Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions
Abstract
:1. Introduction
2. Results
2.1. Synthesis of OMM
2.2. Characterizations of SWCNT Dispersions
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. General Procedure for Dispersion Preparations of SWCNTs and OMM-SWCNTs
4.3. Characterizations
4.4. Computational Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volder, M.F.L.D.; Tawfick, S.H.; Baughman, R.H.; John Hart, A. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Htoon, H.; Doorn, S.K.; Pernice, W.H.P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C. Carbon Nanotubes as Emerging Quantum-Light Sources. Nat. Mater. 2018, 17, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Peng, L.-M. Toward High-Performance Carbon Nanotube Photovoltaic Devices. Adv. Energy Mater. 2016, 6, 1600522. [Google Scholar] [CrossRef]
- Nanot, S.; Haroz, E.H.; Kim, J.-H.; Hauge, R.H.; Kono, J. Optoelectronic Properties of Single-Wall Carbon Nanotubes. Adv. Mater. 2012, 24, 4977–4994. [Google Scholar] [CrossRef] [PubMed]
- Gon, Y.; Adhikari, P.; Liu, Q.; Wang, T.; Gong, M.; Chan, W.-L.; Ching, W.-Y.; Wu, J. Designing the Interface of Carbon Nanotube/Biomaterials for High-Performance Ultra-Broadband Photodetection. ACS Appl. Mater. Interfaces 2017, 9, 11016–11024. [Google Scholar] [CrossRef]
- Bheel, N.; Mohammed, B.S.; Liew, M.S.; Zawawi, N.A.W.A. Durability Behaviours of Engineered Cementitious Composites Blended with Carbon Nanotubes against Sulphate and Acid Attacks by Applying RSM Modelling and Optimization. Buildings 2023, 13, 2032. [Google Scholar] [CrossRef]
- Pramanik, C.; Gissinger, J.R.; Kumar, S.; Heinz, H. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences. ACS Nano 2017, 11, 12805–12816. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.K.; Coleman, K.S. Poly(ethylene) Glycol/Single-Walled Carbon Nanotube Composites. J. Nanosci. Nanotechnol. 2008, 8, 4013–4016. [Google Scholar] [CrossRef] [PubMed]
- Fujigaya, T.; Nakashima, N. Non-covalent Polymer Wrapping of Carbon Nanotubes and the Role of Wrapped Polymers as Functional Dispersants. Sci. Technol. Adv. Mat. 2015, 16, 024802. [Google Scholar] [CrossRef]
- Arellano, L.M.; Barrejon, M.; Gobeze, H.B.; Gómez-Escalonilla, M.J.; Fierro, J.L.G.; D’Souza, F.; Langa, F. Charge Stabilizing Tris(triphenylamine)-Zinc Porphyrin-Carbon Nanotube Hybrids: Synthesis, Characterization and Excited State Charge Transfer Studies. Nanoscale 2017, 9, 7551–7558. [Google Scholar] [CrossRef]
- Kallmyer, N.E.; Huynh, T.; Graves, G.C.; Musielewicz, J.; Tamiev, D.; Reuel, N.F. Influence of Sonication Conditions and Wrapping Type on Yield and Fluorescent Quality of Noncovalently Functionalized Single-Walled Carbon Nanotubes. Carbon 2018, 139, 609–613. [Google Scholar] [CrossRef]
- Son, H.; Ji, J.-H.; Jeong, J.H.; Han, S.-H.; Koh, J.-H.; Park, J.S. Noncovalent Functionalization of Single-walled Carbon Nanotubes Using Alkylated Zinc-phthalocyanine for the β-phase Formation of a Polyvinylidene Fluoride Matrix. Polymer-Korea 2020, 44, 301–308. [Google Scholar] [CrossRef]
- Li, M.; Jiang, D.; Du, Z.; Yu, S.; Ge, X.; He, Y. Green Modification of Single-Walled Carbon Nanotubes Dispersion with Good Dispersibility and Long Storage Stability. J. Nanoparticle Res. 2023, 25, 85. [Google Scholar] [CrossRef]
- Kanimozhi, C.; Shea, M.J.; Ko, J.; Wei, W.; Huang, P.; Arnold, M.S.; Gopalan, P. Removable Nonconjugated Polymers To Debundle and Disperse Carbon Nanotubes. Macromolecules 2019, 52, 4278–4286. [Google Scholar] [CrossRef]
- Sloan, A.W.N.; Santana-Pereira, A.L.R.; Goswami, J.; Liles, M.R.; Davis, V.A. Single-Walled Carbon Nanotube Dispersion in Tryptic Soy Broth. ACS Macro Lett. 2017, 6, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Tsarfati, Y.; Strauss, V.; Kuhri, S.; Krieg, E.; Weissman, H.; Shimoni, E.; Baram, J.; Guldi, D.M.; Rybtchinski, B. Dispersing Perylene Diimide/SWCNT Hybrids: Structural Insights at the Molecular Level and Fabricating Advanced Materials. J. Am. Chem. Soc. 2015, 137, 7429–7440. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xing, Z.; Zhou, J.; Xu, H.; Wang, Z.; Li, G.; Yu, L. Electrostatic Interaction-controlled Dispersion of Carbon Nanotubes in a Ternary Composite for High-Performance Supercapacitors. Dalton Trans. 2022, 51, 5127–5137. [Google Scholar] [CrossRef] [PubMed]
- Gangele, A.; Garala, S.K.; Pandey, A.K. Influence of Van der Waals Forces on Elastic and Buckling Characteristics of Vertically Aligned Carbon Nanotubes. Int. J. Mech. Sci. 2018, 146, 191–199. [Google Scholar] [CrossRef]
- Chen, R.J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. J. Am. Chem. Soc. 2001, 123, 3838–3839. [Google Scholar] [CrossRef]
- Wang, K.-C.; Lin, P.-S.; Lin, Y.-C.; Tung, S.-H.; Chen, W.-C.; Liu, C.-L. Tunable Thermoelectric Performance of the Nanocomposites Formed by Diketopyrrolopyrrole/Isoindigo-Based Donor-Acceptor Random Conjugated Copolymers and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2023, 15, 56116–56126. [Google Scholar] [CrossRef]
- Sesis, A.; Hodnett, M.; Memoli, G.; Wain, A.J.; Jurewicz, I.; Dalton, A.B.; Carey, J.D.; Hinds, G.; Hodnett, M.; Memoli, G.; et al. Influence of Acoustic Cavitation on the Controlled Ultrasonic Dispersion of Carbon Nanotubes. J. Phys. Chem. B 2013, 117, 15141–15150. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Lim, D.-H.; Lee, M.-H.; Kim, Y.-J.; Kim, Y.-a.; Yang, D.; Kim, Y.; Kim, D.-Y. Engineering the Structural Topology of Pyrene-Based Conjugated Polymers for the Selective Sorting of Semiconducting Single-Walled Carbon Nanotubes. Macromolecules 2021, 54, 6061–6072. [Google Scholar] [CrossRef]
- Nogueira, S.L.; Sahoo, S.K.; Jarrosson, T.; Serein-Spirau, K.; Lere-Porte, J.-P.; Moujaes, E.A.; Marletta, A.; Santos, A.P.; Fantini, C.; Furtado, C.A.; et al. A New Designed π Conjugated Molecule for Stable Single Walled Carbon Nanotube Dispersion in Aqueous Medium. J. Colloid. Interface Sci. 2016, 464, 117–125. [Google Scholar] [CrossRef]
- Gao, J.; Sengar, N.; Wu, N.; Jockusch, F.; Nuckolls, C.; Clancy, P.; Loo, Y.-L. Contorted Octabenzocircumbiphenyl Sorts Semiconducting Single-Walled Carbon Nanotubes with Structural Specificity. Chem. Mater. 2017, 29, 595–604. [Google Scholar] [CrossRef]
- Chamorro, R.; Juan-Fernandez, L.D.; Nieto-Ortega, B.; Mayoral, M.J.; Casado, S.; Ruiz-Gonzalez, L.; Perez, E.M.; Gonzalez-Rodriguez, D. Reversible Dispersion and Release of Carbon Nanotubes via Cooperative Clamping Interactions with Hydrogen-bonded Nanorings. Chem. Sci. 2018, 9, 4176–4184. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, W.; Li, Z.; Wang, Z. Tailorable Aqueous Dispersion of Single-Walled Carbon Nanotubes Using Tetrachloroperylene-Based Bolaamphiphiles via Noncovalent Modification. Langmuir 2014, 30, 8615–8620. [Google Scholar] [CrossRef] [PubMed]
- Backes, C.; Schmidt, C.D.; Rosenlehner, K.; Hauke, F.; Coleman, J.N.; Hirsch, A. Nanotube Surfactant Design: The Versatility of Water-Soluble Perylene Bisimides. Adv. Mater. 2010, 22, 788–802. [Google Scholar] [CrossRef]
- Bouanis, F.Z.; Bensifia, M.; Florea, I.; Mahouche-chergui, S.; Carbonnier, B.; Grande, D.; Léonard, C.; Yassar, A.; Pribat, D. Non-covalent Functionalization of Single Walled Carbon Nanotubes with Fe-/Co-porphyrin and Co-phthalocyanine for Field-effect Transistor Applications. Org. Electron. 2021, 96, 106212. [Google Scholar] [CrossRef]
- Bassiouk, M.; Basiuk, V.A.; Basiuk, E.V.; Álvarez-Zauco, E.; Martinez-Herrera, M.; Rojas-Aguilar, M.; Puente-Lee, I. Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Porphyrins. Appl. Surf. Sci. 2013, 275, 168–177. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, P.; Zhang, X.; Lin, J.; Shi, T.; Liu, S.; Sun, A.; Li, Z. Amorphous Porous Organic Polymers Based on Schiff-Base Chemistry for Highly Efficient Iodine Capture. Chem-Asian. J. 2018, 13, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Qi, Q.-Y.; Jian, G.-F.; Cui, F.-Z.; Tian, Y.; Zhao, X. Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. J. Am. Chem. Soc. 2017, 139, 6736–6743. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Zhu, Z.; Zhang, W.; Wang, Y. A Nitrogen-rich Fluorescent Conjugated Microporous Polymer with Triazine and Triphenylamine Units for High Iodine Capture and Nitro Aromatic Compound Detection. J. Mater. Chem. 2017, 5, 7612–7617. [Google Scholar] [CrossRef]
- Wuerthner, F. Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. Chem. Commun 2004, 35, 1564–1579. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Nobusawa, K.; Hamano, T. Single-Walled Carbon Nanotubes Template the One-Dimensional Ordering of a Polythiophene Derivative. Org. Lett. 2006, 8, 5489–5492. [Google Scholar] [CrossRef] [PubMed]
- Weisman, R.B.; Bachilo, S.M. Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot. Nano Lett. 2003, 3, 1235–1238. [Google Scholar] [CrossRef]
- Tan, Y.; Resasco, D.E. Dispersion of Single-Walled Carbon Nanotubes of Narrow Diameter Distribution. J. Phys. Chem. B 2005, 109, 14454–14460. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 2002, 297, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Arjun, M.; Münich, P.W.; Wagner, P.; Officer, D.L.; Guldi, D.M. Amphiphilic Zinc Porphyrin Single-Walled Carbon Nanotube Hybrids: Efficient Formation and Excited State Charge Transfer Studies. Small 2021, 17, 2005648. [Google Scholar] [CrossRef]
- Mandal, A.; Nandi, A.K. Noncovalent Functionalization of Multiwalled Carbon Nanotube by a Polythiophene-Based Compatibilizer: Reinforcement and Conductivity Improvement in Poly(vinylidene fluoride) Films. J. Phys. Chem. C 2012, 116, 9360–9371. [Google Scholar] [CrossRef]
- Menon, A.; Papadopoulos, I.; Harreiβ, C.; Mora-Fuentes, J.P.; Cortizo-Lacalle, D.; Mateo-Alonso, A.; Spiecker, E.; Guldi, D.M. Collecting up to 115% of Singlet-Fission Products by Single-Walled Carbon Nanotubes. ACS Nano 2020, 14, 8875–8886. [Google Scholar] [CrossRef]
- Rao, A.M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.C.; Williams, K.A.; Fang, S.; Subbaswamy, K.R.; Menon, M.; Thess, A.; et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science 1997, 275, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, I.; Menon, A.; Plass, F.; Molina, D.; Harreiβ, C.; Kahnt, A.; Spiecker, E.; Sastre-Santos, Á.; Guldi, D.M. Efficient Charge-transfer from Diketopyrrolopyrroles to Single-Walled Carbon Nanotubes. Nanoscale 2021, 13, 11544–11551. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Xu, W.; Ye, J.; Liu, T.; Wang, J.; Tan, H.; Lin, Y.; Tange, M.; Sun, D.; Wu, L.; et al. Selective Dispersion of Large-Diameter Semiconducting Carbon Nanotubes by Functionalized Conjugated Dendritic Oligothiophenes for Use in Printed Thin Film Transistors. Adv. Funct. Mater. 2017, 27, 1703938. [Google Scholar] [CrossRef]
- Neel, A.J.; Hilton, M.J.; Sigman, M.S.; Toste1, F.D. Exploiting Non-covalent π Interactions for Catalyst Design. Nature 2017, 543, 637–646. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Duan, L.; Chen, W. Adsorption of Single-ringed N- and S-heterocyclic Aromatics on Carbon Nanotubes. Carbon 2010, 48, 3906–3915. [Google Scholar] [CrossRef]
- Shi, T.; Zheng, Q.D.; Zuo, W.W.; Liu, S.F.; Li, Z.B. Bimetallic Aluminum Complexes Supported by Bis(salicylaldimine) Ligand: Synthesis, Characterization and Ring-opening Polymerization of Lactide. Chin. J. Polym. Sci. 2018, 36, 149–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhou, P.; Wen, J.; Sun, P.; Guo, Z. Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions. Molecules 2024, 29, 3179. https://doi.org/10.3390/molecules29133179
Li L, Zhou P, Wen J, Sun P, Guo Z. Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions. Molecules. 2024; 29(13):3179. https://doi.org/10.3390/molecules29133179
Chicago/Turabian StyleLi, Lun, Pengfei Zhou, Jiali Wen, Panli Sun, and Zongxia Guo. 2024. "Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions" Molecules 29, no. 13: 3179. https://doi.org/10.3390/molecules29133179
APA StyleLi, L., Zhou, P., Wen, J., Sun, P., & Guo, Z. (2024). Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions. Molecules, 29(13), 3179. https://doi.org/10.3390/molecules29133179