Identification of Benzothiazoles Bearing 1,3,4-Thiadiazole as Antiproliferative Hybrids Targeting VEGFR-2 and BRAF Kinase: Design, Synthesis, BIO Evaluation and In Silico Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design Rational
2.2. Chemistry
2.3. Biological Evaluation
2.3.1. In Vitro Antitumor Activity and SAR Correlation
2.3.2. In Vitro Cytotoxicity against Normal Human Cells
2.3.3. In Vitro VEGFR-2 and BRAF (V600E) Kinases Inhibitory Assay
2.3.4. Cell Cycle Analysis
2.3.5. Detection of Apoptosis
2.4. Molecular-Docking Study
3. Experimental
3.1. Chemistry
3.1.1. General Procedure for Synthesis of N-Substituted-2-chloroacetamides (2a–c)
3.1.2. General Procedure for Synthesis of Intermediates (3a–f)
3.1.3. General Procedure for Synthesis of 1,3,4-Thiadiazol-2-yl)thio)acetamides (4a–r)
- N-(Benzo[d]thiazol-2-yl)-2-((5-(3-phenylureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4a)
- White solid (0.07 g, 79%). M.p. 273–275 °C. IR (νmax/cm−1): 3345, 3170, 3050, 2920, 1683, 1603, 1572, 1240. 1H NMR (400 MHz, DMSO-d6) δ 12.71 (s, 1H, NH; D2O exchangeable), 11.18 (s, 1H, NH; D2O exchangeable), 9.18 (s, 1H, NH; D2O exchangeable), 8.00 (d, J = 7.8 Hz, 1H, Ar-H), 7.79 (d, J = 7.8 Hz, 1H, Ar-H), 7.51–7.44 (m, 3H, Ar-H), 7.40–7.28 (m, 3H, Ar-H), 7.06 (t, J = 7.3 Hz, 1H, Ar-H), 4.35 (s, 2H, SCH2).13C NMR (101 MHz, DMSO-d6) δ 172.8 (CO), 167.6 (CO), 161.5, 158.2, 154.3, 148.9, 138.7, 131.9, 129.4, 126.7, 124.2, 123.6, 122.3, 121.2, 119.4, 37.4 (CH2). Gas Chromatography–Mass Spectrometry Electron Ionization (EI) m/z calculated for [M+] C18H14N6O2S3 = 442.54, found 442.49 (mass error ∆m = −0.05 ppm. Anal. Calcd for C18H14N6O2S3 (442.54): C, 48.85; H, 3.19; N, 18.99. Found: C, 48.80; H, 3.05; N, 19.06%.
- N-(Benzo[d]thiazol-2-yl)-2-((5-(3-(p-tolyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4b)
- White solid (0.073 g, 80%). M.p. 270–272 °C. IR (νmax/cm−1): 3340, 3180, 3050, 2930, 1682, 1605, 1540, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.69 (s, 1H, NH; D2O exchangeable), 11.15 (s, 1H, NH; D2O exchangeable), 9.13 (s, 1H, NH; D2O exchangeable), 8.16–7.72 (m, 2H, Ar-H), 7.61–6.96 (m, 6H, Ar-H), 4.35 (s, 2H, SCH2), 2.26 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 172.5 (CO), 167.7 (CO), 161.7, 158.3, 151.3, 149.0, 139.3, 136.3, 132.0, 129.8, 126.7, 124.2, 122.3, 121.2, 119.4, 37.6 (CH2), 21.0 (CH3). GC-MS EI m/z calculated for [M+] C19H16N6O2S3 = 456.56, found 456.66 (mass error ∆m = −0.1 ppm. Anal. Calcd for C19H16N6O2S3 (456.56): C, 49.98; H, 3.53; N, 18.41. Found: C, 49.91; H, 3.55; N, 18.33%.
- N-(Benzo[d]thiazol-2-yl)-2-((5-(3-(4-methoxyphenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4c)
- White solid (0.068 g, 72%). M.p. 262–264 °C. IR (νmax/cm−1): 3345, 3182, 3050, 2930, 1680, 1605, 1540, 1175. 1H NMR (400 MHz, DMSO-d6) δ 12.71 (s, 1H, NH; D2O exchangeable), 11.17 (s, 1H, NH; D2O exchangeable), 9.02 (s, 1H, NH; D2O exchangeable), 8.00 (d, J = 7.8 Hz, 1H, Ar-H), 7.79 (d, J = 7.8 Hz, 1H, Ar-H), 7.47 (t, J = 7.7 Hz, 1H, Ar-H), 7.40 (d, J = 8.8 Hz, 2H, Ar-H), 7.34 (t, J = 7.7 Hz, 1H, Ar-H), 6.90 (d, J = 8.8 Hz, 2H, Ar-H), 4.34 (s, 2H, SCH2), 3.73 (s, 3H, OCH3).13C NMR (101 MHz, DMSO-d6) δ 174.3 (CO), 167.0 (CO), 158.3, 156.4, 152.3, 149.3, 139.3, 131.8, 131.6, 126.8, 124.3, 122.3, 121.4, 121.1, 114.6, 55.7 (OCH3), 37.0 (CH2). GC-MS EI m/z calculated for [M+] C19H16N6O3S3 = 472.56, found 472.43 (mass error ∆m = −0.13 ppm. Anal. Calcd for C19H16N6O3S3 (472.56): C, 48.29; H, 3.41; N, 17.78. Found: C, 48.35; H, 3.44; N, 17.80%.
- N-(Benzo[d]thiazol-2-yl)-2-((5-(3-(4-chlorophenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4d)
- White solid (0.062 g, 65%). M.p. 275–277 °C. IR (νmax/cm−1): 3340, 3180, 3050, 2930, 1680, 1605, 1540, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.70 (s, 1H, NH; D2O exchangeable), 11.34 (s, 1H, NH; D2O exchangeable), 9.47 (s, 1H, NH; D2O exchangeable), 8.00 (d, J = 7.6 Hz, 1H, Ar-H), 7.78 (d, J = 7.6 Hz, 1H, Ar-H), 7.55 (d, J = 7.5 Hz, 2H, Ar-H), 7.50–7.43 (m, 1H, Ar-H), 7.39–7.27 (m, 3H, Ar-H), 4.34 (s, 2H, SCH2).13C NMR (101 MHz, DMSO-d6) δ 174.1 (CO), 167.3 (CO), 158.3, 156.6, 152.0, 148.7, 137.9, 131.9, 129.2, 127.1, 126.7, 124.2, 122.3, 121.4, 121.0, 37.6 (CH2). GC-MS EI m/z calculated for [M+] C18H13ClN6O2S3 = 476.98, found 476.97 (mass error ∆m = −0.01 ppm. Anal. Calcd for C18H13ClN6O2S3 (476.98): C, 45.33; H, 2.75; N, 17.62. Found: C, 45.32; H, 2.79; N, 17.47%.
- N-(Benzo[d]thiazol-2-yl)-2-((5-(3-(4-fluorophenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4e)
- White solid (0.06 g, 65%). M.p. 268–270 °C. IR (νmax/cm−1): 3340, 3185, 3050, 2930, 1690, 1605, 1545, 1172. 1H NMR (400 MHz, DMSO-d6) δ 12.64 (s, 1H, NH; D2O exchangeable), 11.46 (s, 1H, NH; D2O exchangeable), 9.40 (s, 1H, NH; D2O exchangeable), 7.99 (d, J = 6.9 Hz, 1H, Ar-H), 7.78 (d, J = 6.9 Hz, 1H, Ar-H), 7.61–7.41 (m, 3H, Ar-H), 7.36–7.23 (m, 1H, Ar-H), 7.21–7.06 (m, 2H, Ar-H), 4.35 (s, 2H, SCH2).13C NMR (101 MHz, DMSO-d6) δ 167.7 (CO), 159.6 (CO), 158.3, 157.6 J(F,C) = 238 Hz, 152.3, 148.9, 136.0, 131.9, 126.7, 124.2, 122.3, 121.3 J(F,C) = 7 Hz, 121.1, 116.0, 115.8 J(F,C) = 22 Hz, 36.6 (CH2). GC-MS EI m/z calculated for [M+] C18H13FN6O2S3 = 460.53, found 460.44 (mass error ∆m = −0.09 ppm. Anal. Calcd for C18H13FN6O2S3 (460.53): C, 46.94; H, 2.85; N, 18.25. Found: C, 46.98; H, 2.80; N, 18.12%.
- N-(Benzo[d]thiazol-2-yl)-2-((5-(3-(3-chloro-4-(trifluoromethyl)phenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4f)
- White solid (0.069 g, 63%). M.p. 259–261 °C. IR (νmax/cm−1): 3345, 3180, 3050, 2930, 1695, 1605, 1545, 1170.1H NMR (400 MHz, DMSO-d6) δ 12.72 (s, 1H, NH; D2O exchangeable), 11.77 (s, 1H, NH; D2O exchangeable), 9.88 (s, 1H, NH; D2O exchangeable), 8.16 (s, 1H, Ar-H), 8.00 (d, J = 8.1 Hz, 1H, Ar-H), 7.78 (d, J = 7.8 Hz, 2H, Ar-H), 7.65 (d, J = 7.7 Hz, 1H, Ar-H), 7.46 (d, J = 7.7 Hz, 1H, Ar-H), 7.34 (d, J = 7.8 Hz, 1H, Ar-H), 4.35 (s, 2H, SCH2).13C NMR (101 MHz, DMSO-d6) δ 168.0 (CO), 163.0 (CO), 157.0, 154.6, 152.3, 149.3, 136.9, 132.3, 127.9, 124.2, 122.3, 120.9, 118.9, 118.0, 117.8, 36.6 (CH2). GC-MS EI m/z calculated for [M+] C19H12ClF3N6O2S3 = 544.98, found 544.85 (mass error ∆m = −0.13 ppm. Anal. Calcd for C19H12ClF3N6O2S3 (544.98): C, 41.87; H, 2.22; N, 15.42. Found: C, 41.72; H, 2.20; N, 15.48%.
- N-(6-Methylbenzo[d]thiazol-2-yl)-2-((5-(3-phenylureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4g)
- White solid (0.074 g, 81%). M.p. 263–265 °C. IR (νmax/cm−1): 3301, 3113, 3042, 2920, 1684, 1605, 1540, 1240. 1H NMR (400 MHz, DMSO-d6) δ 12.62 (s, 1H, NH; D2O exchangeable), 11.16 (s, 1H, NH; D2O exchangeable), 9.16 (s, 1H, NH; D2O exchangeable), 7.78 (s, 1H, Ar-H), 7.66 (d, J = 7.3 Hz, 1H, Ar-H), 7.57–7.43 (m, 2H, Ar-H), 7.39–7.24 (m, 3H, Ar-H), 7.12–7.01 (m, 1H, Ar-H), 4.33 (s, 2H, SCH2), 2.42 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 167.7 (CO), 157.3 (CO), 156.8, 154.3, 152.0, 147.2, 138.7, 133.7, 132.1, 129.4, 128.0, 123.6, 122.1, 121.3, 119.4, 37.4 (CH2), 21.5 (CH3). GC-MS EI m/z calculated for [M+] C19H16N6O2S3 = 456.56, found 456.44 (mass error ∆m = −0.12 ppm. Anal. Calcd for C19H16N6O2S3 (456.56): C, 49.98; H, 3.53; N, 18.41. Found: C, 49.88; H, 3.50; N, 18.49%.
- N-(6-Methylbenzo[d]thiazol-2-yl)-2-((5-(3-(p-tolyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4h)
- White solid (0.071 g, 79%). M.p. 265–267 °C. IR (νmax/cm−1): 3345, 3182, 3050, 2935, 1680, 1605, 1545, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.62 (s, 1H, NH; D2O exchangeable), 11.12 (s, 1H, NH; D2O exchangeable), 9.09 (s, 1H, NH; D2O exchangeable), 7.78 (s, 1H, Ar-H), 7.66 (d, J = 8.0 Hz, 1H, Ar-H), 7.37 (d, J = 7.4 Hz, 2H, Ar-H), 7.27 (d, J = 7.5 Hz, 1H, Ar-H), 7.12 (d, J = 7.4 Hz, 2H, Ar-H), 4.32 (s, 2H, SCH2), 2.42 (s, 3H, CH3), 2.25 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 167.6 (CO), 158.1 (CO), 157.5, 154.7, 152.5, 147.2, 138.2, 133.7, 132.8, 132.3, 129.8, 128.0, 121.8, 120.8, 119.4, 37.4 (CH2), 21.5 (CH3), 20.8. GC-MS EI m/z calculated for [M+] C20H18N6O2S3 = 470.59, found 470.62 (mass error ∆m = −0.03 ppm. Anal. Calcd for C20H18N6O2S3 (470.59): C, 51.05; H, 3.86; N, 17.86. Found: C, 51.14; H, 3.81; N, 17.96%.
- 2-((5-(3-(4-Methoxyphenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (4i)
- White solid (0.068 g, 70%). M.p. 264–266 °C. IR (νmax/cm−1): 3300, 3180, 3050, 2930, 1681, 1605, 1550, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.61 (s, 1H, NH; D2O exchangeable), 11.07 (s, 1H, NH; D2O exchangeable), 8.95 (s, 1H, NH; D2O exchangeable), 7.78 (s, 1H, Ar-H), 7.66 (d, J = 8.0 Hz, 1H, Ar-H), 7.38 (d, J = 8.4 Hz, 2H, Ar-H), 7.28 (d, J = 8.0 Hz, 1H, Ar-H), 6.90 (d, J = 8.4 Hz, 2H, Ar-H), 4.32 (s, 2H, SCH2), 3.73 (s, 3H, OCH3), 2.42 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 167.6 (CO), 161.5 (CO), 157.8, 155.8, 151.9, 147.2, 139.9, 133.7, 132.1, 131.6, 128.0, 121.8, 121.3, 120.8, 114.6, 55.7 (OCH3), 37.4 (CH2), 21.5. GC-MS EI m/z calculated for [M+] C20H18N6O3S3 = 486.59, found 486.38 (mass error ∆m = −0.21 ppm. Anal. Calcd for C20H18N6O3S3 (486.59): C, 49.37; H, 3.73; N, 17.27. Found: C, 49.51; H, 3.66; N, 17.20%.
- 2-((5-(3-(4-Chlorophenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (4j)
- White solid (0.07 g, 71%). M.p. 261–263 °C. IR (νmax/cm−1): 3340, 3175, 3050, 2925, 1684, 1610, 1570, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.64 (s, 1H, NH; D2O exchangeable), 11.18 (s, 1H, NH; D2O exchangeable), 9.49 (s, 1H, NH; D2O exchangeable), 7.78 (s, 1H, Ar-H), 7.66 (s, 1H, Ar-H), 7.55 (s, 1H, Ar-H), 7.45–7.17 (m, 4H, Ar-H), 4.34 (s, 2H, SCH2), 2.42 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 167.6 (CO), 157.3 (CO), 156.3, 152.5, 146.9, 139.7, 133.7, 132.1, 129.2, 128.9, 128.0, 127.6, 121.8, 120.9, 120.8, 37.3 (CH2), 21.6 (CH3). GC-MS EI m/z calculated for [M+] C19H15ClN6O2S3 = 491.01, found 490.92 (mass error ∆m = −0.09 ppm. Anal. Calcd for C19H15ClN6O2S3 (491.01): C, 46.48; H, 3.08; N, 17.12. Found: C, 46.43; H, 3.09; N, 17.05%.
- 2-((5-(3-(4-Fluorophenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (4k)
- White solid (0.071 g, 75%). M.p. 250–252 °C. IR (νmax/cm−1): 3340, 3180, 3050, 2930, 1680, 1605, 1545, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.60 (s, 1H, NH; D2O exchangeable), 12.40 (s, 1H, NH; D2O exchangeable), 10.56 (s, 1H, NH; D2O exchangeable), 7.77 (s, 1H, Ar-H), 7.72–6.62 (m, 3H, Ar-H), 7.27 (d, J = 7.9 Hz, 1H, Ar-H), 7.09 (t, J = 8.8 Hz, 2H, Ar-H), 4.30 (s, 2H, SCH2), 2.42 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 167.6 (CO), 159.2 (CO), 157.4, 156.7 J(F,C) = 244 Hz, 146.9, 136.5, 133.6, 132.1, 128.0, 121.8, 120.7, 120.5, 120.4 J(F,C) = 7 Hz, 115.8, 115.6 J(F,C) = 22 Hz, 37.4 (CH2), 21.8 (CH3). GC-MS EI m/z calculated for [M+] C19H15FN6O2S3 = 474.55, found 474.49 (mass error ∆m = −0.06 ppm. Anal. Calcd for C19H15FN6O2S3 (474.55): C, 48.09; H, 3.19; N, 17.71. Found: C, 48.17; H, 3.26; N, 17.68%.
- 2-((5-(3-(3-Chloro-4-(trifluoromethyl)phenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (4l)
- White solid (0.075 g, 67%). M.p. 266–268 °C. IR (νmax/cm−1): 3400, 3175, 3100, 2950, 1710, 1610, 1570, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.65 (s, 1H, NH; D2O exchangeable), 11.61 (s, 1H, NH; D2O exchangeable), 9.81 (s, 1H, NH; D2O exchangeable), 8.15 (s, 1H, Ar-H), 7.77 (d, J = 8.6 Hz, 2H, Ar-H), 7.66 (dd, J = 8.4, 3.5 Hz, 2H, Ar-H), 7.27 (d, J = 8.2 Hz, 1H, Ar-H), 4.34 (s, 2H, SCH2), 2.42 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 173.7 (CO), 167.4 (CO), 157.3, 153.8, 150.8, 146.9, 138.9, 133.7, 132.6, 132.1, 128.0, 124.2, 121.8, 120.8, 118.0, 37.3 (CH2), 32.4, 21.5 (CH3). GC-MS EI m/z calculated for [M+] C20H14ClF3N6O2S3 = 559.01, found 559.2 (mass error ∆m = −0.19 ppm. Anal. Calcd for C20H14ClF3N6O2S3 (559.01): C, 42.97; H, 2.52; N, 15.03. Found: C, 42.81; H, 2.56; N, 15.07%.
- N-(6-Chlorobenzo[d]thiazol-2-yl)-2-((5-(3-phenylureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4m)
- White solid; (0.067 g, 71%). M.p. 292–294 °C. IR (νmax/cm−1): 3345, 3185, 3050, 2930, 1685, 1605, 1545, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.55 (s, 1H, NH; D2O exchangeable), 11.50 (s, 1H, NH; D2O exchangeable), 9.25 (s, 1H, NH; D2O exchangeable), 8.15 (s, 1H, Ar-H), 7.78 (d, J = 8.4 Hz, 1H, Ar-H), 7.55–7.45 (m, 3H, Ar-H), 7.33 (d, J = 7.0 Hz, 2H, Ar-H), 7.05 (s, 1H, Ar-H), 4.34 (s, 2H, SCH2).13C NMR (101 MHz, DMSO-d6) δ 168.8 (CO), 166.7 (CO), 164.3, 157.8, 153.0, 151.1, 139.3, 133.9, 129.4, 128.2, 127.6, 123.4, 122.4, 122.0, 119.3, 37.3 (CH2). GC-MS EI m/z calculated for [M+] C18H13ClN6O2S3 = 476.98, found 476.75 (mass error ∆m = −0.23 ppm. Anal. Calcd for C18H13ClN6O2S3 (476.98): C, 45.33; H, 2.75; N, 17.62. Found: C, 45.41; H, 2.74; N, 17.49%.
- N-(6-Chlorobenzo[d]thiazol-2-yl)-2-((5-(3-(p-tolyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4n)
- White solid (0.072 g, 73%). M.p. 268–270 °C. IR (νmax/cm−1): 3340, 3185, 3050, 2930, 1680, 1605, 1545, 1180. 1H NMR (400 MHz, DMSO-d6) δ 12.85 (s, 1H, NH; D2O exchangeable), 11.01 (s, 1H, NH; D2O exchangeable), 9.01 (s, 1H, NH; D2O exchangeable), 8.16–8.13 (m, 1H, Ar-H), 7.78 (d, J = 8.6 Hz, 1H, Ar-H), 7.48 (dd, J = 8.6, 2.0 Hz, 1H, Ar-H), 7.36 (d, J = 8.1 Hz, 2H, Ar-H), 7.13 (d, J = 8.1 Hz, 2H, Ar-H), 4.34 (s, 2H, SCH2), 2.26 (s, 3H, CH3).13C NMR (101 MHz, DMSO-d6) δ 168.7 (CO), 165.3 (CO), 164.0, 159.3, 153.0, 151.9, 139.3, 133.9, 129.8, 128.2, 127.6, 123.4, 122.4, 122.0, 119.5, 37.3 (CH2), 20.9 (CH3). GC-MS EI m/z calculated for [M+] C19H15ClN6O2S3 = 491.01, found 490.88 (mass error ∆m = −0.13 ppm. Anal. Calcd for C19H15ClN6O2S3 (491.01): C, 46.48; H, 3.08; N, 17.12. Found: C, 46.59; H, 3.02; N, 17.17%.
- N-(6-Chlorobenzo[d]thiazol-2-yl)-2-((5-(3-(4-methoxyphenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4o)
- White solid (0.075 g, 74%). M.p. 267–269 °C. IR (νmax/cm−1): 3345, 3180, 3050, 2930, 1680, 1605, 1545, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.68 (s, 1H, NH; D2O exchangeable), 11.31 (s, 1H, NH; D2O exchangeable), 9.01 (s, 1H, NH; D2O exchangeable), 8.15 (s, 1H, Ar-H), 7.78 (s, 1H, Ar-H), 7.50–7.39 (m, 3H, Ar-H), 7.02–6.98 (m, 2H, Ar-H), 4.34 (s, 2H, SCH2), 3.73 (s, 3H, OCH3).13C NMR (101 MHz, DMSO-d6) δ 168.7 (CO), 167.7 (CO), 159.0, 155.0, 152.7, 148.0, 139.1, 133.6, 128.2, 127.1, 122.4, 122.0, 121.3, 120.3, 114.5, 55.7 (OCH3), 37.3 (CH2). GC-MS EI m/z calculated for [M+] C19H15ClN6O3S3 = 507.01, found 507.1 (mass error ∆m = −0.09 ppm. Anal. Calcd for C19H15ClN6O3S3 (507.01): C, 45.01; H, 2.98; N, 16.58. Found: C, C, 45.13; H, 2.86; N, 16.61%.
- N-(6-Chlorobenzo[d]thiazol-2-yl)-2-((5-(3-(4-chlorophenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4p)
- White solid (0.071 g, 70%). M.p. 275–277 °C. IR (νmax/cm−1): 3345, 3180, 3050, 2930, 1680, 1605, 1545, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.80 (s, 1H, NH; D2O exchangeable), 11.23 (s, 1H, NH; D2O exchangeable), 9.39 (s, 1H, NH; D2O exchangeable), 8.15 (d, J = 1.9 Hz, 1H, Ar-H), 7.78 (d, J = 8.6 Hz, 1H, Ar-H), 7.54 (d, J = 8.7 Hz, 2H, Ar-H), 7.48 (dd, J = 8.6, 2.1 Hz, 1H, Ar-H), 7.37 (d, J = 8.7 Hz, 2H, Ar-H), 4.35 (s, 2H, SCH2).13C NMR (101 MHz, DMSO-d6) δ 167.8 (CO), 161.2 (CO), 159.1, 153.4, 151.6, 147.9, 140.4, 137.8, 133.6, 129.3, 128.3, 127.1, 122.4, 122.0, 121.0, 37.6 (CH2). GC-MS EI m/z calculated for [M+] C18H12Cl2N6O2S3 = 511.43, found 511.25 (mass error ∆m = −0.18 ppm. Anal. Calcd for C18H12Cl2N6O2S3 (511.43): C, 42.27; H, 2.37; N, 16.43. Found: C, 42.25; H, 2.30; N, 16.49%.
- N-(6-Chlorobenzo[d]thiazol-2-yl)-2-((5-(3-(4-fluorophenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)acetamide (4q)
- White solid (0.063 g, 64%). M.p. 259–261 °C. IR (νmax/cm−1): 3340, 3185, 3040, 2930, 1680, 1605, 1550, 1170. 1H NMR (400 MHz, DMSO-d6) δ 12.43 (s, 1H, NH; D2O exchangeable), 12.40 (s, 1H, NH; D2O exchangeable), 9.84 (s, 1H, NH; D2O exchangeable), 8.15 (s, 1H, Ar-H), 7.77 (d, J = 8.5 Hz, 1H, Ar-H), 7.56 (s, 2H, Ar-H), 7.48 (d, J = 8.3 Hz, 1H, Ar-H), 7.13 (t, J = 8.6 Hz, 2H, Ar-H), 4.34 (s, 2H, SCH2).13C NMR (101 MHz, DMSO-d6) δ 167.9 (CO), 159.2 (CO), 157.1 J(F,C) = 235 Hz, 153.9, 151.3, 147.9, 135.8, 133.6, 129.7, 128.2, 127.0, 122.3, 122.0, 121.0 J(F,C) = 7 Hz, 115.9 J(F,C) = 22 Hz, 37.6 (CH2). GC-MS EI m/z calculated for [M+] C18H12ClFN6O2S3 = 494.97, found 494.95 (mass error ∆m = −0.02 ppm. Anal. Calcd for C18H12ClFN6O2S3 (494.97): C, 43.68; H, 2.44; N, 16.98. Found: C, 43.74; H, 2.41; N, 16.84%.
- 2-((5-(3-(3-Chloro-4-(trifluoromethyl)phenyl)ureido)-1,3,4-thiadiazol-2-yl)thio)-N-(6-chlorobenzo[d]thiazol-2-yl)acetamide (4r)
- White solid (0.08 g, 69%). M.p. 239–241 °C. IR (νmax/cm−1): 3270, 3180, 3050, 2920, 1685, 1600, 1550, 1172. 1H NMR (400 MHz, DMSO-d6) δ 12.87 (s, 1H, NH; D2O exchangeable), 10.26 (s, 1H, NH; D2O exchangeable), 8.34 (s, 1H, NH; D2O exchangeable), 8.07 (d, J = 1.6 Hz, 1H, Ar-H), 7.83 (d, J = 8.5 Hz, 1H, Ar-H), 7.71 (d, J = 8.6 Hz, 1H, Ar-H), 7.48 (d, J = 8.8 Hz, 1H, Ar-H), 7.43 (dd, J = 8.6, 1.9 Hz, 1H, Ar-H), 4.18 (s, 2H, SCH2). GC-MS EI m/z calculated for [M+] C19H11Cl2F3N6O2S3 = 579.43, found 579.31 (mass error ∆m = −0.12 ppm. Anal. Calcd for C19H11Cl2F3N6O2S3 (579.43): C, 39.38; H, 1.91; N, 14.50. Found: C, 39.31; H, 1.76; N, 14.55%.
3.2. Biological Evaluation
3.2.1. Antiproliferative Screening
3.2.2. In Vitro VEGFR-2 and BRAF Inhibitory Test
3.2.3. Flow Cytometry Analysis of the Cell Cycle Distribution
3.2.4. Analysis of Cellular Apoptosis
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatterjee, N.; Bivona, T.G. Polytherapy and targeted cancer drug resistance. Trends Cancer 2019, 5, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.M.; Lee, J.K.; Witte, O.N. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol. Cell. Biol. 2014, 34, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Regad, T. Targeting RTK signaling pathways in cancer. Cancers 2015, 7, 1758–1784. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yang, Q.; Wu, P.; He, C.; Yin, L.; Xu, F.; Yin, Z.; Yue, G.; Zou, Y.; Li, L. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015–2020. Bioorg. Chem. 2021, 113, 105011. [Google Scholar] [CrossRef] [PubMed]
- Otrock, Z.K.; Makarem, J.A.; Shamseddine, A.I. Vascular endothelial growth factor family of ligands and receptors. Blood Cells Mol. Dis. 2007, 38, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Sarabipour, S.; Ballmer-Hofer, K.; Hristova, K. VEGFR-2 conformational switch in response to ligand binding. eLife 2016, 5, e13876. [Google Scholar] [CrossRef]
- Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef]
- Abhinand, C.S.; Raju, R.; Soumya, S.J.; Arya, P.S.; Sudhakaran, P.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal 2016, 10, 347–354. [Google Scholar] [CrossRef]
- Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007, 6, 273–286. [Google Scholar] [CrossRef]
- Kassab, A.E.; Gedawy, E.M.; Hamed, M.I.; Doghish, A.S.; Hassan, R.A. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem. 2021, 36, 922–939. [Google Scholar] [CrossRef]
- Hassan, R.A.; Emam, S.H.; Hwang, D.; Kim, G.-D.; Hassanin, S.O.; Khalil, M.G.; Abdou, A.M.; Sonousi, A. Design, synthesis and evaluation of anticancer activity of new pyrazoline derivatives by down-regulation of VEGF: Molecular docking and apoptosis inducing activity. Bioorg. Chem. 2022, 118, 105487. [Google Scholar] [CrossRef]
- Rusconi, P.; Caiola, E.; Broggini, M. RAS/RAF/MEK inhibitors in oncology. Curr. Med. Chem. 2012, 19, 1164–1176. [Google Scholar] [PubMed]
- El-Nassan, H.B. Recent progress in the identification of BRAF inhibitors as anti-cancer agents. Eur. J. Med. Chem. 2014, 72, 170–205. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mohsen, H.T.; Omar, M.A.; El Kerdawy, A.M.; Mahmoud, A.E.; Ali, M.M.; El Diwani, H.I. Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors. Eur. J. Med. Chem. 2019, 179, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Maksoud, M.S.; El-Gamal, M.I.; Lee, B.S.; Gamal El-Din, M.M.; Jeon, H.R.; Kwon, D.; Ammar, U.M.; Mersal, K.I.; Ali, E.M.; Lee, K.-T. Discovery of new imidazo[2,1-b]thiazole derivatives as potent pan-RAF inhibitors with promising in vitro and in vivo anti-melanoma activity. J. Med. Chem. 2021, 64, 6877–6901. [Google Scholar] [CrossRef] [PubMed]
- Yeom, H.; Hwang, S.-H.; Han, B.-I.; Lee, M. Differential sensitivity of wild-type and BRAF-mutated cells to combined BRAF and autophagy inhibition. Biomol. Ther. 2021, 29, 434. [Google Scholar] [CrossRef]
- Jo, Y.S.; Li, S.; Song, J.H.; Kwon, K.H.; Lee, J.C.; Rha, S.Y.; Lee, H.J.; Sul, J.Y.; Kweon, G.R.; Ro, H.-k. Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2006, 91, 3667–3670. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.A.; Shields, D.J.; Stoletov, K.; Dneprovskaia, E.; McElroy, M.; Greenberg, J.I.; Lindquist, J.; Acevedo, L.M.; Anand, S.; Majeti, B.K. Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF. Proc. Natl. Acad. Sci. USA 2010, 107, 4299–4304. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Yano, H.; Iemura, A.; Ogasawara, S.; Haramaki, M.; Kojiro, M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 1998, 28, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wan, S.; Li, Z.; Fu, Y.; Wang, G.; Zhang, J.; Wu, X. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo [3, 4-d] pyrimidine derivatives as BRAFV600E and VEGFR-2 dual inhibitors. Eur. J. Med. Chem. 2018, 155, 210–228. [Google Scholar] [CrossRef]
- Kane, R.C.; Farrell, A.T.; Saber, H.; Tang, S.; Williams, G.; Jee, J.M.; Liang, C.; Booth, B.; Chidambaram, N.; Morse, D. Sorafenib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res. 2006, 12, 7271–7278. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 2006, 5, 835–844. [Google Scholar] [CrossRef]
- Potashman, M.H.; Bready, J.; Coxon, A.; DeMelfi, T.M.; DiPietro, L.; Doerr, N.; Elbaum, D.; Estrada, J.; Gallant, P.; Germain, J. Design, synthesis, and evaluation of orally active benzimidazoles and benzoxazoles as vascular endothelial growth factor-2 receptor tyrosine kinase inhibitors. J. Med. Chem. 2007, 50, 4351–4373. [Google Scholar] [CrossRef] [PubMed]
- Langarizadeh, M.A.; Eskandari, K.; Abiri, A.; Tavakoli, M.R.; Asadipour, A.; Pourshojaei, Y. A novel dual three and five-component reactions between dimedone, aryl aldehydes, and 1-naphthylamine: Synthesis and computational studies. J. Mol. Struct. 2022, 1258, 132569. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.; Jung, K.; Kim, H.; Aman, W.; Ryu, J.-S.; Hah, J.-M. Design, synthesis and biological evaluation of benzyl 2-(1H-imidazole-1-yl) pyrimidine analogues as selective and potent Raf inhibitors. Bioorganic Med. Chem. Lett. 2014, 24, 3600–3604. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.-K.; El-Gamal, M.I.; Choi, H.S.; Baek, D.; Oh, C.-H. New diarylureas and diarylamides containing 1,3,4-triarylpyrazole scaffold: Synthesis, antiproliferative evaluation against melanoma cell lines, ERK kinase inhibition, and molecular docking studies. Eur. J. Med. Chem. 2011, 46, 5754–5762. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Cierpicki, T.; Grembecka, J. 2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorg. Chem. 2023, 135, 106477. [Google Scholar] [CrossRef] [PubMed]
- Ammazzalorso, A.; Carradori, S.; Amoroso, R.; Fernández, I.F. 2-substituted benzothiazoles as antiproliferative agents: Novel insights on structure-activity relationships. Eur. J. Med. Chem. 2020, 207, 112762. [Google Scholar] [CrossRef]
- Liu, X.-J.; Zhao, H.-C.; Hou, S.-J.; Zhang, H.-J.; Cheng, L.; Yuan, S.; Zhang, L.-R.; Song, J.; Zhang, S.-Y.; Chen, S.-W. Recent development of multi-target VEGFR-2 inhibitors for the cancer therapy. Bioorg. Chem. 2023, 133, 106425. [Google Scholar] [CrossRef]
- Chander Sharma, P.; Sharma, D.; Sharma, A.; Bansal, K.K.; Rajak, H.; Sharma, S.; Thakur, V.K. New horizons in benzothiazole scaffold for cancer therapy: Advances in bioactivity, functionality, and chemistry. Appl. Mater. Today 2020, 20, 100783. [Google Scholar] [CrossRef]
- Okaniwa, M.; Hirose, M.; Arita, T.; Yabuki, M.; Nakamura, A.; Takagi, T.; Kawamoto, T.; Uchiyama, N.; Sumita, A.; Tsutsumi, S.; et al. Discovery of a Selective Kinase Inhibitor (TAK-632) Targeting Pan-RAF Inhibition: Design, Synthesis, and Biological Evaluation of C-7-Substituted 1,3-Benzothiazole Derivatives. J. Med. Chem. 2013, 56, 6478–6494. [Google Scholar] [CrossRef]
- Abdel-Mohsen, H.T.; Abd El-Meguid, E.A.; El Kerdawy, A.M.; Mahmoud, A.E.E.; Ali, M.M. Design, synthesis, and molecular docking of novel 2-arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch. Pharm. 2020, 353, 1900340. [Google Scholar] [CrossRef]
- El-Damasy, A.K.; Lee, J.-H.; Seo, S.H.; Cho, N.-C.; Pae, A.N.; Keum, G. Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-RafV600E and C-Raf kinase inhibitory activities. Eur. J. Med. Chem. 2016, 115, 201–216. [Google Scholar] [CrossRef] [PubMed]
- El-Damasy, A.K.; Cho, N.-C.; Nam, G.; Pae, A.N.; Keum, G. Discovery of a Nanomolar Multikinase Inhibitor (KST016366): A New Benzothiazole Derivative with Remarkable Broad-Spectrum Antiproliferative Activity. ChemMedChem 2016, 11, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- El-Helby, A.G.A.; Sakr, H.; Eissa, I.H.; Abulkhair, H.; Al-Karmalawy, A.A.; El-Adl, K. Design, synthesis, molecular docking, and anticancer activity of benzoxazole derivatives as VEGFR-2 inhibitors. Arch. Pharm. 2019, 352, 1900113. [Google Scholar] [CrossRef] [PubMed]
- Arter, C.; Trask, L.; Ward, S.; Yeoh, S.; Bayliss, R. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. J. Biol. Chem. 2022, 298, 102247. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Cottin, V.; Flaherty, K.R.; Kolb, M.; Inoue, Y.; Raghu, G.; Taniguchi, H.; Hansell, D.M.; Nicholson, A.G.; Le Maulf, F. Design of the INPULSIS™ trials: Two phase 3 trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respir. Med. 2014, 108, 1023–1030. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 2016, 103, 26–48. [Google Scholar] [CrossRef]
- Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015, 36, 422–439. [Google Scholar] [CrossRef]
- Faraji, A.; Motahari, R.; Hasanvand, Z.; Bakhshaiesh, T.O.; Toolabi, M.; Moghimi, S.; Firoozpour, L.; Boshagh, M.A.; Rahmani, R.; Ketabforoosh, S.H. Quinazolin-4 (3H)-one based agents bearing thiadiazole-urea: Synthesis and evaluation of anti-proliferative and antiangiogenic activity. Bioorg. Chem. 2021, 108, 104553. [Google Scholar] [CrossRef]
- Faraji, A.; Oghabi Bakhshaiesh, T.; Hasanvand, Z.; Motahari, R.; Nazeri, E.; Boshagh, M.A.; Firoozpour, L.; Mehrabi, H.; Khalaj, A.; Esmaeili, R.; et al. Design, synthesis and evaluation of novel thienopyrimidine-based agents bearing diaryl urea functionality as potential inhibitors of angiogenesis. Eur. J. Med. Chem. 2021, 209, 112942. [Google Scholar] [CrossRef] [PubMed]
- Al-Sanea, M.M.; Hamdi, A.; Mohamed, A.A.; El-Shafey, H.W.; Moustafa, M.; Elgazar, A.A.; Eldehna, W.M.; Ur Rahman, H.; Parambi, D.G.; Elbargisy, R.M. New benzothiazole hybrids as potential VEGFR-2 inhibitors: Design, synthesis, anticancer evaluation, and in silico study. J. Enzym. Inhib. Med. Chem. 2023, 38, 2166036. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-K.; Kang, J.S.; Oelschlaeger, P.; Yang, K.-W. Azolylthioacetamide: A highly promising scaffold for the development of metallo-β-lactamase inhibitors. ACS Med. Chem. Lett. 2015, 6, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Othman, D.I.; Hamdi, A.; Elhusseiny, W.M.; El-Azab, A.S.; Bakheit, A.H.; Hefnawy, M.; Alaa, A.-M. Synthesis of novel spirochromane incorporating Schiff’s bases, potential antiproliferative activity, and dual EGFR/HER2 inhibition: Cell cycle analysis and in silico study. Saudi Pharm. J. 2023, 31, 101803. [Google Scholar] [CrossRef] [PubMed]
- Elsbaey, M.; Ibrahim, M.A.A.; Bar, F.A.; Elgazar, A.A. Chemical constituents from coconut waste and their in silico evaluation as potential antiviral agents against SARS-CoV-2. S. Afr. J. Bot. 2021, 141, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Al-Majid, A.M.; Azam, M.; Verma, V.P.; Barakat, A.; Haukka, M.; Elgazar, A.A.; Mira, A.; Badria, F.A. Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors. ACS Omega 2021, 6, 31539–31556. [Google Scholar] [CrossRef] [PubMed]
- Al-Sanea, M.M.; Chilingaryan, G.; Abelyan, N.; Mamikonyan, M.; Gasparyan, H.; Hovhannisyan, S.; Hamdi, A.; Ali, A.R.; Selim, S.; Mohamed, A.A. Combination of ligand and structure based virtual screening approaches for the discovery of potential PARP1 inhibitors. PLoS ONE 2022, 17, e0272065. [Google Scholar] [CrossRef] [PubMed]
- Abass, S.A.; Elgazar, A.A.; El-Kholy, S.S.; El-Refaiy, A.I.; Nawaya, R.A.; Bhat, M.A.; Farrag, F.A.; Hamdi, A.; Balaha, M.; El-Magd, M.A. Unraveling the Nephroprotective Potential of Papaverine against Cisplatin Toxicity through Mitigating Oxidative Stress and Inflammation: Insights from In Silico, In Vitro, and In Vivo Investigations. Molecules 2024, 29, 1927. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.S.; Rajesh, P.; Rajendra, P.; Chaskar, M.G.; Rohidas, A.; Jaiprakash, S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg. Chem. 2022, 120, 105597. [Google Scholar] [CrossRef]
- El Hamaky, N.F.; Hamdi, A.; Bayoumi, W.A.; Elgazar, A.A.; Nasr, M.N. Novel quinazolin-2-yl 1, 2, 3-triazole hybrids as promising multi-target anticancer agents: Design, synthesis, and molecular docking study. Bioorg. Chem. 2024, 148, 107437. [Google Scholar] [CrossRef]
- Nnyigide, O.S.; Nnyigide, T.O.; Lee, S.-G.; Hyun, K. Protein Repair and Analysis Server: A Web Server to Repair PDB Structures, Add Missing Heavy Atoms and Hydrogen Atoms, and Assign Secondary Structures by Amide Interactions. J. Chem. Inf. Model. 2022, 62, 4232–4246. [Google Scholar] [CrossRef] [PubMed]
- Elgazar, A.A.; El-Domany, R.A.; Eldehna, W.M.; Badria, F.A. 3-Acetyl-11-keto-β-boswellic Acid-Based Hybrids Alleviate Acetaminophen-Induced Hepatotoxicity in HepG2 by the Regulation of Inflammatory and Oxidative Stress Pathways: An Integrated Approach. ACS Omega 2023, 8, 39490–39510. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, A.; Yaseen, M.; Ewes, W.A.; Bhat, M.A.; Ziedan, N.I.; El-Shafey, H.W.; Mohamed, A.A.B.; Elnagar, M.R.; Haikal, A.; Othman, D.I.A.; et al. Development of new thiazolidine-2,4-dione hybrids as aldose reductase inhibitors endowed with antihyperglycaemic activity: Design, synthesis, biological investigations, and in silico insights. J. Enzym. Inhib. Med. Chem. 2023, 38, 2231170. [Google Scholar] [CrossRef] [PubMed]
- ElNaggar, M.H.; Elgazar, A.A.; Gamal, G.; Hamed, S.M.; Elsayed, Z.M.; El-Ashrey, M.K.; Abood, A.; El Hassab, M.A.; Soliman, A.M.; El-Domany, R.A.; et al. Identification of sulphonamide-tethered N-((triazol-4-yl)methyl)isatin derivatives as inhibitors of SARS-CoV-2 main protease. J. Enzym. Inhib. Med. Chem. 2023, 38, 2234665. [Google Scholar] [CrossRef]
- El-Senduny, F.F.; Elgazar, A.; Alwasify, H.A.; Abed, A.; Foda, M.; Abouzeid, S.; Lewerenz, L.; Selmar, D.; Badria, F. Bio-evaluation of untapped alkaloids from Vinca minor enriched by methyl jasmonate induced stress: An Integrated approach. Planta Med. 2023, 89, 964–978. [Google Scholar] [CrossRef]
Comp. No. | R | R1 | R2 | IC50 (µM) | |||
---|---|---|---|---|---|---|---|
HePG-2 | HCT-116 | MCF-7 | WI-38 | ||||
4a | H | H | H | 12.88 ± 0.9 | 9.94 ± 0.8 | 5.91 ± 0.3 | 66.22 ± 3.5 |
4b | H | CH3 | H | 48.25 ± 2.5 | 61.78 ± 3.3 | 46.53 ± 2.6 | 80.95 ± 4.2 |
4c | H | OCH3 | H | 42.22 ± 2.6 | 65.48 ± 3.5 | 54.46 ± 2.9 | 91.31 ± 4.6 |
4d | H | Cl | H | 30.20 ± 2.3 | 39.69 ± 2.3 | 33.64 ± 2.0 | 89.09 ± 4.3 |
4e | H | F | H | 63.39 ± 3.4 | 82.45 ± 4.2 | 67.10 ± 3.4 | >100 |
4f | H | CF3 | Cl | 5.05 ± 0.3 | 6.21 ± 0.4 | 2.74 ± 0.1 | 41.24 ± 2.4 |
4g | CH3 | H | H | 22.93 ± 1.8 | 19.60 ± 1.3 | 16.46 ± 1.2 | 79.42 ± 4.0 |
4h | CH3 | CH3 | H | 37.36 ± 2.5 | 56.22 ± 3.0 | 40.62 ± 2.3 | 87.80 ± 4.4 |
4i | CH3 | OCH3 | H | 53.10 ± 2.7 | 76.69 ± 3.9 | 59.53 ± 3.1 | 45.45 ± 2.6 |
4j | CH3 | Cl | H | 78.13 ± 3.9 | >100 | 84.19 ± 4.2 | >100 |
4k | CH3 | F | H | 64.23 ± 3.7 | 92.02 ± 4.6 | 69.52 ± 3.5 | 58.45 ± 3.2 |
4l | CH3 | CF3 | Cl | 15.36 ± 1.2 | 13.54 ± 1.0 | 9.46 ± 0.6 | 47.54 ± 2.7 |
4m | Cl | H | H | 29.84 ± 2.0 | 34.39 ± 2.1 | 28.93 ± 1.9 | 74.45 ± 3.8 |
4n | Cl | CH3 | H | 32.84 ± 2.4 | 44.84 ± 2.5 | 36.72 ± 2.1 | >100 |
4o | Cl | OCH3 | H | 35.03 ± 2.4 | 51.63 ± 2.8 | 43.45 ± 2.4 | 26.36 ± 1.8 |
4p | Cl | Cl | H | 57.03 ± 3.1 | 71.29 ± 3.7 | 62.57 ± 3.2 | 94.11 ± 4.9 |
4q | Cl | F | H | 27.38 ± 2.2 | 25.39 ± 1.8 | 21.72 ± 1.5 | 49.73 ± 2.9 |
4r | Cl | CF3 | Cl | 8.10 ± 0.6 | 7.81 ± 0.6 | 3.85 ± 0.2 | 38.77 ± 2.2 |
SOR | 9.18 ± 0.6 | 5.47 ± 0.3 | 7.26 ± 0.3 | 10.65 ± 0.8 |
Comp. No. | IC50 (µM) | |
---|---|---|
VEGFR-2 | BRAF | |
4a | 0.342 | 0.677 |
4f | 0.071 | 0.194 |
4r | 0.794 | 1.359 |
SOR | 0.069 | 0.171 |
Comp. No | Cell Cycle Distribution (%) | ||
---|---|---|---|
G0-G1 | S | G2-M | |
4f | 64.51 | 22.72 | 12.77 |
Control | 57.82 | 26.33 | 15.85 |
Compound | VEGFR-2 Binding Energy (kcal/mol) RMSD = 0.5 | BRAF Binding Energy (kcal/mol) RMSD = 0.8 |
---|---|---|
4a | −9.4 | −8.5 |
4f | −10.4 | −9.3 |
4r | −8.9 | −8.2 |
Sorafenib | −11.6 | −10.2 |
Dabrafenib | --- | −9.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewes, W.A.; Tawfik, S.S.; Almatary, A.M.; Ahmad Bhat, M.; El-Shafey, H.W.; Mohamed, A.A.B.; Haikal, A.; El-Magd, M.A.; Elgazar, A.A.; Balaha, M.; et al. Identification of Benzothiazoles Bearing 1,3,4-Thiadiazole as Antiproliferative Hybrids Targeting VEGFR-2 and BRAF Kinase: Design, Synthesis, BIO Evaluation and In Silico Study. Molecules 2024, 29, 3186. https://doi.org/10.3390/molecules29133186
Ewes WA, Tawfik SS, Almatary AM, Ahmad Bhat M, El-Shafey HW, Mohamed AAB, Haikal A, El-Magd MA, Elgazar AA, Balaha M, et al. Identification of Benzothiazoles Bearing 1,3,4-Thiadiazole as Antiproliferative Hybrids Targeting VEGFR-2 and BRAF Kinase: Design, Synthesis, BIO Evaluation and In Silico Study. Molecules. 2024; 29(13):3186. https://doi.org/10.3390/molecules29133186
Chicago/Turabian StyleEwes, Wafaa A., Samar S. Tawfik, Aya M. Almatary, Mashooq Ahmad Bhat, Hamed W. El-Shafey, Ahmed A. B. Mohamed, Abdullah Haikal, Mohammed A. El-Magd, Abdullah A. Elgazar, Marwa Balaha, and et al. 2024. "Identification of Benzothiazoles Bearing 1,3,4-Thiadiazole as Antiproliferative Hybrids Targeting VEGFR-2 and BRAF Kinase: Design, Synthesis, BIO Evaluation and In Silico Study" Molecules 29, no. 13: 3186. https://doi.org/10.3390/molecules29133186
APA StyleEwes, W. A., Tawfik, S. S., Almatary, A. M., Ahmad Bhat, M., El-Shafey, H. W., Mohamed, A. A. B., Haikal, A., El-Magd, M. A., Elgazar, A. A., Balaha, M., & Hamdi, A. (2024). Identification of Benzothiazoles Bearing 1,3,4-Thiadiazole as Antiproliferative Hybrids Targeting VEGFR-2 and BRAF Kinase: Design, Synthesis, BIO Evaluation and In Silico Study. Molecules, 29(13), 3186. https://doi.org/10.3390/molecules29133186