Exploration of Free Energy Surface of the Au10 Nanocluster at Finite Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Lowest Energy Structures
2.2. The Chemical Bonding Analysis on Au10 Cluster
2.2.1. AdNDP Analysis
2.2.2. QTAIM Analysis
2.3. Energetics
3. Theoretical Methods and Computational Details
3.1. Lowest Energy Structure Search
3.2. Thermochemistry Properties
3.3. Thermal Population
3.4. The Chemical Bonding
4. Thermal Population
5. Infrared Spectra (IR) of Au10 Cluster
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
DLPNO-CCSD(T) | Domain-based Local Pair Natural Orbital Coupled-Cluster Theory |
ZPE | Zero-Point Energy |
IR | Vibrational Infrared Spectrum |
BOFA | Boltzmann-Optics-Full-Ader code (Module Nanothermodynamics) |
GALGOSON | Global Genetic Algorithm |
References
- Narayanan, R.; El-Sayed, M.A. Catalysis with Transition Metal Nanoparticles in Colloidal Solution Nanoparticle Shape Dependence and Stability. J. Phys. Chem. B 2005, 109, 12663–12676. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Sadia, H.; Ali Shah, S.Z.; Khan, M.N.; Shah, A.A.; Ullah, N.; Ullah, M.F.; Bibi, H.; Bafakeeh, O.T.; Khedher, N.B.; et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022, 12, 1386. [Google Scholar] [CrossRef]
- Dutta, S.; Pati, S.K. Novel design of single transition metal atoms anchored on C6 N6 nanosheet for electrochemical and photochemical N2 reduction to Ammonia. Catal. Today 2023, 424, 113804. [Google Scholar] [CrossRef]
- Ma, X.; Hu, J.; Zheng, M.; Li, D.; Lv, H.; He, H.; Huang, C. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: A DFT study. Appl. Surf. Sci. 2019, 489, 684–692. [Google Scholar] [CrossRef]
- Kuhn, M.; Sammynaiken, R.; Sham, T. Electronic structure of Au-Ta alloys, An X-ray spectroscopy study. Phys. B Condens. Matter 1998, 252, 114–126. [Google Scholar] [CrossRef]
- Haruta, M. When Gold Is Not Noble: Catalysis by Nanoparticles. Chem. Rec. 2003, 3, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Kohyama, M.; Tanaka, S.; Takeda, S. Understanding of the activity difference between nanogold and bulk gold by relativistic effects. J. Energy Chem. 2015, 24, 485–489. [Google Scholar] [CrossRef]
- Yadav, J.; Saini, S. Atop adsorption of oxygen on small sized gold clusters Analysis of size and site reactivity from restructuring perspective. Comput. Theor. Chem. 2020, 1191, 113014. [Google Scholar] [CrossRef]
- Hammer, B.; Norskov, J.K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240. [Google Scholar] [CrossRef]
- Ghiringhelli, L.M.; Gruene, P.; Lyon, J.T.; Rayner, D.M.; Meijer, G.; Fielicke, A.; Scheffler, M. Not so loosely bound rare gas atoms: Finite-temperature vibrational fingerprints of neutral gold-cluster complexes. New J. Phys. 2013, 15, 083003. [Google Scholar] [CrossRef]
- Nhat, P.V.; Si, N.T.; Hang, N.T.N.; Nguyen, M.T. The lowest-energy structure of the gold cluster Au10: Planar vs. nonplanar? Phys. Chem. Chem. Phys. 2022, 24, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Lopez, N.; Norskov, J.K. Catalytic CO Oxidation by a Gold Nanoparticle, A Density Functional Theory Study. J. Am. Chem. Soc. 2002, 124, 11262–11263. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Peng, F.; Bergara, A.; Ma, Y. Gold as a 6p-Element in Dense Lithium Aurides. J. Am. Chem. Soc. 2016, 138, 4046–4052. [Google Scholar] [CrossRef] [PubMed]
- Boronat, M.; Leyva-Pérez, A.; Corma, A. Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold. Acc. Chem. Res. 2014, 47, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Schwank, J. Catalytic gold. Gold Bull. 1983, 16, 103–110. [Google Scholar] [CrossRef]
- Xiao, L.; Tollberg, B.; Hu, X.; Wang, L. Structural study of gold clusters. J. Chem. Phys. 2006, 124, 114309. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.S.; Watts, J.D.; Huang, M.J. Theoretical Comparative Study of Oxygen Adsorption on Neutral and Anionic Agn and Aun Clusters (n = 2–25). J. Phys. Chem. C 2014, 118, 21911–21927. [Google Scholar] [CrossRef]
- Bravo-Pérez, G.; Garzón, I.; Novaro, O. Ab initio study of small gold clusters. J. Mol. Struct. THEOCHEM 1999, 493, 225–231. [Google Scholar] [CrossRef]
- Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M.M. Structures of small gold cluster cations Ion mobility measurements versus density functional calculations. J. Chem. Phys. 2002, 116, 4094–4101. [Google Scholar] [CrossRef]
- Häkkinen, H.; Landman, U. Gold clusters (AuN, 2<~ N <~10) and their anions. Phys. Rev. B 2000, 62, R2287–R2290. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Zhao, J. Density-functional study of Aun (n = 2−20) clusters: Lowest-energy structures and electronic properties. Phys. Rev. B 2002, 66, 035418. [Google Scholar] [CrossRef]
- Häkkinen, H.; Moseler, M.; Landman, U. Bonding in Cu, Ag, and Au Clusters: Relativistic Effects, Trends, and Surprises. Phys. Rev. Lett. 2002, 89, 033401. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.M.; Varganov, S.; Gordon, M.S.; Metiu, H.; Chretien, S.; Piecuch, P.; Kowalski, K.; Kucharski, S.A.; Musial, M. Where Does the Planar-to-Nonplanar Turnover Occur in Small Gold Clusters. J. Am. Chem. Soc. 2005, 127, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.K. Structure of Au8: Planar or nonplanar? J. Chem. Phys. 2006, 124, 024316. [Google Scholar] [CrossRef] [PubMed]
- Bulusu, S.; Zeng, X.C. Structures and relative stability of neutral gold clusters, Aun, n = 15–19. J. Chem. Phys. 2006, 125, 154303. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.P.; Warnke, I.; Le, A.; Furche, F. At What Size Do Neutral Gold Clusters Turn Three-Dimensional. J. Phys. Chem. C 2014, 118, 29370–29377. [Google Scholar] [CrossRef]
- Nhat, P.V.; Si, N.T.; Anh, N.N.K.; Duong, L.V.; Nguyen, M.T. The Au12 Gold Cluster, Preference for a Non-Planar Structure. Symmetry 2022, 14, 1665. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, H.Y.; Yang, X.D.; Zhu, Z.H.; Tang, Y.J. Size dependence of the structures and energetic and electronic properties of gold clusters. J. Chem. Phys. 2007, 126, 084505. [Google Scholar] [CrossRef] [PubMed]
- Assadollahzadeh, B.; Schwerdtfeger, P. A systematic search for minimum structures of small gold clusters, Aun n = 2–20. J. Chem. Phys. 2009, 131, 064306. [Google Scholar] [CrossRef]
- Sárosi, M.B.; Petrar, P.M.; King, R.B. Density functional study of bare gold clusters, the ten-vertex neutral system. J. Mol. Model. 2013, 19, 4585–4590. [Google Scholar] [CrossRef]
- David, J.; Guerra, D.; Restrepo, A. Structure, stability and bonding in the Au10 clusters. Chem. Phys. Lett. 2012, 539–540, 64–69. [Google Scholar] [CrossRef]
- Buelna-García, C.E.; Robles-Chaparro, E.; Parra-Arellano, T.; Quiroz-Castillo, J.M.; del Castillo-Castro, T.; Martínez-Guajardo, G.; Castillo-Quevedo, C.; de León-Flores, A.; Anzueto-Sánchez, G.; Martin-del Campo-Solis, M.F.; et al. Theoretical Prediction of Structures, Vibrational Circular Dichroism, and Infrared Spectra of Chiral Be4B8 Cluster at Different Temperatures. Molecules 2021, 26, 3953. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Quevedo, C.; Buelna-Garcia, C.E.; Paredes-Sotelo, E.; Robles-Chaparro, E.; Zamora-Gonzalez, E.; Martin-del Campo-Solis, M.F.; Quiroz-Castillo, J.M.; del Castillo-Castro, T.; Martínez-Guajardo, G.; de Leon-Flores, A.; et al. Effects of Temperature on Enantiomerization Energy and Distribution of Isomers in the Chiral Cu13 Cluster. Molecules 2021, 26, 5710. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, P. Relativistic effects in properties of gold. Heteroat. Chem. 2002, 13, 578–584. [Google Scholar] [CrossRef]
- van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic total energy using regular approximations. J. Chem. Phys. 1994, 101, 9783–9792. [Google Scholar] [CrossRef]
- Romaniello, P.; de Boeij, P.L. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory. J. Chem. Phys. 2005, 122, 164303. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.R.; Molina, B.; Castro, J.J. Nonadiabatic structure instability of planar hexagonal gold cluster cation Au7 and its spectral signature. RSC Adv. 2014, 4, 8157–8164. [Google Scholar] [CrossRef]
- Pyykko, P. Relativistic effects in structural chemistry. Chem. Rev. 1988, 88, 563–594. [Google Scholar] [CrossRef]
- Luna-Valenzuela, A.; Cabellos, J.L.; Alonso, J.A.; Posada-Amarillas, A. Effects of van der Waals interactions on the structure and stability of Cu8-xPdx (x = 0, 4, 8) cluster isomers. Mater. Today Commun. 2021, 26, 102024. [Google Scholar] [CrossRef]
- Goldsmith, B.R.; Florian, J.; Liu, J.X.; Gruene, P.; Lyon, J.T.; Rayner, D.M.; Fielicke, A.; Scheffler, M.; Ghiringhelli, L.M. Two-to-three dimensional transition in neutral gold clusters: The crucial role of van der Waals interactions and temperature. Phys. Rev. Mater. 2019, 3, 016002. [Google Scholar] [CrossRef]
- Rydberg, H.; Dion, M.; Jacobson, N.; Schröder, E.; Hyldgaard, P.; Simak, S.I.; Langreth, D.C.; Lundqvist, B.I. Van der Waals Density Functional for Layered Structures. Phys. Rev. Lett. 2003, 91, 126402. [Google Scholar] [CrossRef] [PubMed]
- Buelna-Garcia, C.E.; Cabellos, J.L.; Quiroz-Castillo, J.M.; Martinez-Guajardo, G.; Castillo-Quevedo, C.; de Leon-Flores, A.; Anzueto-Sanchez, G.; Martin-del Campo-Solis, M.F. Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be6B11− Fluxional Cluster. Materials 2021, 14, 0112. [Google Scholar] [CrossRef] [PubMed]
- Buelna-García, C.E.; Castillo-Quevedo, C.; Quiroz-Castillo, J.M.; Paredes-Sotelo, E.; Cortez-Valadez, M.; Martin-del Campo-Solis, M.F.; López-Luke, T.; Utrilla-Vázquez, M.; Mendoza-Wilson, A.M.; Rodríguez-Kessler, P.L.; et al. Relative Populations and IR Spectra of Cu38 Cluster at Finite Temperature Based on DFT and Statistical Thermodynamics Calculations. Front. Chem. 2022, 10, 841964. [Google Scholar] [CrossRef] [PubMed]
- Kinaci, A.; Narayanan, B.; Sen, F.G.; Davis, M.J.; Gray, S.K.; Sankaranarayanan, S.K.R.S.; Chan, M.K.Y. Unraveling the Planar-Globular Transition in Gold Nanoclusters through Evolutionary Search. Sci. Rep. 2016, 6, 34974. [Google Scholar] [CrossRef]
- Guan, P.W.; Houchins, G.; Viswanathan, V. Uncertainty quantification of DFT-predicted finite temperature thermodynamic properties within the Debye model. J. Chem. Phys. 2019, 151, 244702. [Google Scholar] [CrossRef] [PubMed]
- Sutton, C.; Levchenko, S.V. First-Principles Atomistic Thermodynamics and Configurational Entropy. Front. Chem. 2020, 8, 757. [Google Scholar] [CrossRef] [PubMed]
- Mermin, N.D. Thermal Properties of the Inhomogeneous Electron Gas. Phys. Rev. 1965, 137, A1441–A1443. [Google Scholar] [CrossRef]
- Stoitsov, M.V.; Petkov, I.Z. Density functional theory at finite temperatures. Ann. Phys. 1988, 184, 121–147. [Google Scholar] [CrossRef]
- Pribram-Jones, A.; Pittalis, S.; Gross, E.K.U.; Burke, K. Thermal Density Functional Theory in Context. In Frontiers and Challenges in Warm Dense Matter; Graziani, F., Desjarlais, M.P., Redmer, R., Trickey, S.B., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 25–60. [Google Scholar]
- Gázquez, J.L.; Franco-Pérez, M.; Ayers, P.W.; Vela, A. Temperature-dependent approach to chemical reactivity concepts in density functional theory. Int. J. Quantum Chem. 2019, 119, e25797. [Google Scholar] [CrossRef]
- Gonis, A.; Däne, M. Extension of the Kohn-Sham formulation of density functional theory to finite temperature. J. Phys. Chem. Solids 2018, 116, 86–99. [Google Scholar] [CrossRef]
- Eschrig, H. T < 0 ensemble-state density functional theory via Legendre transform. Phys. Rev. B 2010, 82, 205120. [Google Scholar] [CrossRef]
- Jalife, S.; Liu, L.; Pan, S.; Cabellos, J.L.; Osorio, E.; Lu, C.; Heine, T.; Donald, K.J.; Merino, G. Dynamical behavior of boron clusters. Nanoscale 2016, 8, 17639–17644. [Google Scholar] [CrossRef]
- Martínez-Guajardo, G.; Luis Cabellos, J.; Díaz-Celaya, A.; Pan, S.; Islas, R.; Chattaraj, P.K.; Heine, T.; Merino, G. Dynamical behavior of Borospherene: A Nanobubble. Sci. Rep. 2015, 5, 11287. [Google Scholar] [CrossRef] [PubMed]
- Pracht, P.; Grimme, S. Calculation of absolute molecular entropies and heat capacities made simple. Chem. Sci. 2021, 12, 6551–6568. [Google Scholar] [CrossRef]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem.—A Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef] [PubMed]
- Zaby, P.; Ingenmey, J.; Kirchner, B.; Grimme, S.; Ehlert, S. Calculation of improved enthalpy and entropy of vaporization by a modified partition function in quantum cluster equilibrium theory. J. Chem. Phys. 2021, 155, 104101. [Google Scholar] [CrossRef] [PubMed]
- Beret, E.C.; Ghiringhelli, L.M.; Scheffler, M. Free gold clusters: Beyond the static, monostructure description. Faraday Discuss. 2011, 152, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Santarossa, G.; Vargas, A.; Iannuzzi, M.; Baiker, A. Free energy surface of two- and three-dimensional transitions of Au12 nanoclusters obtained by ab initio metadynamics. Phys. Rev. B 2010, 81, 174205. [Google Scholar] [CrossRef]
- Gruene, P.; Rayner, D.M.; Redlich, B.; van der Meer, A.F.G.; Lyon, J.T.; Meijer, G.; Fielicke, A. Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase. Science 2008, 321, 674–676. [Google Scholar] [CrossRef]
- Gruene, P.; Butschke, B.; Lyon, J.T.; Rayner, D.M.; Fielicke, A. Far-IR Spectra of Small Neutral Gold Clusters in the Gas Phase. Z. Für Phys. Chem. 2014, 228, 337–350. [Google Scholar] [CrossRef]
- Rodríguez, J.I.; Uribe, E.A.; Baltazar-Méndez, M.I.; Autschbach, J.; Castillo-Alvarado, F.; Gutiérrez-González, I. Size evolution relativistic DFT-QTAIM study on the gold cluster complexes Au4-S-CnH2n-S-Au4 (n = 2–5). Chem. Phys. Lett. 2016, 660, 287–294. [Google Scholar] [CrossRef]
- Chebotaev, P.P.; Plavskii, V.Y.; Kononov, A.I.; Buglak, A.A. Pterin interactions with gold clusters, A theoretical study. Dye. Pigment. 2023, 216, 111323. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Boldyrev, A.I. Deciphering Chemical Bonding in Golden Cages. J. Phys. Chem. A 2009, 113, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software update: The ORCA program system-Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Chen, X.Y.; Landis, C.R.; Neese, F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008, 4, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, D.A.; Neese, F. All-Electron Scalar Relativistic Basis Sets for the Lanthanides. J. Chem. Theory Comput. 2009, 5, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Stoychev, G.L.; Auer, A.A.; Neese, F. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017, 13, 554–562. [Google Scholar] [CrossRef]
- Liakos, D.G.; Guo, Y.; Neese, F. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. J. Phys. Chem. A 2020, 124, 90–100. [Google Scholar] [CrossRef]
- Simard, B.; Hackett, P. High resolution study of the (0, 0) and (1, 1) bands of the A0u+-X0g+ system of Au2. J. Mol. Spectrosc. 1990, 142, 310–318. [Google Scholar] [CrossRef]
- Schafer, S.; Assadollahzadeh, B.; Mehring, M.; Schwerdtfeger, P.; Schäfer, R. Structure and Electric Properties of SnN Clusters (N = 6–20) from Combined Electric Deflection Experimentsand Quantum Theoretical Studies. J. Phys. Chem. A 2008, 112, 12312–12319. [Google Scholar] [CrossRef] [PubMed]
- 126 Lepetit, C.; Fau, P.; Fajerwerg, K.; Kahn, M.L.; Silvi, B. Topological analysis of the metal-metal bond: A tutorial review. Coord. Chem. Rev. 2017, 345, 150–181. [Google Scholar] [CrossRef]
- Grimme, S.; Muck-Lichtenfeld, C.; Erker, G.; Kehr, G.; Wang, H.; Beckers, H.; Willner, H. When Do Interacting Atoms Form a Chemical Bond? Spectroscopic Measurements and Theoretical Analyses of Dideuteriophenanthrene. Angew. Chem. Int. Ed. 2009, 48, 2592–2595. [Google Scholar] [CrossRef] [PubMed]
- Baletto, F.; Ferrando, R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 2005, 77, 371–423. [Google Scholar] [CrossRef]
- Schuster, P. Taming combinatorial explosion. Proc. Natl. Acad. Sci. USA 2000, 97, 7678–7680. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Jasper, A.W.; Truhlar, D.G. Structures, Rugged Energetic Landscapes, and Nanothermodynamics of Aln (2 ≤ n ≤ 65) Particles. J. Am. Chem. Soc. 2007, 129, 14899–14910. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Xiang, Y.; Gong, X.G. Efficiency of generalized simulated annealing. Phys. Rev. E 2000, 62, 4473–4476. [Google Scholar] [CrossRef]
- Xiang, Y.; Gubian, S.; Suomela, B.; Hoeng, J. Generalized Simulated Annealing for Global Optimization: The GenSA Package for R. R J. 2013, 5, 13–29. [Google Scholar] [CrossRef]
- Vlachos, D.; Schmidt, L.; Aris, R. Comparison of small metal clusters: Ni, Pd, Pt, Cu, Ag, Au. Z. Phys. D At. Mol. Cl. 1993, 26, 156–158. [Google Scholar] [CrossRef]
- Granville, V.; Krivanek, M.; Rasson, J.P. Simulated annealing: A proof of convergence. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 652–656. [Google Scholar] [CrossRef]
- Saunders, M. Stochastic search for isomers on a quantum mechanical surface. J. Comput. Chem. 2004, 25, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M. Stochastic exploration of molecular mechanics energy surfaces. Hunt. Glob. Minimum. J. Am. Chem. Soc. 1987, 109, 3150–3152. [Google Scholar] [CrossRef]
- Alexandrova, A.N.; Boldyrev, A.I. Search for the Li0,+1,−1, (n = 5–7) Lowest-Energy Structures Using the ab-initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. J. Chem. Theory Comput. 2005, 1, 566–580. [Google Scholar] [CrossRef]
- Alexandrova, A.N.; Boldyrev, A.I.; Fu, Y.J.; Yang, X.; Wang, X.B.; Wang, L.S. Structure of the (x = 1–4) clusters via ab-initio genetic algorithm and photoelectron spectroscopy. J. Chem. Phys. 2004, 121, 5709–5719. [Google Scholar] [CrossRef]
- Alexandrova, A.N. H·(H2O)n Clusters: Microsolvation of the Hydrogen Atom via Molecular ab-initio Gradient Embedded Genetic Algorithm (GEGA). J. Phys. Chem. A 2010, 114, 12591–12599. [Google Scholar] [CrossRef]
- Harding, D.; Mackenzie, S.R.; Walsh, T.R. Structural Isomers and Reactivity for Rh6 and Rh6+. J. Phys. Chem. B 2006, 110, 18272–18277. [Google Scholar] [CrossRef]
- Wales, D.J.; Doye, J.P.K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys. Chem. A 1997, 101, 5111–5116. [Google Scholar] [CrossRef]
- Balan, J.L.; Morato-Marquez, J.A.; Torres-Torres, J.G.; Cabellos, J.L.; Ortiz-Chi, F. Structural and optical properties of the Agn (n = 3–12); tyrosine complexes: A density functional theory study. R. Soc. Open Sci. 2023, 10, 230908. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.C.; Feng, L.Y.; Wang, Y.J.; Jalife, S.; Vásquez-Espinal, A.; Cabellos, J.L.; Pan, S.; Merino, G.; Zhai, H.J. Coaxial Triple-Layered versus Helical Be6B11− Clusters: Dual Structural Fluxionality and Multifold Aromaticity. Angew. Chem. Int. Ed. 2017, 56, 10174–10177. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Jalife, S.; Vásquez-Espinal, A.; Ravell, E.; Pan, S.; Cabellos, J.L.; Liang, W.Y.; Cui, Z.h.; Merino, G. Li2B12 and Li3B12: Prediction of the Smallest Tubular and Cage-like Boron Structures. Angew. Chem. Int. Ed. 2018, 57, 4627–4631. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Cabellos, J.L.; Pan, S.; Osorio, E.; Torres-Vega, J.J.; Tiznado, W.; Restrepo, A.; Merino, G. 10-π-Electron arenes a la carte: Structure and bonding of the [E-(Cn Hn)-E]n−6 (E = Ca, Sr, Ba; n = 6–8) complexes. Phys. Chem. Chem. Phys. 2016, 18, 11909–11918. [Google Scholar] [CrossRef]
- Ravell, E.; Jalife, S.; Barroso, J.; Orozco-Ic, M.; Hernandez-Juarez, G.; Ortiz-Chi, F.; Pan, S.; Cabellos, J.L.; Merino, G. Structure and Bonding in CE5−(E = Al–Tl) Clusters: Planar Tetracoordinate Carbon versus Pentacoordinate Carbon. Chem.—Asian J. 2018, 13, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Grande-Aztatzi, R.; Martínez-Alanis, P.R.; Cabellos, J.L.; Osorio, E.; Martínez, A.; Merino, G. Structural evolution of small gold clusters doped by one and two boron atoms. J. Comput. Chem. 2014, 35, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Moreno, D.; Cabellos, J.L.; Romero, J.; Reyes, A.; Merino, G.; Chattaraj, P.K. In Quest of Strong Be-Ng Bonds among the Neutral Ng-Be Complexes. J. Phys. Chem. A 2014, 118, 487–494. [Google Scholar] [CrossRef]
- Cui, Z.H.; Ding, Y.H.; Cabellos, J.L.; Osorio, E.; Islas, R.; Restrepo, A.; Merino, G. Planar tetracoordinate carbons with a double bond in CAl3E clusters. Phys. Chem. Chem. Phys. 2015, 17, 8769–8775. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Caamal, A.; Pan, S.; Ortiz-Chi, F.; Cabellos, J.L.; Boto, R.A.; Contreras-Garcia, J.; Restrepo, A.; Chattaraj, P.K.; Merino, G. How strong are the metallocene–metallocene interactions? Cases of ferrocene, ruthenocene, and osmocene. Phys. Chem. Chem. Phys. 2016, 18, 550–556. [Google Scholar] [CrossRef]
- Vargas-Caamal, A.; Cabellos, J.L.; Ortiz-Chi, F.; Rzepa, H.S.; Restrepo, A.; Merino, G. How Many Water Molecules Does it Take to Dissociate HCl? Chem.—A Eur. J. 2016, 22, 2812–2818. [Google Scholar] [CrossRef]
- Cui, Z.h.; Vassilev-Galindo, V.; Luis Cabellos, J.; Osorio, E.; Orozco, M.; Pan, S.; Ding, Y.h.; Merino, G. Planar pentacoordinate carbon atoms embedded in a metallocene framework. Chem. Commun. 2017, 53, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Caamal, A.; Ortiz-Chi, F.; Moreno, D.; Restrepo, A.; Merino, G.; Cabellos, J.L. The rich and complex potential energy surface of the ethanol dimer. Theor. Chem. Acc. 2015, 134, 16. [Google Scholar] [CrossRef]
- Flórez, E.; Acelas, N.; Ibargüen, C.; Mondal, S.; Cabellos, J.L.; Merino, G.; Restrepo, A. Microsolvation of NO3−: Structural exploration and bonding analysis. RSC Adv. 2016, 6, 71913–71923. [Google Scholar] [CrossRef]
- Castro, A.C.; Osorio, E.; Cabellos, J.L.; Cerpa, E.; Matito, E.; Solà, M.; Swart, M.; Merino, G. Exploring the Potential Energy Surface of E2 P4 ClustersEGroup13 Element the Quest for Inverse Carbon-Free Sandwiches. Chem.—A Eur. J. 2014, 20, 4583–4590. [Google Scholar] [CrossRef] [PubMed]
- Buelna-Garcia, C.E.; Castillo-Quevedo, C.; Paredes-Sotelo, E.; Martinez-Guajardo, G.; Cabellos, J.L. Boltzmann Populations of the Fluxional Be6B11 and Chiral Be4B8 Clusters at Finite Temperatures Computed by DFT and Statistical Thermodynamics. In Density Functional Theory; Glossman-Mitnik, D., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 4. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab-initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Shao, N.; Huang, W.; Gao, Y.; Wang, L.M.; Li, X.; Wang, L.S.; Zeng, X.C. Probing the Structural Evolution of Medium-Sized Gold Clusters Aun (n = 27–35). J. Am. Chem. Soc. 2010, 132, 6596–6605. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab-initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Dzib, E.; Cabellos, J.L.; Ortíz-Chi, F.; Pan, S.; Galano, A.; Merino, G. Eyringpy: A program for computing rate constants in the gas phase and in solution. Int. J. Quantum Chem. 2019, 119, e25686. [Google Scholar] [CrossRef]
- McQuarrie, D.A.M. Statistical Mechanics; Chemistry Series; Harper & Row: New York, NY, USA, 1975. [Google Scholar]
- Hill, T. An Introduction to Statistical Thermodynamics; Addison-Wesley Series in Chemistry; Dover Publications: New York, NY, USA, 1986. [Google Scholar]
- Herzberg, G. Infrared and Raman Spectra of Polyatomic Molecules. In Molecular Spectra and Molecular Structure; Van Nostrand: New York, NY, USA, 1945. [Google Scholar]
- Teague, S.J. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2003, 2, 527–541. [Google Scholar] [CrossRef]
- Mendoza-Wilson, A.M.; Balandrán-Quintana, R.R.; Cabellos, J.L. Thermochemical behavior of sorghum procyanidin trimers with C4-C8 and C4-C6 interflavan bonds in the reaction with superoxide anion radical and H2O2-forming NADH-oxidase flavoenzyme. Comput. Theor. Chem. 2020, 1186, 112912. [Google Scholar] [CrossRef]
- Schebarchov, D.; Baletto, F.; Wales, D.J. Structure, thermodynamics, and rearrangement mechanisms in gold clusters-insights from the energy landscapes framework. Nanoscale 2018, 10, 2004–2016. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, V.G.; Springborg, M. Temperature and isomeric effects in nanoclusters. Phys. Chem. Chem. Phys. 2019, 21, 5646–5654. [Google Scholar] [CrossRef] [PubMed]
- Zubarev, D.Y.; Boldyrev, A.I. ”Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J. Chem. Phys. 1983, 78, 4066–4073. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural localized molecular orbitals. J. Chem. Phys. 1985, 83, 1736–1740. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Karafiloglou, P.; Landis, C.R.; Weinhold, F. NBO 7.0. Theoretical Chemistry Institute, University of Wisconsin, Madison 2018. Available online: https://nbo.chem.wisc.edu/biblio_css.html (accessed on 15 March 2024).
- Lu, T.; Chen, F. Multiwfn, A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Kumar, P.S.V.; Raghavendra, V.; Subramanian, V. Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding. J. Chem. Sci. 2016, 128, 1527–1536. [Google Scholar] [CrossRef]
- Palma, C.A.; Björk, J.; Klappenberger, F.; Arras, E.; Kühne, D.; Stafström, S.; Barth, J.V. Visualization and thermodynamic encoding of single-molecule partition function projections. Nat. Commun. 2015, 6, 6210. [Google Scholar] [CrossRef]
- van Gunsteren, W.; Daura, X.; Mark, A. Computation of Free Energy. Helv. Chim. Acta 2002, 85, 3113–3129. [Google Scholar] [CrossRef]
- Hansen, N.; van Gunsteren, W.F. Practical Aspects of Free-Energy Calculations: A Review. J. Chem. Theory Comput. 2014, 10, 2632–2647. [Google Scholar] [CrossRef] [PubMed]
- Christ, C.D.; van Gunsteren, W.F. Enveloping distribution sampling: A method to calculate free energy differences from a single simulation. J. Chem. Phys. 2007, 126, 184110. [Google Scholar] [CrossRef] [PubMed]
- van Lenthe, E.; Snijders, J.G.; Baerends, E.J. The zero-order regular approximation for relativistic effects, The effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 1996, 105, 6505–6516. [Google Scholar] [CrossRef]
Indexes BCP | ρ | ∇2ρ | H(r) | Bond Distance |
---|---|---|---|---|
14 | 0.5748 | 0.1145 | −0.1810 | 2.6892 |
19 | 0.7227 | 0.1291 | −0.2436 | 2.6770 |
23 | 0.5748 | 0.1145 | −0.1810 | 2.6892 |
24 | 0.5358 | 0.1100 | −0.1478 | 2.7173 |
20 | 0.7130 | 0.8501 | −0.2287 | 2.7304 |
15 | 0.5358 | 0.1100 | −0.1478 | 2.7173 |
Energy DFT versus DLPNO-CCSD(T) SPE Energy | ||
---|---|---|
No. of Isomer (Figure 1) | DFT Energy (kcal/mol) | DLPNO-CCSD(T) SPE Energy (kcal/mol) |
1 | 0.0 | 4.26 |
2 | 0.57 | 8.44 |
3 | 0.58 | 9.34 |
4 | 0.99 | 0.03 |
5 | 1.03 | 0.53 |
6 | 1.06 | 0.0 |
7 | 2.43 | 3.18 |
8 | 2.47 | 3.73 |
9 | 3.51 | 3.92 |
10 | 5.89 | 4.56 |
11 | 7.27 | 7.11 |
12 | 8.59 | 15.08 |
Contribution | Partition Function |
---|---|
Translational | |
Rotational linear | |
Rotational nonlinear | |
Vibrational | |
Electronic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-González, F.E.; Castillo-Quevedo, C.; Rodríguez-Kessler, P.L.; Jimenez-Halla, J.O.C.; Vásquez-Espinal, A.; Eithiraj, R.D.; Cortez-Valadez, M.; Cabellos, J.L. Exploration of Free Energy Surface of the Au10 Nanocluster at Finite Temperature. Molecules 2024, 29, 3374. https://doi.org/10.3390/molecules29143374
Rojas-González FE, Castillo-Quevedo C, Rodríguez-Kessler PL, Jimenez-Halla JOC, Vásquez-Espinal A, Eithiraj RD, Cortez-Valadez M, Cabellos JL. Exploration of Free Energy Surface of the Au10 Nanocluster at Finite Temperature. Molecules. 2024; 29(14):3374. https://doi.org/10.3390/molecules29143374
Chicago/Turabian StyleRojas-González, Francisco Eduardo, César Castillo-Quevedo, Peter Ludwig Rodríguez-Kessler, José Oscar Carlos Jimenez-Halla, Alejandro Vásquez-Espinal, Rajagopal Dashinamoorthy Eithiraj, Manuel Cortez-Valadez, and José Luis Cabellos. 2024. "Exploration of Free Energy Surface of the Au10 Nanocluster at Finite Temperature" Molecules 29, no. 14: 3374. https://doi.org/10.3390/molecules29143374
APA StyleRojas-González, F. E., Castillo-Quevedo, C., Rodríguez-Kessler, P. L., Jimenez-Halla, J. O. C., Vásquez-Espinal, A., Eithiraj, R. D., Cortez-Valadez, M., & Cabellos, J. L. (2024). Exploration of Free Energy Surface of the Au10 Nanocluster at Finite Temperature. Molecules, 29(14), 3374. https://doi.org/10.3390/molecules29143374