Pulsed Electric Field-Assisted Extraction of Inulin from Ecuadorian Cabuya (Agave americana)
Abstract
:1. Introduction
2. Results and Discussions
2.1. Determination of the Electric Field Strength, Number of Pulses, Pulse Duration and Duty Cycle
2.1.1. Determination of the Characteristic Frequency of Cabuya
2.1.2. Selection of Electric Field Strength, Number of Pulses and Pulse Duration
2.1.3. Selection of the Duty Cycle
2.2. Study of the Temperature Effect on Pulsed Electric Field-Assisted Extraction and Conventional Extraction
2.3. Comparison of the Inulin Powder Obtained by Pulsed Electric Field-Assisted Extraction and Conventional Extraction
2.3.1. Comparison of Inulin Recovery and Production
2.3.2. Comparison of Inulin Spectra and Thermograms
3. Materials and Methods
3.1. Materials and Reagents
3.2. Determination of Electric Field Strength, Number of Pulses, Pulse Duration and Duty Cycle
3.2.1. Determination of the Characteristic Frequency of the Cabuya–Plates System
3.2.2. Selection of Electric Field Strength, Number of Pulses and Pulse Duration
3.2.3. Duty Cycle Selection
3.3. Study of the Temperature Effect on Extraction Assisted by Pulsed Electric Field and Conventional Extraction
3.4. Comparison of the Inulin Powder Obtained through Extraction Assisted by Pulsed Electric Field and Conventional Extraction
3.4.1. Purification of Extracts
3.4.2. Obtaining Inulin Powder
3.4.3. Comparison of the Recovery, Production, Thermograms and Spectra of the Inulin Obtained through Pulsed Electric Field-Assisted and Conventional Extraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Moreno, V.E.; Sandoval-Pauker, C.; Aldas, M.; Ciobotă, V.; Luna, M.; Vargas Jentzsch, P.; Muñoz Bisesti, F. Synthesis of Inulin Hydrogels by Electron Beam Irradiation: Physical, Vibrational Spectroscopic and Thermal Characterization and Arsenic Removal as a Possible Application. J. Polym. Res. 2020, 27, 184. [Google Scholar] [CrossRef]
- Escobar-Ledesma, F.R.; Sánchez-Moreno, V.E.; Vera, E.; Ciobotă, V.; Jentzsch, P.V.; Jaramillo, L.I. Extraction of Inulin from Andean Plants: An Approach to Non-Traditional Crops of Ecuador. Molecules 2020, 25, 5067. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Vorobiev, E.; Zhu, Z.; Grimi, N. Effect of Pulsed Electric Fields Pretreatment on Juice Expression and Quality of Chicory. Innov. Food Sci. Emerg. Technol. 2021, 74, 102842. [Google Scholar] [CrossRef]
- Panchev, I.; Delchev, N.; Kovacheva, D.; Slavov, A. Physicochemical Characteristics of Inulins Obtained from Jerusalem Artichoke (Helianthus tuberosus L.). Eur. Food Res. Technol. 2011, 233, 889–896. [Google Scholar] [CrossRef]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, Health Benefits and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality Attributable to Diabetes in 20–79 Years Old Adults, 2019 Estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2020, 162, 108086. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Gupta, A.K. Applications of Inulin and Oligofructose in Health and Nutrition. J. Biosci. 2002, 27, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Geankoplis, C.J.; Hersel, A.; Lepek, D.H. Transport Processes and Separation Process Principle, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2018. [Google Scholar]
- Nelson, D.L.; Cox, M.M. Lehninger Biochemie; Springer-Lehrbuch; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-662-08290-4. [Google Scholar]
- Zhu, Z.; Bals, O.; Grimi, N.; Vorobiev, E. Pilot Scale Inulin Extraction from Chicory Roots Assisted by Pulsed Electric Fields. Int. J. Food Sci. Technol. 2012, 47, 1361–1368. [Google Scholar] [CrossRef]
- Vorobiev, E.; Lebovka, N. Pulse Electric Field-Assisted Extraction; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011; pp. 25–84. [Google Scholar]
- Nafchi, A.M.; Bhat, R.; Alias, A.K. Pulsed Electric Fields for Food Preservation: An Update on Technological Progress. In Progress in Food Preservation; Bhat, R., Alias, A.K., Paliyath, G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Anańina, N.A.; Andreeva, O.A.; Mycots, L.P.; Oganesyan, E.T. Standardization of Inulin Extracted from Dahlia Single Tubers and Some Physicochemical Properties of Inulin. Pharm. Chem. J. 2009, 43, 157–159. [Google Scholar] [CrossRef]
- Milani, E.; Koocheki, A.; Golimovahhed, Q.A. Extraction of Inulin from Burdock Root (Arctium lappa) Using High Intensity Ultrasound. Int. J. Food Sci. Technol. 2011, 46, 1699–1704. [Google Scholar] [CrossRef]
- Apolinário, A.C.; Martins de Carvalho, E.; Goulart de Lima Damasceno, B.P.; Dantas da Silva, P.C.; Converti, A.; Pessoa, A.; da Silva, J.A. Extraction, Isolation and Characterization of Inulin from Agave sisalana Boles. Ind. Crops Prod. 2017, 108, 355–362. [Google Scholar] [CrossRef]
- Olvera Carranza, C.; Ávila Fernandez, A.; Bustillo Armendáriz, G.R.; López-Munguía, A. Processing of Fructans and Oligosaccharides from Agave Plants. In Processing and Impact on Active Components in Food; Preddy, V., Ed.; Elsevier Inc.: Amsterdam, The Netherland, 2015; pp. 121–129. ISBN 9780124047099. [Google Scholar]
- Montañez-Soto, J.; Venegas-González, J.; Vivar-Vera, M.; Ramos-Ramirez, E. Extraccion, Caracterizacion y Cuantificacion de Los Fructanos Contenidos En La Cabeza y En Las Hojas Del Agave Tequilana Weber Azul. Bioagro 2011, 23, 199–206. [Google Scholar]
- Bouaziz, M.A.; Rassaoui, R.; Besbes, S. Chemical Composition, Functional Properties, and Effect of Inulin from Tunisian agave americana L. Leaves on Textural Qualities of Pectin Gel. J. Chem. 2014, 2014, 758697. [Google Scholar] [CrossRef]
- De Vito, F.; Ferrari, G.; I Lebovka, N.; V Shynkaryk, N.; Vorobiev, E. Pulse Duration and Efficiency of Soft Cellular Tissue Disintegration by Pulsed Electric Fields. Food Bioprocess Technol. 2008, 1, 307–313. [Google Scholar] [CrossRef]
- Pataro, G.; Ferrari, G.; Donsi, F. Mass Transfer Enhancement by Means of Electroporation. In Mass Transfer in Chemical Engineering Processes; InTech: Houston, TX, USA, 2011. [Google Scholar]
- Puértolas, E.; Álvarez, I.; Raso, J.; Martínez de Marañón, I. Aplicación Industrial de Los Pulsos Eléctricos de Alto Voltaje Para La Pasteurización de Alimentos: Revisión de Su Viabilidad Técnica y Comercial. CyTA J. Food 2013, 11, 81–88. [Google Scholar] [CrossRef]
- Bazhal, M.I.; Ngadi, M.O.; Raghavan, V.G.S. Influence of Pulsed Electroplasmolysis on the Porous Structure of Apple Tissue. Biosyst. Eng. 2003, 86, 51–57. [Google Scholar] [CrossRef]
- El-Belghiti, K.; Rabhi, Z.; Vorobiev, E. Kinetic Model of Sugar Diffusion from Sugar Beet Tissue Treated by Pulsed Electric Field. J. Sci. Food Agric. 2005, 85, 213–218. [Google Scholar] [CrossRef]
- Loginova, K.V.; Shynkaryk, M.V.; Lebovka, N.I.; Vorobiev, E. Acceleration of Soluble Matter Extraction from Chicory with Pulsed Electric Fields. J. Food Eng. 2010, 96, 374–379. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food Eng. Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Pliquett, U.; Joshi, R.P.; Sridhara, V.; Schoenbach, K.H. High Electrical Field Effects on Cell Membranes. Bioelectrochemistry 2007, 70, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Boylestad, R.L. Introducción al Análisis de Circuitos, 10th ed.; Pearson Education: Naucalpan de Juárez, Mexico, 2004. [Google Scholar]
- Vorobiev, E.; Lebovka, N. Enhanced Extraction from Solid Foods and Biosuspensions by Pulsed Electrical Energy. Food Eng. Rev. 2010, 2, 95–108. [Google Scholar] [CrossRef]
- Puc, M.; Čorović, S.; Flisar, K.; Petkovšek, M.; Nastran, J.; Miklavčič, D. Techniques of Signal Generation Required for Electropermeabilization. Bioelectrochemistry 2004, 64, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Dörnenburg, H.; Knorr, D. Cellular Permeabilization of Cultured Plant Tissues by High Electric Field Pulses or Ultra High Pressure for the Recovery of Secondary Metabolites. Food Biotechnol. 1993, 7, 35–48. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Bazhal, M.I.; Vorobiev, E. Simulation and Experimental Investigation of Food Material Breakage Using Pulsed Electric Feld Treatment. J. Food Eng. 2000, 44, 213–223. [Google Scholar] [CrossRef]
- Gachovska, T.K.; Adedeji, A.A.; Ngadi, M.O. Influence of pulsed electric field energy on the damage degree in alfalfa tissue. J. Food Eng. 2009, 95, 558–563. [Google Scholar] [CrossRef]
- El-Belghiti, K.; Vorobiev, E. Modelling of Solute Aqueous Extraction from Carrots Subjected to a Pulsed Electric Field Pre-Treatment. Biosyst. Eng. 2005, 90, 289–294. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Bazhal, M.I.; Vorobiev, E.; Cedex, C. Pulsed Electric Field Breakage of Cellular Tissues: Visualisation of Percolative Properties. Innov. Food Sci. Emerg. Technol. 2001, 2, 113–125. [Google Scholar] [CrossRef]
- Asavasanti, S.; Ristenpart, W.; Stroeve, P.; Barrett, D.M. Permeabilization of Plant Tissues by Monopolar Pulsed Electric Fields: Effect of Frequency. J. Food Sci. 2011, 76, E98–E111. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.M.; Pereira, C.G.; Braga, M.E.M.; Maróstica, M.R.; Leal, J.P.F.; Meireles, M.A.A. Low-Pressure Solvent Extraction (Solid–Liquid Extraction, Microwave Assisted, and Ultrasound Assisted) from Condimentary Plants. In Extracting Bioactive Compounds for Food Products, 1st ed.; Meireles, M.A.A., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2008; p. 142. [Google Scholar]
- Zubaidah, E.; Akhadiana, W. Comparative Study of Inulin Extracts from Dahlia, Yam, and Gembili Tubers as Prebiotic. Food Nutr. Sci. 2013, 4, 8–12. [Google Scholar] [CrossRef]
- Khuenpet, K.; Fukuoka, M.; Jittanit, W.; Sirisansaneeyakul, S. Spray Drying of Inulin Component Extracted from Jerusalem Artichoke Tuber Powder Using Conventional and Ohmic-Ultrasonic Heating for Extraction Process. J. Food Eng. 2017, 194, 67–78. [Google Scholar] [CrossRef]
- Temkov, M.; Petkova, N.; Denev, P.; Krastanov, A. Characterization of Inulin from Helianthus tuberosus L. Obtained by Different Extraction Methods—Comparative Study. In Proceedings of the Food Science, Engineering and Technology 2015, Plovdiv, Bulgaria, 5–7 June 2015. [Google Scholar]
- Kriukova, Y.; Jakubiak-Augustyn, A.; Ilyinska, N.; Krotkiewski, H.; Gontova, T.; Evtifeyeva, O.; Özcelik, T.; Matkowski, A. Chain Length Distribution of Inulin from Dahlia Tubers as Influenced by the Extraction Method. Int. J. Food Prop. 2018, 20, S3112–S3122. [Google Scholar] [CrossRef]
- Xu, J.; Yue, R.Q.; Liu, J.; Ho, H.M.; Yi, T.; Chen, H.B.; Han, Q. Bin Structural Diversity Requires Individual Optimization of Ethanol Concentration in Polysaccharide Precipitation. Int. J. Biol. Macromol. 2014, 67, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Hirano, A.; Arakawa, T.; Shiraki, K. Mechanistic Insights into Protein Precipitation by Alcohol. Int. J. Biol. Macromol. 2012, 50, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Miklavčič, D. Handbook of Electroporation; Miklavčič, D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1–4, ISBN 978-3-319-32885-0. [Google Scholar]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier Publications: Amsterdam, The Netherlands, 2011; ISBN 9780123869845. [Google Scholar]
- Petkova, N.T.; Ognyanov, M.; Todorova, M.; Denev, P. Ultrasound-Assisted Extraction and Characterisation of Inulin-Type Fructan from Roots of Elecampane (Inula helenium L.). Acta Sci. Nat. 2015, 1, 225–235. [Google Scholar]
- Espinosa-Andrews, H.; Urias-Silvas, J.E. Thermal Properties of Agave Fructans (Agave Tequilana Weber var. Azul). Carbohydr. Polym. 2012, 87, 2671–2676. [Google Scholar] [CrossRef]
- Apolinário, A.C.; Do Nascimento, M.L.; De Luna Vieira, J.P.; Melo, C.D.O.; Santos, F.F.; De Lima Damasceno, B.P.G.; Converti, A.; Pessoa, A.; Da Silva, J.A. Physico-Chemical Quality Parameters of Herbal Products from Agave sisalana. Nat. Prod. Res. 2014, 28, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Coreño-Alonso, J.; Teresa Méndez-Bautista, M. Relación Estructura-Propiedades de Polímeros. Educ. Química 2010, 21, 291–299. [Google Scholar] [CrossRef]
- Saengkanuk, A.; Nuchadomrong, S.; Jogloy, S.; Patanothai, A.; Srijaranai, S. A Simplified Spectrophotometric Method for the Determination of Inulin in Jerusalem Artichoke (Helianthus tuberosus L.) Tubers. Eur. Food Res. Technol. 2011, 233, 609–616. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Yu, C.; Li, Q.; Dong, F.; Wang, G.; Gu, G.; Guo, Z. Extraction, Degree of Polymerization Determination and Prebiotic Effect Evaluation of Inulin from Jerusalem Artichoke. Carbohydr. Polym. 2015, 121, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, S.A.; Sastry, S.K. Changes in Permeability of Moderate Electric Field (MEF) Treated Vegetable Tissue over Time. Innov. Food Sci. Emerg. Technol. 2010, 11, 78–83. [Google Scholar] [CrossRef]
- Jemai, A.B.; Vorobiev, E. Effect of Moderate Electric Field Pulses on the Diffusion Coefficient of Soluble Substances from Apple Slices. Int. J. Food Sci. Technol. 2002, 37, 73–86. [Google Scholar] [CrossRef]
- Ravenscroft, N.; Cescutti, P.; Hearshaw, M.A.; Ramsout, R.; Rizzo, R.; Timme, E.M. Structural Analysis of Fructans from Agave americana Grown in South Africa for Spirit Production. J. Agric. Food Chem. 2009, 57, 3995–4003. [Google Scholar] [CrossRef] [PubMed]
- Kosasih, W.; Pudjiraharti, S.; Ratnaningrum, D.; Priatni, S. Preparation of Inulin from Dahlia Tubers. Procedia Chem. 2015, 16, 190–194. [Google Scholar] [CrossRef]
Method | PEFAE | CE | ||
---|---|---|---|---|
Temperature (°C) | 60 | 60 | 80 | |
Effective solute diffusion coefficient (m2/s) | 2.36 × 10−10 | 1.68 × 10−10 | 3.64 × 10−10 | |
Free fructose concentration (g/L) | 5.12 | 6.38 | 4.12 | |
Inulin concentration (g/L) | 43.86 | 38.41 | 42.64 | |
Recovery (%) | 12.49 | 93.33 | 32.63 | |
Production (%) | 1.42 | 9.49 | 3.62 | |
Fraction at 20% v/v (%) | 25.82 | 7.48 | 15.05 | |
Fraction at 40% v/v (%) | 26.45 | 7.16 | 15.57 | |
Fraction at 60% v/v (%) | 13.00 | 11.26 | 37.14 | |
Fraction at 80% v/v (%) | 34.72 | 74.10 | 32.24 |
Inulin | Extraction Method | Degradation at 500 °C (%) |
---|---|---|
Standard | Standard | 79.8 |
PEFAE at 60 °C | 59.3 | |
CE at 60 °C | 62.2 | |
CE at 80 °C | 65.2 | |
PEFAE at 60 °C | 56.0 | |
CE at 60 °C | 73.1 | |
CE at 80 °C | 70.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, A.; Pozo, M.; Sánchez-Moreno, V.E.; Vera, E.; Jaramillo, L.I. Pulsed Electric Field-Assisted Extraction of Inulin from Ecuadorian Cabuya (Agave americana). Molecules 2024, 29, 3428. https://doi.org/10.3390/molecules29143428
Rivera A, Pozo M, Sánchez-Moreno VE, Vera E, Jaramillo LI. Pulsed Electric Field-Assisted Extraction of Inulin from Ecuadorian Cabuya (Agave americana). Molecules. 2024; 29(14):3428. https://doi.org/10.3390/molecules29143428
Chicago/Turabian StyleRivera, Alejandra, Marcelo Pozo, Vanessa E. Sánchez-Moreno, Edwin Vera, and Lorena I. Jaramillo. 2024. "Pulsed Electric Field-Assisted Extraction of Inulin from Ecuadorian Cabuya (Agave americana)" Molecules 29, no. 14: 3428. https://doi.org/10.3390/molecules29143428
APA StyleRivera, A., Pozo, M., Sánchez-Moreno, V. E., Vera, E., & Jaramillo, L. I. (2024). Pulsed Electric Field-Assisted Extraction of Inulin from Ecuadorian Cabuya (Agave americana). Molecules, 29(14), 3428. https://doi.org/10.3390/molecules29143428