google Scholar] [CrossRef]
- Schmitz-Dumont, O.; Nocolojannis, B. Über die Polymersation des Indols. I. Die Darstellung des Diindols. Ber. Dtsch. Chem. Ges. 1930, 63, 323–328. [Google Scholar] [CrossRef]
- Smith, G.F. The dimerization and trimerization of indole. Chem. Ind. 1954, 1451–1452. [Google Scholar]
- Schmitz-Dumont, O.; Nicolojannis, B.; Schnorrenberger, E.; Saenger, H.H. Über die Polymerisation des Indols. II. Mitteilung. Die Einwirkung von wäßrigen Halogenwasserstoffen auf Indol. J. Prakt. Chem. 1931, 131, 146–181. [Google Scholar] [CrossRef]
- Keller, K. Über Polymere Indole. Ber. Dtsch. Chem. Ges. 1913, 46, 726–733. [Google Scholar] [CrossRef]
- Noland, W.E.; Hammer, C.F. Mixed Indole Dimers, Trimers, and Their Acyl Derivatves. J. Org. Chem. 1961, 26, 1525–1535. [Google Scholar] [CrossRef]
- Stephan, D.W.; Erker, G. Frustrated Lewis Pair Chemistry: Development and Perspectives. Angew. Chem. Ed. Engl. 2015, 54, 6400–6441. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. Frustrated Lewis Pairs. J. Am. Chem. Soc. 2015, 137, 10018–10032. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, W.-X. Frustrated Lewis Pairs: Discovery and Overview in Catalysis. Chin. J. Chem. 2020, 38, 1330–1370. [Google Scholar] [CrossRef]
- Vo, M.N.; Basdogan, Y.; Derksen, B.S.; Proust, N.; Cox, G.A.; Kowall, C.; Keith, J.A.; Johnson, J.K. Mechanism of Isobutylene Polymerisation: Quantum Chemical Insight into AlCl3/H2O-Catalysed Reactions. ACS Catal. 2018, 8, 8006–8013. [Google Scholar] [CrossRef]
- Kobayashi, S.; Busujima, T.; Nagayama, S. A Novel Classification of Lewis Acids on the Basis of Activity and Selectivity. Chem. Eur. J. 2000, 6, 3491–3494. [Google Scholar] [CrossRef] [PubMed]
- Zawodzinski, T.A.; Janiszewska, L.; Osteryoung, R.A. On the Chemistry of Pyrrole in Room-Temperature Chloroaluminate Melts. J. Electroanal. Chem. 1988, 255, 111–117. [Google Scholar] [CrossRef]
- Hartmann, H.; Schoenewerk, J. On the Interaction of Lewis Acids on Pyrroles and Indoles. Z. Naturforschung, 2024; submitted. [Google Scholar] [CrossRef]
- Kabasakalolu, M.; Kiyak, T.; Toprak, H.; Aksu, M.L. Electrochemical Properties of Polythiophene Depending on Preparation Conditions. Appl. Surf. Chem. 1999, 152, 115–125. [Google Scholar] [CrossRef]
- Can, M.; Pekmez, K.; Pekmez, N.; Yildiz, A. Electropreparation and Electrochemical Stability of Polythiophenes in Acetonitrile Containing Anhydrous HBF. J. Appl. Polym. Sci. 2000, 77, 312–322. [Google Scholar] [CrossRef]
- Schrebler, R.; Grez, P.; Cury, P.; Veas, C.; Merino, M.; Gomez, H.; Cordova, R.; del Valle, M.A. Nucleation and Growth Mechanisms of Poly(thiophene)—Part 1. Effect of Electrolyte and Monomer Concentration in Dichloromethane. J. Electroanal. Chem. 1997, 430, 77–90. [Google Scholar] [CrossRef]
- Wei, Y.; Chan, C.-C.; Tian, J.; Jang, G.-W.; Hsueh, K.F. Electrochemical Polymerization of Thiophenes in the Presence of Bithiophene or Terthiophene: Kinetics and Mechanism of the Polymerization. Chem. Mater. 1991, 3, 888–897. [Google Scholar] [CrossRef]
- Valencia, D.; Whiting, G.T.; Bulo, R.E.; Weckhuysen, B.M. Protonated Thiophene-Based Oligomers as Formed within Zeolites: Understanding Their Electron Delocalization and Aromaticity. Phys. Chem. Chem. Phys. 2016, 18, 2080–2086. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Jung, M.; Cheong, T.W.; Lee, H.; Kim, J.H. A Facile Route of Polythiophene Nanoparticles via Fe3+ Catalysed Oxidative Polymerization in Aqueous Medium. J. Polymer Sci. A Polymer Chem. 2008, 46, 2097–2107. [Google Scholar] [CrossRef]
- Sakanishi, K.; Obata, H.; Mochida, I.; Sakaki, T.; Shibata, M. Selective Dimerization of Benzothiophene Using Supported Aluminum Sulfate Under Supercritical CO Conditions. J. Supercrit. Fluids 1998, 13, 203–210. [Google Scholar] [CrossRef]
- Schmitz-Dumont, O.; Motzkus, E. Über die Nebenvalenzkräfte des Indol-Stickstoffs. Ber. Dtsch. Chem. Ges. 1929, 62, 466–473. [Google Scholar] [CrossRef]
- Schmitz-Dumont, O.; Hamann, K.; Diebold, A. Über die Katalytische Polymerisation von Äthylenderivaten. II Der Mechanismus der Dimerisation. Ber. Dtsch. Chem. Ges. 1938, 71, 205–220. [Google Scholar] [CrossRef]
- Bruce, J.; Challenger, F.; Gibson, H.B.; Allenby, W. Substitution and Polymerisation Reactions of Thiophene and the Isomeric Thiophthenes. J. Inst. Petrol. 1948, 34, 226–235. [Google Scholar]
- Goldstein, I.P.; Ilicheva, Z.F.; Slovokhotova, N.A.; Guryanova, E.N.; Kocheshkov, K.A. A Spectroscope Investigation of Complexes formed by Thiophane and Thiophene with the Tin Tetrachoride. Dokl. Acad. Nauk USSR 1962, 144, 788–791. [Google Scholar]
- Goldstein, L.P.; Gurjanowa, J.N.; Kotschechkow, K.A. Complexes of Tin Tetrachloride with Hetero-containing Unsaturated Compounds. Dokl. Acad. Nauk USSR 1962, 144, 569–572. [Google Scholar]
- Korshak, V.V.; Sultanov, A.S.; Abduvaliev, A.A. Polymerisation of Furan and Sylvan with the Aid of Ionic Catalyst. Uzbekskii Khim. Zh. 1959, 39–46. [Google Scholar]
- Dean, P.A.W.; Ibbott, D.G.; Stothers, J.B. Mercury(I) Chemistry. 1. Complexes of Mercurous Ion with Some Arenes. Can. J. Chem. 1976, 54, 166–176. [Google Scholar] [CrossRef]
- Benvenuti, F.; Galletti, A.M.R.; Carlini, C.; Sbrana, G.; Nannini, A.; Bruschi, P. Synthesis, Structural Characterization and Electrical Properties of Highly Conjugated Soluble Poly(furan)s. Polymer 1997, 38, 4973–4982. [Google Scholar] [CrossRef]
- Li, X.G.; Kang, Y.; Huang, M.R. Optimization of Polymerization Conditions of Furan with Aniline for Variable Conducting Polymers. J. Comb. Chem. 2006, 8, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Lannes, A.; Manceau, A.; Rovezzi, M.; Glatzel, P.; Joly, Y.; Gautier-Luneau, I. Intramolecular Hg⋯π Interactions of d-Character with Non-Bridging Atoms in Mercury-Aryl Complexes. Dalton Trans. 2016, 45, 14035–14038. [Google Scholar] [CrossRef] [PubMed]
- Olinga, T.; Francois, B. Kinetics of Polymerization of Thiophene by FeCl3 in Chloroform and Acetonitrile. Synth. Met. 1995, 69, 297–298. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Thenamirtham, P.; Selvan, R.K. Structural and Electrochemical Properties of Polythiophene. Appl. Surf. Sci. 2011, 257, 9063–9067. [Google Scholar] [CrossRef]
- Thanasamy, D.; Jesuraj, D.; Kannan, S.K.K.; Avadhanam, V. A Novel Route to Synthesis Polythiophene with Great Yield and High Electrical Conductivity Without Post Doping Process. Polymer 2019, 175, 32–40. [Google Scholar] [CrossRef]
- Kasisomayajula, S.; Jadhav, N.; Gelling, V.J. In Situ Preparation and Characterization of a Conductive and Magnetic Nanocomposite of Polypyrrole and Copper Hydroxychloride. RSC Adv. 2016, 6, 967–977. [Google Scholar] [CrossRef]
- Volhard, J. Über Verbindungen des Thiophens, seiner Homologen und einiger Ketone mit Quecksilberchlorid. Liebigs Ann. Chem. 1892, 267, 172–185. [Google Scholar] [CrossRef]
- Steinkopf, W.; Burmeister, M. Über Quecksilberchloridthiophene. Liebigs Ann. Chem. 1914, 403, 50–66. [Google Scholar] [CrossRef]
- Steinkopf, W. Studien in der Thiophenreihe. Über Quecksilber- und Arsen-Thiophenverbindungen. Liebigs Ann. Chem. 1916, 413, 310–333. [Google Scholar] [CrossRef]
- Steinkopf, W.; Killingstad, A. Studien in der Thiophenreihe. XL. Quecksilberderivate des Thiophens. Liebigs Ann. Chem. 1937, 532, 288–293. [Google Scholar] [CrossRef]
- Gilman, H.; Wright, G.F. Furan Mercurials. J. Am. Chem. Soc. 1933, 55, 3302–3314. [Google Scholar] [CrossRef]
- Ciusa, R.; Grilla, G. Mercuric Compounds of Furan and of Pyrrole. Gazz. Chim. Ital. 1927, 57, 323–329. [Google Scholar]
- Yus, M. Arene-Catalysed Lithiation Reactions. Chem. Soc. Rev. 1996, 25, 155–161. [Google Scholar] [CrossRef]
- Steinkopf, W. Die Chemie des Thiophens; Verlag von Steinkopff: Dresden, Germany, 1941; Volume 53, p. 232. [Google Scholar] [CrossRef]
- Fischer, H.; Müller, R. Über Quecksilber- und Arsenverbindungen einiger Pyrrole. Z. Physiol. Chem. 1925, 148, 155–180. [Google Scholar] [CrossRef]
- Song, G.P.; Liu, L.; Han, J.; Wang, C.Y.; Wang, G.X. Polypyrrole Single and Double-Shelled Nanospheres Templated by Pyrrole-Hg(II) Complex: Synthesis, Characterization, Formation Mechanism and Electrochemical Performance. Synth. Met. 2014, 197, 126–133. [Google Scholar] [CrossRef]
- Guillaumel, J.; Royer, R. Synthese d’Ethers Diéthylamino Ethyliques de Bibenzofurannes et de Bis-Benzofuryl Cétones. J. Heterocycl. Chem. 1986, 23, 1277–1282. [Google Scholar] [CrossRef]
- Challenger, F.; Royer, R. The Mercuration of Thionaphthen. J. Chem. Soc. 1939, 1005–1008. [Google Scholar] [CrossRef]
- Weißgerber, R.; Kruber, O. Über das Thionaphthen im Steinkohlenteer. Ber. Dtsch. Chem. Ges. 1920, 53, 1551–1565. [Google Scholar] [CrossRef]
- Bezdrik, A.; Friedländer, P.; Koeniger, P. Über Einige Derivate des Thionaphthens. Ber. Dtsch. Chem. Ges. 1908, 41, 227–242. [Google Scholar] [CrossRef]
- Ramachandran, L.K.; Witkop, B. The Interaction of Mercury Actetate with Indoles, Tryptophan and Peptides. Biochemistry 1964, 3, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Yudin, L.G.; Pavlyuchenko, A.I.; Kost, A.N. The Mercuration of Indoles in Acetic Anhydride Medium. Khim. Getertsik. Soed. 1970, 6, 275. [Google Scholar] [CrossRef]
- Reck, C.E.; Bretschneider-Hurley, A.; Heeg, M.J.; Winter, C.H. Synthesis, Structure, and Reactivity of a 2,3-Dialuminated Indole Derivative. Organometallics 1998, 17, 2906–2911. [Google Scholar] [CrossRef]
- Banerji, A.; Sarkar, M. Reactions of Indoles with Mercury (II) Salts. Proc. Indian Acad. Sci. Chem. Sci. 1982, 91, 247–254. [Google Scholar] [CrossRef]
- Pinhey, J.T.; Roche, E.G. The Chemistry of Organolead(IV)tricarboxylates—Synthesis and Electrophilic Heteroarylation Reactions of 2-Thienyl-Lead and 3-Thienyl-Lead, and 2-Furyl-Lead and 3-Furyl-Lead Tricarboxylates. J. Chem. Soc. Perk. Trans. 1 1988, 2415–2421. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Oller, H.J.; Wilkinson, D.L.; Huber, B.; Muller, G. Extremely Short Mercury-Mercury Contacts in Peri-Dimercurated Naphthalene Compounds. Chem. Ber. 1989, 122, 31–36. [Google Scholar] [CrossRef]
- Partyka, D.V.; Gray, T.G. Facile Syntheses of Homoleptic Diarylmercurials via Arylboronic Acids. J. Organomet. Chem. 2009, 694, 213–218. [Google Scholar] [CrossRef]
- Obafemi, C.A. Studies of Heterocyclic-Compounds. 3. Synthesis and Thermal Decompositions of Some 2-Thiophenemercuric Derivatives. J. Organomet. Chem. 1981, 219, 1–7. [Google Scholar] [CrossRef]
- Nyulaszi, L.; Gyuricza, A.; Veszpremi, T. Tertiary Butylation of 5 Membered Heterocycles—A UPS Study. Tetrahedron 1987, 43, 5955–5959. [Google Scholar] [CrossRef]
- Larock, R.C.; Hershberger, S.S. Mercury in Organic-Chemistry. 19. Rhodium Promoted Methylation of Organomercurials. Tetrahedron Lett. 1981, 22, 2443–2446. [Google Scholar] [CrossRef]
- Matiychuk, V.S.; Teslenko, Y.O.; Obushak, M.D. Methods for Synthesis of 2-Amino-5-(2-thienylmethyl)thiazole. Chem. Heterocycl. Comp. 2004, 40, 1502–1503. [Google Scholar] [CrossRef]
- Kammerer, R.C.; Kloc, K. Synthesis of a Deuterium Labeled Variant of the Rat Hepatocarcinogen, Methapyrilene. J. Labelled Compd. Radiopharn. 1987, 24, 1469–1477. [Google Scholar] [CrossRef]
- Buu-Hoi, N.P. Note on the Synthesis of Thiophene and Thiophene Derivatives Labelled by Radioactive Elements. Bull Chem. Soc. France 1958, 1407–1408. [Google Scholar]
- Khodeir, M.N.M.; Skulski, L.; Wroczynski, P. Preparation of 2-Chlorofuran and 2-Chlorothiophene from the Respective Furan and Thiophene Mercurials and Disulfur Dichloride. Bull. Polish Acad. Sci. Chem. 1987, 34, 443–448. [Google Scholar]
- Kretchmer, R.A.; Glowinski, R. Organomercury Compounds as Synthetic Intermediates—Coupling of Aryl-Mercuric Salts. J. Org. Chem. 1976, 41, 2661–2662. [Google Scholar] [CrossRef]
- Garti, N.; Halpern, Y. Arylmercury Compounds I. A General Procedure for the Preparation of Diarylmercury Compounds by Symmetrisation Reactions. J. Appl. Chem. Biotech. 1975, 25, 249–258. [Google Scholar] [CrossRef]
- Halpern, Y.; Garti, N. Arylmercury Compounds. 6. Asymmetric Diarylmercury Compounds. Isr. J. Chem. 1975, 13, 205–211. [Google Scholar] [CrossRef]
- Bell, N.A.; Johnson, D.; Skinner, M.J. Symmetrization of Organomercury(II) Chlorides Using Basic Alumina. Appl. Organomet. Chem. 1998, 12, 475–478. [Google Scholar] [CrossRef]
- Cherbuliez, E.; Giddey, C. Sur l’a-Rhodanothiophene et sa Condensation Avec le Chloral. Helv. Chim. Acta 1952, 35, 160–166. [Google Scholar] [CrossRef]
- More, P.G.; Desai, B.J. Transition Metal Catalyzed Reactions of Organomercurials. I: Palladium-Catalyzed Acyldemetalation and Cross-Coupling Reactions. Asian J. Chem. 1993, 5, 943–947. [Google Scholar]
- Hogg, J.M.; Brown, L.C.; Matuszek, K.; Latos, P.; Chrobok, A.; Swadzba-Kwasny, M. Liquid Coordination Complexes of Lewis Acidic Metal Chlorides: Lewis Acidity and Insights into Speciation. Dalton Trans. 2017, 46, 11561–11574. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.C.; Wirkkala, R.A. Trifluoroacetic Acid as a Medium for Electrophilic Substitution Reactions. Rates and Isomer Distributions for the Bromination, Nitration, and Mercuration of Benzene and Toluene in Trifluoroacetic Acid. J. Am. Chem. Soc. 1966, 88, 1447–1452. [Google Scholar] [CrossRef]
- Belenkii, L.I.; Suslov, I.A.; Chuvylkin, N.D. Substrate and Positional Selectivity in Electrophilic Substitution Reactions of Pyrrole, Furan, Thiophene, and Selenophene. Chem. Het. Comp. 2003, 39, 36–38. [Google Scholar] [CrossRef]
- Belen’kii, L.I.; Nesterov, I.D.; Chuvylkin, N.D. Quantum-Chemical Investigation of the Electrophile Affinity of Five-membered Heterocycles with One Heteroatom and Some Model Systems. Chem. Het. Comp. 2008, 44, 1339–1346. [Google Scholar] [CrossRef]
- Houriet, R.; Schwarz, H.; Zummack, W.; Andrade, J.G.; von Ragué Schleyer, P. The α-vs ß-Protonation of Pyrrole, Furan, Thiophene and Cyclopentadiene. Gas Phase Proton and Hydrogen Affinities. The Bishomocyclopropenyl Cation. Nouv. J. Chim. 1981, 5, 505–509. [Google Scholar]
- Bernasconi, C.F.; Wenzel, J.P. Effect of Transition State Aromaticity and Antiaromativcity on Intrinsic Barriers of Proton Transfers in Aromatic and Antiaromatic Heterocyclic Systems; An ab Initio Study. J. Org. Chem. 2010, 75, 8422–8434. [Google Scholar] [CrossRef] [PubMed]
- Colonna, F.P.; Distefano, G.; Guerro, M.; Jones, D.; Modelli, A. Furyl- and Thienylmercury Derivatives Studied by Means of Ultraviolet Photoelectron Spectroscopy. Evidence for the Participation in Bonding of the Vacant 6pπ Orbitals of Mercury in Bis(2-furyl)- and Bis(2-thienyl)mercury. Dalton Trans. 1979, 2037–2041. [Google Scholar] [CrossRef]
- Barkash, V.A. Nonclassical Carbocations. In Topics in Current Chemistry; Rees, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 116–117, p. 249. [Google Scholar]
- Shubin, V.G. Rearrangements of Carbocations by 1,2-Shifts. In Topics in Current Chemistry; Rees, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 116–117, pp. 267–343. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartmann, H.; Liebscher, J. Formation and Reactions of Brønsted and Lewis Acid Adducts with Electron-Rich Heteroaromatic Compounds. Molecules 2024, 29, 3151. https://doi.org/10.3390/molecules29133151
Hartmann H, Liebscher J. Formation and Reactions of Brønsted and Lewis Acid Adducts with Electron-Rich Heteroaromatic Compounds. Molecules. 2024; 29(13):3151. https://doi.org/10.3390/molecules29133151
Chicago/Turabian StyleHartmann, Horst, and Jürgen Liebscher. 2024. "Formation and Reactions of Brønsted and Lewis Acid Adducts with Electron-Rich Heteroaromatic Compounds" Molecules 29, no. 13: 3151. https://doi.org/10.3390/molecules29133151
APA StyleHartmann, H., & Liebscher, J. (2024). Formation and Reactions of Brønsted and Lewis Acid Adducts with Electron-Rich Heteroaromatic Compounds. Molecules, 29(13), 3151. https://doi.org/10.3390/molecules29133151