Kinetic Study and Reaction Mechanism of the Gas-Phase Thermolysis Reaction of Methyl Derivatives of 1,2,4,5-Tetroxane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Results
2.2. Kinetic Results
2.3. Thermolysis Reaction Mechanism
2.3.1. Concerted Mechanism
2.3.2. Stepwise Mechanism in the Singlet State
2.3.3. Thermolysis Reaction as Triplet State (Scheme 2)
2.4. Excited States and Non-Adiabatic Chemistry of Tetroxane and the Methylated Systems
3. Materials and Methodology
3.1. Materials
3.2. Analytic and Kinetic Methods
3.3. Computational Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerna, J.; Morales, G.; Eyler, G.; Cañizo, A. Bulk polymerization of styrene catalyzed by biand tri-functional cyclic initiators. J. Appl. Polym. Sci. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Dong, Y.; McCulloug, K.J.; Wittlin, S.; Chollet, J.; Vennerstrom, J.L. The structure and antimalarial activity of dispiro-1, 2, 4, 5-tetraoxanes derived from (+)-dihydrocarvone. Bioorg. Med. Chem. Lett. 2010, 20, 6359–6361. [Google Scholar] [CrossRef]
- Atheaya, H.; Khan, S.I.; Mamgaina, R.; Rawata, D.S. Synthesis, thermal stability, antimalarial activity of symmetrically and asymmetrically substituted tetraoxanes. Bioorg. Med. Chem. Lett. 2008, 18, 1446–1449. [Google Scholar] [CrossRef]
- Creek, D.J.; Ryan, E.; Charman, W.N.; Chiu, F.C.; Prankerd, R.J.; Vennerstrom, J.L.; Charman, S.A. Stability of peroxide antimalarials in the presence of human hemoglobin. Antimicrob. Agents Chemother. 2009, 53, 3496–3500. [Google Scholar] [CrossRef]
- Oxley, J.C.; Smith, J.L.; Chen, H. Decomposition of a Multiperoxidic Compound: Triacetone Triperoxide (TATP). Prop. Explos. Pyrotech. 2002, 27, 209–216. [Google Scholar] [CrossRef]
- Antolínez, I.V.; Barbosa, L.C.A.; Maltha, C.R.A.; Pereira, G.A.M.M.; Silva, A.A. Synthesis and phytotoxic profile of a new tetraoxane designed from a commercial auxin. Quim. Nova 2020, 43, 1–8. [Google Scholar] [CrossRef]
- Jorge, N.L.; Romero, J.M.; Grand, A.; Hernández-Laguna, A. Gas-phase thermolysis reaction of formaldehyde diperoxide. Kinetic study and theoretical mechanisms. Chem. Phys. 2012, 39, 37–45. [Google Scholar] [CrossRef]
- Profeta, M.I.; Romero, J.M.; Jorge, N.L.; Grand, A.; Hernández-Laguna, A. Theoretical study of the gas-phase thermolysis of 3-methyl-1, 2, 4, 5-tetroxane. J. Mol. Model. 2014, 2, 2224–2226. [Google Scholar] [CrossRef] [PubMed]
- Bordón, A.G.; Pila, A.N.; Profeta, M.I.; Romero, J.M.; Jorge, L.C.; Jorge, N.L.; Sainz-Díaz, C.I.; Grand, A.; Hernández-Laguna, A. Theoretical study of the gas-phase thermolysis reaction of 3, 6-dimethyl-1, 2, 4, 5-tetroxane. Methyl and axial-equatorial substitution effects. J. Mol. Model. 2019, 25, 217. [Google Scholar] [CrossRef]
- Leiva, L.C.; Jorge, N.L.; Romero, J.M.; Cafferata, L.F.R.; Gómez Vara, M.E.; Castro, E.A. Thermal decomposition reaction of 3, 3, 6, 6- tetramethyl- 1, 2, 4, 5- tetroxane in 2-methoxy-ethanol solution. Chem. Heterocycl. Compd. 2010, 45, 1455–1459. [Google Scholar] [CrossRef]
- Farahani, P.; Roca-Sanjuán, D.; Zapata, F.; Lindh, R. Revisiting the nonadiabatic process in 1, 2-dioxetane. J. Chem. Theory Comput. 2013, 9, 5404–5411. [Google Scholar] [CrossRef] [PubMed]
- Schmigel, W.W.; Litt, F.A.; Cowan, D.O. A convenient gas chromatographic method for determining activation energies of first-order reactions. J. Org. Chem. 1968, 33, 3334–3345. [Google Scholar] [CrossRef]
- Cafferata, L.F.R.; Lombardo, J.D. Kinetics and Mechanism of the Thermal Decomposition Reaction of Acetone Cyclic Diperoxide in the Gas Phase. Int. J. Chem. Kin. 1994, 26, 503–509. [Google Scholar] [CrossRef]
- Richardson, W.H.; Montgomery, F.C.; Yelvington, M.B.; HO’Neal, E. Kinetics of the thermal decomposition of 3, 3-diphenyl- and 3, 3-dibenzyl-1, 2-dioxetane. Consideration of stepwise and concerted mechanisms. J. Am. Chem. Soc. 1974, 96, 7525–7532. [Google Scholar] [CrossRef]
- Adam, W.; Baader, W.J. Effects of methylation on the thermal stability and chemiluminescence properties of 1, 2-dioxetanes. J. Am. Chem. Soc. 1985, 107, 410–416. [Google Scholar] [CrossRef]
- Lefller, J.E. Parameters for the Description of Transition States. Science 1953, 117, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Hammond, G.S. A Correlation of Reaction Rates. J. Am. Chem. Soc. 1955, 77, 334–338. [Google Scholar] [CrossRef]
- El-Sayed, M.A. Triplet state. Its radiative and nonradiative properties. Acc. Chem. Res. 1968, 1, 8–16. [Google Scholar] [CrossRef]
- Vacher, M.; Farahani, P.; Valentini, A.; Frutos, L.M.; Karlsson, H.O. How Do Methyl Groups Enhance the Triplet Chemiexcitation Yield of Dioxetane? J. Phys. Chem. Lett. 2017, 8, 3790–3794. [Google Scholar] [CrossRef]
- Frisch, M.J.; Truck, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Slater, J.C.; Phillips, J.C. Quantum Theory of Molecules and Solids Vol. 4: The Self-Consistent Field for Molecules and Solids. Phys. Today 1974, 27, 49–50. [Google Scholar] [CrossRef]
- Lee, C.; Yang, L.W.; Par, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, H.B. Optimization of Equilibrium Geometries and Transition Structures. J. Comput. Chem. 1982, 3, 214–218. [Google Scholar] [CrossRef]
- Frisch, A.; Nielsen, A.B.; Holder, A.J. Gauss View Molecular Visualization Program; User Manual; Gaussian Inc.: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem. 1990, 94, 5523–5529. [Google Scholar] [CrossRef]
- Andersson, K.; Malmqvist, P.A.; Roos, B.O.; Sadlej, A.J.; Wolinski, K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 1990, 94, 5483–5488. [Google Scholar] [CrossRef]
- Roca-Sanjuán, D.; Aquilante, F.; Lindh, R. Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 585–603. [Google Scholar] [CrossRef]
- Aquilante, F.; Autschbach, J.; Carlson, R.K.; Chibotaru, L.F.; Delcey, M.G.; De Vico, L.; Fernández-Galván, I.; Ferre, N.; Frutos, L.M.; Gagliardi, L.; et al. MOLCAS 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37, 506–541. [Google Scholar] [CrossRef]
- Forsberg, N.; Malmqvist, P.A. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett. 1997, 274, 196–204. [Google Scholar] [CrossRef]
- Malmqvist, P.A.; Roos, B.O. The CASSCF state interaction method. Chem. Phys. Lett. 1989, 155, 189–194. [Google Scholar] [CrossRef]
- Malmqvist, P.A.; Roos, B.O.; Schimmelpfennig, B. The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chem. Phys. Lett. 2002, 357, 230–240. [Google Scholar] [CrossRef]
T | kexp,DMT | kexp,ACPD |
---|---|---|
493 | 0.245 | 0.461 |
503 | 0.419 | 0.732 |
513 | 0.704 | 1.142 |
523 | 1.072 | 1.749 |
533 | 1.867 | 2.642 |
543 | 2.959 | 3.926 |
Structure | E a | ZPE a | ν b | S2 | ΔE c | |||||
TMT d | ||||||||||
C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | |
c | −497.124296 | −497.129205 | 0.160475 | 0.160432 | 0.000 | 0.000 | 0.00 | 0.00 | ||
TSx | −497.010763 | −497.011919 | 0.152643 | 0.147980 | 847 | 782 | 0.000 | 0.000 | 66.33 | 68.79 |
P | −497.162535 | −497.162748 | 0.149117 | 0.149286 | 0.000 | 0.000 | −31.12 | −28.04 | ||
ACDP | ||||||||||
E a | ZPE a | ν b | S2 | ΔE c | ||||||
c | −536.430463 | 0.188318 | 0.000 | 0.00 | ||||||
TSx | −536.318198 | 0.181089 | 827 | 0.000 | 65.91 | |||||
P | −536.472492 | 0.178024 | 0.000 | −32.83 |
Structure | E a | ZPE a | ν b | S2 | ΔE c | |||||
C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | |
Steps 1–2 | ||||||||||
c | −497.124296 | −497.129205 | 0.160475 | 0.160432 | 0.000 | 0.000 | 0.00 | 0.00 | ||
TSco | −497.092215 | −497.096180 | 0.156538 | 0.156593 | 290 | 235 | 0.029 | 0.030 | 17.66 | 18.31 |
o | −497.101741 | −497.101741 | 0.154981 | 0.154855 | 0.079 | 0.079 | 11.78 | 13.73 | ||
TSob′ | −497.070352 | −497.071563 | 0.152574 | 0.152500 | 921 | 880 | 0.434 | 0.438 | 28.89 (17.11) d | 31.19 (17.46) d |
b′ | −497.114959 | −497.114956 | 0.151574 | 0.151577 | 0.096 | 0.096 | 0.27 (−11.50) d | 3.38 (−10.35) d | ||
Step 3 | ||||||||||
b | −343.323732 | −343.323732 | 0.093465 | 0.093465 | 0.093 | 0.093 | 0.00 | 0.00 | ||
TSbp | −343.303619 | −343.303619 | 0.090456 | 0.090456 | 1748 | 1748 | 0.331 | 0.331 | 10.73 | 10.73 |
p | −343.370545 | −343.370545 | 0.090715 | 0.090715 | 0.000 | 0.000 | −31.10 | −31.10 |
Structure | E a | ZPE a | νb | S2 | ΔE c | |||||
C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | |
Steps 1–2 | ||||||||||
c | −497.124296 | −497.129205 | 0.160475 | 0.160432 | 0.000 | 0.000 | 0.00 | 0.00 | ||
TSco | −497.092215 | −497.096180 | 0.156538 | 0.156593 | 290 | 235 | 0.029 | 0.030 | 17.66 | 18.31 |
o | −497.100033 | −497.101741 | 0.154981 | 0.154855 | 0.079 | 0.079 | 11.78 | 13.73 | ||
TSob′ | −497.073225 | −497.074872 | 0.152687 | 0.152499 | 840 | 850 | 0.434 | 0.429 | 27.16 (15.38) d | 29.11 (15.38) d |
b′ | −497.119271 | −497.118808 | 0.152003 | 0.151632 | 0.097 | 0.095 | −2.16 (−13.94) d | 1.00 (−12.72) d | ||
Step 3 | ||||||||||
b | −304.018286 | −304.018882 | 0.065015 | 0.064871 | 0.094 | 0.099 | 0.00 | 0.00 | ||
TSbp | −303.996727 | −303.997398 | 0.062188 | 0.061560 | 3892 | 4396 | 0.377 | 0.389 | 11.75 | 11.40 |
p | −304.061264 | −304.061138 | 0.061760 | 0.061722 | 0.000 | 0.000 | −29.01 | −28.64 |
Structure | E a | ZPE a | ν b | S2 | ΔE c |
Step 1 | |||||
c | −536.430463 | 0.188318 | 0.000 | 0.00 | |
TSco | −536.397311 | 0.184653 | 233 | 0.031 | 18.50 |
o | −536.403912 | 0.183363 | 0.077 | 13.55 | |
TSob′ | −536.377167 | 0.181022 | 846 | 0.422 | 28.86 (15.31) d |
b′ | −536.424636 | 0.180440 | 0.096 | −1.29 (−14.83) d | |
Step 2 | |||||
b | −343.323732 | 0.093465 | 0.093 | 0.00 | |
TSbp | −343.303619 | 0.090456 | 1748 | 0.331 | 10.73 |
p | −343.370545 | 0.090715 | 0.000 | −31.10 |
Structure | E a | ZPE a | ν b | S2 | ΔE c | |||||
C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | |
Step 1 | ||||||||||
o | −497.100010 | 497.101706 | 0.154987 | 0.154850 | 2.009 | 2.000 | 0.00 | 0.00 | ||
TSob′ | −497.070759 | −497.071879 | 0.152803 | 0.152552 | 888 | 875 | 2.000 | 2.000 | 16.98 d | 15.13 d |
b′ | −497.115218 | −497.115340 | 0.151676 | 0.151731 | 2.021 | 2.000 | −11.62 e | −10.51 e | ||
Step 2 | ||||||||||
b | −343.320980 | −343.320980 | 0.093508 | 0.093508 | 2.000 | 2.000 | 0.00 | 0.00 | ||
TSbp | −343.310328 | −343.310328 | 0.090696 | 0.090696 | 4612 | 4612 | 2.000 | 2.000 | 6.88 | 6.88 |
p | −343.389853 | −343.389853 | 0.090578 | 0.090578 | 2.000 | 2.000 | −43.10 | −43.10 |
Structure | E a | ZPE a | ν b | S2 | ΔE c | |||||
C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | C-6ax | C-6eq | |
Step 1 | ||||||||||
o | −497.100010 | −497.101706 | 0.154987 | 0.154850 | 2.009 | 2.000 | 0.00 | 0.00 | ||
TSob′ | −497.073526 | −497.075179 | 0.152727 | 0.152551 | 837 | 848 | 2.000 | 2.000 | 15.20 d | 15.20 d |
b′ | −497.121021 | −497.116653 | 0.151932 | 0.151264 | 2.021 | 2.000 | −15.10 e | −11.63 e | ||
Step 2 | ||||||||||
b | −304.018708 | −304.019876 | 0.065059 | 0.064864 | 2.000 | 2.000 | 0.00 | 0.00 | ||
TSbp | −304.003558 | −303.004328 | 0.062416 | 0.061914 | 3784 | 3503 | 2.000 | 2.000 | 7.90 | 7.84 |
p | −304.080579 | −304.080668 | 0.061737 | 0.061720 | 2.000 | 2.000 | −40.91 | −40.12 |
Structure | E a | ZPE a | Ν b | S2 | ΔE c |
qc | −536.401787 | 0.183464 | 2.000 | 1.39 d | |
Step 1 | |||||
o | −536.403895 | 0.183362 | 2.000 | 0.00 | |
TSob′ | −536.377483 | 0.180690 | 844 | 2.000 | 15.13 e |
b′ | −536.425114 | 0.180509 | 2.000 | −15.12 f | |
Step 2 | |||||
b | −343.320980 | 0.093508 | 2.000 | 0.00 | |
TSbp | −343.219631 | 0.090696 | 4612 | 2.000 | 6.88 |
p | −343.389843 | 0.090578 | 2.000 | −43.10 |
State | Nature | Weight (%) | EVA (eV) |
S1 | n3→σ1* | 78 | 5.09 |
S2 | n2→σ2* | 74 | 5.14 |
S3 | n4→σ1* | 80 | 5.78 |
T1 | n3→σ1* | 39 | 3.87 |
n2→σ2* | 26 | ||
T2 | n2→σ1* | 34 | 3.93 |
n3→σ2* | 30 | ||
T3 | n4→σ1* | 54 | 4.42 |
n1→σ2* | 27 | ||
T4 | n4→σ2* | 45 | 4.81 |
n1→σ1* | 35 |
FDP | MFDP (ax) | MFDP (eq) | DMT (aa) | DMT (ae) | DMT (ee) | TMT (aae) | TMT (aee) | ACDP | |
T1-S0 | 0.03 | 0.06 | 0.05 | 0.10 | 0.09 | 0.07 | 0.15 | 0.13 | 0.21 |
T2-S0 | 21.12 | 65.27 | 66.46 | 23.72 | 41.81 | 27.77 | 61.30 | 57.93 | 33.84 |
T3-S0 | 96.04 | 76.50 | 72.42 | 95.29 | 88.91 | 94.24 | 76.58 | 79.27 | 91.94 |
T4-S0 | 0.23 | 0.13 | 0.20 | 0.12 | 0.14 | 0.16 | 0.41 | 0.23 | 0.65 |
T1-S1 | 21.13 | 62.65 | 64.16 | 23.67 | 32.08 | 27.76 | 51.95 | 46.56 | 33.71 |
T2-S1 | 0.10 | 0.50 | 0.43 | 0.19 | 0.41 | 0.16 | 1.01 | 0.75 | 0.33 |
T3-S1 | 0.44 | 0.04 | 0.51 | 1.85 | 0.84 | 0.17 | 1.95 | 1.10 | 3.13 |
T4-S1 | 21.28 | 62.25 | 63.81 | 23.97 | 32.15 | 26.74 | 51.69 | 46.49 | 34.10 |
T1-S2 | 96.12 | 75.90 | 74.57 | 95.51 | 93.00 | 94.34 | 83.46 | 86.61 | 92.26 |
T2-S2 | 1.22 | 0.21 | 0.66 | 0.37 | 0.18 | 0.83 | 1.25 | 0.34 | 1.16 |
T3-S2 | 0.03 | 0.48 | 0.43 | 0.03 | 0.26 | 0.03 | 0.48 | 0.44 | 0.00 |
T4-S2 | 95.39 | 75.08 | 73.88 | 94.35 | 91.97 | 93.39 | 82.53 | 85.61 | 91.23 |
T1-S3 | 0.14 | 0.10 | 0.12 | 0.35 | 0.22 | 0.03 | 0.60 | 0.35 | 0.93 |
T2-S3 | 21.26 | 64.98 | 66.18 | 23.90 | 41.66 | 27.99 | 61.60 | 57.71 | 33.99 |
T3-S3 | 95.47 | 72.87 | 71.87 | 94.53 | 88.19 | 93.49 | 76.08 | 78.64 | 91.48 |
T4-S3 | 0.17 | 0.21 | 0.20 | 0.29 | 0.26 | 0.24 | 0.36 | 0.32 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordón, A.G.; Profeta, M.I.; Romero, J.M.; Jorge, M.J.; Jorge, L.C.; Jorge, N.L.; Sainz-Díaz, C.I.; Cuéllar-Zuquin, J.; Roca-Sanjuán, D.; Viseras Iborra, C.; et al. Kinetic Study and Reaction Mechanism of the Gas-Phase Thermolysis Reaction of Methyl Derivatives of 1,2,4,5-Tetroxane. Molecules 2024, 29, 3274. https://doi.org/10.3390/molecules29143274
Bordón AG, Profeta MI, Romero JM, Jorge MJ, Jorge LC, Jorge NL, Sainz-Díaz CI, Cuéllar-Zuquin J, Roca-Sanjuán D, Viseras Iborra C, et al. Kinetic Study and Reaction Mechanism of the Gas-Phase Thermolysis Reaction of Methyl Derivatives of 1,2,4,5-Tetroxane. Molecules. 2024; 29(14):3274. https://doi.org/10.3390/molecules29143274
Chicago/Turabian StyleBordón, Alexander G., Mariela I. Profeta, Jorge M. Romero, María J. Jorge, Lilian C. Jorge, Nelly L. Jorge, C. Ignacio Sainz-Díaz, Juliana Cuéllar-Zuquin, Daniel Roca-Sanjuán, César Viseras Iborra, and et al. 2024. "Kinetic Study and Reaction Mechanism of the Gas-Phase Thermolysis Reaction of Methyl Derivatives of 1,2,4,5-Tetroxane" Molecules 29, no. 14: 3274. https://doi.org/10.3390/molecules29143274
APA StyleBordón, A. G., Profeta, M. I., Romero, J. M., Jorge, M. J., Jorge, L. C., Jorge, N. L., Sainz-Díaz, C. I., Cuéllar-Zuquin, J., Roca-Sanjuán, D., Viseras Iborra, C., Grand, A., & Hernández-Laguna, A. (2024). Kinetic Study and Reaction Mechanism of the Gas-Phase Thermolysis Reaction of Methyl Derivatives of 1,2,4,5-Tetroxane. Molecules, 29(14), 3274. https://doi.org/10.3390/molecules29143274