Tuning the Coordination Environment of Ru(II) Complexes with a Tailored Acridine Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses
2.2. Characterization
2.3. UV-Vis Spectroscopy
3. Materials and Methods
3.1. Materials
3.2. Physicochemical Measurements
3.3. X-ray Structure Determinations
3.4. Synthesis of Compounds
3.4.1. Synthesis of Ligand L
3.4.2. Synthesis of [Ru(L)2](PF6)2
3.4.3. Synthesis of [Ru(tpy)L](PF6)2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Von Zelewsky, A. Ruthenium(II) Polypyridine Complexes: Photophysics, Photochemistry, Electrochemistry, and Chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. [Google Scholar] [CrossRef]
- Hankache, J.; Wenger, O.S. Microsecond Charge Recombination in a Linear triarylamine-Ru(bpy)32+-anthraquinone Triad. Chem. Commun. 2011, 47, 10145–10147. [Google Scholar] [CrossRef]
- Pal, A.K.; Hanan, G.S. Design, Synthesis and Excited-State Properties of Mononuclear Ru(II) Complexes of Tridentate Heterocyclic Ligands. Chem. Soc. Rev. 2014, 43, 6184–6197. [Google Scholar] [CrossRef]
- Abrahamsson, M.; Jäger, M.; Österman, T.; Eriksson, L.; Persson, P.; Becker, H.C.; Johansson, O.; Hammarström, L. A 3.0 µs Room Temperature Excited State Lifetime of a Bistridentate RuII-Polypyridine Complex for Rod-like Molecular Arrays. J. Am. Chem. Soc. 2006, 128, 12616–12617. [Google Scholar] [CrossRef]
- Breivogel, A.; Förster, C.; Heinze, K. A Heteroleptic Bis(Tridentate)Ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability. Inorg. Chem. 2010, 49, 7052–7056. [Google Scholar] [CrossRef]
- Schramm, F.; Meded, V.; Fliegl, H.; Fink, K.; Fuhr, O.; Qu, Z.; Klopper, W.; Finn, S.; Keyes, T.E.; Ruben, M. Expanding the Coordination Cage: A Ruthenium(11)–Polypyridine Complex Exhibiting High Quantum Yields under Ambient Conditions. Inorg. Chem. 2009, 48, 5677–5684. [Google Scholar] [CrossRef]
- Dinda, J.; Liatard, S.; Chauvin, J.; Jouvenot, D.; Loiseau, F. Electronic and Geometrical Manipulation of the Excited State of Bis-Terdentate Homo- and Heteroleptic Ruthenium Complexes. Dalton Trans. 2011, 40, 3683–3688. [Google Scholar] [CrossRef]
- Deraedt, Q.; Loiseau, F.; Elias, B. Photochemical Tuning of Tris-Bidentate Acridine- and Phenazine-Based Ir(III) Complexes. J. Fluoresc. 2016, 26, 2095–2103. [Google Scholar] [CrossRef]
- Omolo, K.O.; Bacsa, J.; Sadighi, J.P. Acridine Variations for Coordination Chemistry. Isr. J. Chem. 2020, 60, 433–436. [Google Scholar] [CrossRef]
- Hung, C.-Y.; Wang, T.-L.; Jang, Y.; Kim, W.Y.; Schmehl, R.H.; Thummel, R.P. Dipyrido[4,3-b;5,6-b]acridine Derivatives and Their Ruthenium(II) Complexes. Inorg. Chem. 1996, 35, 5953–5956. [Google Scholar] [CrossRef]
- Biswas, N.; Sharma, R.; Sardar, B.; Srimani, D. Acridine-Based SNS-Ruthenium Pincer Complex-Catalyzed Borrowing Hydrogen-Mediated C-C Alkylation Reaction: Application to the Guerbet Reaction. Synlett 2022, 34, 622–628. [Google Scholar] [CrossRef]
- Awada, A.; Moreno-Betancourt, A.; Philouze, C.; Moreau, Y.; Jouvenot, D.; Loiseau, F. New Acridine-Based Tridentate Ligand for Ruthenium(II): Coordination with a Twist. Inorg. Chem. 2018, 57, 15430–15437. [Google Scholar] [CrossRef]
- Awada, A. Etude Des Propriétés de Coordination de Ligands Tridentés à Base d’acridine Sur Le Ruthénium. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2019. [Google Scholar]
- Yang, Q.; Wang, Y.; Zhang, B.; Zhang, M. Direct N-Arylation of Azaheterocycles with Aryl Halides under Ligand-Free Condition. Chin. J. Chem. 2012, 30, 2389–2393. [Google Scholar] [CrossRef]
- Claramunt, R.M.; Sanz, D.; Alkorta, I.; Elguero, J. A Theoretical Study of Multinuclear Coupling Constants in Pyrazoles. Magn. Reson. Chem. 2005, 43, 985–991. [Google Scholar] [CrossRef]
- Jäger, M.; Kumar, R.J.; Görls, H.; Bergquist, J.; Johansson, O. Facile Synthesis of Bistridentate RuII Complexes Based on 2,6-Di(Quinolin-8-Yl)Pyridyl Ligands: Sensitizers with Microsecond 3MLCT Excited State Lifetimes. Inorg. Chem. 2009, 48, 3228–3238. [Google Scholar] [CrossRef]
- Lashgari, K.; Kritikos, M.; Norrestam, R.; Norrby, T. Bis(Terpyridine)Ruthenium(II) Bis(Hexafluorophosphate) Diacetonitrile Solvate. Acta Cryst. C 1999, 55, 64–67. [Google Scholar] [CrossRef]
- Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J.-P.; Sauvage, J.-P.; Sour, A.; Constable, E.C.; Thompson, A.M.W.C. Rigid Rod-Like Dinuclear Ru(II)/Os(II) Terpyridine-Type Complexes. Electrochemical Behavior, Absorption Spectra, Luminescence Properties, and Electronic Energy Transfer through Phenylene Bridges. J. Am. Chem. Soc. 1994, 116, 7692–7699. [Google Scholar] [CrossRef]
- Rubio-Pons, Ò.; Serrano-Andrés, L.; Merchán, M. A Theoretical Insight into the Photophysics of Acridine. J. Phys. Chem. A 2001, 105, 9664–9673. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
- Duisenberg, A.J.M.; Kroon-Batenburg, L.M.J.; Schreurs, M.M. An Evaluation of the Integration of Intensities from Area-Detector Data. J. Appl. Cryst. 2003, 36, 220–229. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 2003. [Google Scholar]
- Bruker. AXS XPREP, v2005/3; Bruker AXS Inc.: Madison, WI, USA, 2005. [Google Scholar]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Bond Angles | [Ru(L)2](PF6)2 | [Ru(tpy)L](PF6)2 |
---|---|---|
N1-Ru-N2 | 85.17(16) | 89.03(16) 1 |
N1-Ru-N3 | 93.99(17) | 178.95(18) 1 |
N1-Ru-N4 | 175.57(18) | 89.02(17) |
N1-Ru-N5 | 91.14(16) | 91.14(17) |
N1-Ru-N6 | 89.48(17) | 90.72(17) |
N2-Ru-N3 | 85.96(18) | 90.57(17) 1 |
N2-Ru-N4 | 91.73(19) | 100.22(17) |
N2-Ru-N5 | 92.97(17) | 179.8(2) |
N2-Ru-N6 | 174.20(18) | 100.01(17) |
N3-Ru-N4 | 88.94(19) | 92.01(17) |
N3-Ru-N5 | 174.65(18) | 89.27(18) |
N3-Ru-N6 | 96.66(18) | 88.39(17) |
N4-Ru-N5 | 85.86(18) | 79.8(2) 2 |
N4-Ru-N6 | 93.5(2) | 159.76(19) 2 |
N5-Ru-N6 | 84.89(17) | 80.0(2) 2 |
Bond Lengths | ||
Ru-N1 | 2.044(4) | 2.034(5) 1 |
Ru-N2 | 2.047(5) | 2.101(5) 1 |
Ru-N3 | 2.047(5) | 2.041(5) 1 |
Ru-N4 | 2.036(5) | 2.074(5) 2 |
Ru-N5 | 2.054(4) | 1.953(5) 2 |
Ru-N6 | 2.047(5) | 2.076(5) 2 |
Complex | λabs, nm (ε, M−1∙cm−1) |
---|---|
[Ru(L)2]2+ | 228 (50,000), 265 (53,100), 307 (13,300), 404 (2500), 448 (2100), 540 (1600), 747 (2000) |
[Ru(tpy)L]2+ | 229 (45,000), 272 (53,000), 316 (28,500), 405 (3300), 427 (3500), 514 (6900), 580 (6000) |
Complex | E1/2 Reduction (ΔEp, mV) | E1/2 Oxidation (ΔEp, mV) | |
---|---|---|---|
L | tpy | Ru | |
[Ru(tpy)2]2+ | −1.83 (70); −1.57 (60) | 0.97 (80) | |
[Ru(L)2]2+ | −1.51 *; −1.06 * | 0.64 (65) | |
[Ru(tpy)L]2+ | −2.30 *; −1.22 * | −1.74 (80) | 0.82 (60) |
Complex | UV-vis | CV | |||
---|---|---|---|---|---|
λ, nm | ∆E *HOMO-LUMO, eV | Epa, V | Epc, V | ∆EHOMO-LUMO, eV | |
[Ru(L)2]2+ | 747 | 1.66 | 0.64 | −1.06 | 1.70 |
[Ru(tpy)L]2+ | 580 | 2.14 | 0.82 | −1.22 | 2.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awada, A.; Lanoë, P.-H.; Philouze, C.; Loiseau, F.; Jouvenot, D. Tuning the Coordination Environment of Ru(II) Complexes with a Tailored Acridine Ligand. Molecules 2024, 29, 3468. https://doi.org/10.3390/molecules29153468
Awada A, Lanoë P-H, Philouze C, Loiseau F, Jouvenot D. Tuning the Coordination Environment of Ru(II) Complexes with a Tailored Acridine Ligand. Molecules. 2024; 29(15):3468. https://doi.org/10.3390/molecules29153468
Chicago/Turabian StyleAwada, Ali, Pierre-Henri Lanoë, Christian Philouze, Frédérique Loiseau, and Damien Jouvenot. 2024. "Tuning the Coordination Environment of Ru(II) Complexes with a Tailored Acridine Ligand" Molecules 29, no. 15: 3468. https://doi.org/10.3390/molecules29153468
APA StyleAwada, A., Lanoë, P. -H., Philouze, C., Loiseau, F., & Jouvenot, D. (2024). Tuning the Coordination Environment of Ru(II) Complexes with a Tailored Acridine Ligand. Molecules, 29(15), 3468. https://doi.org/10.3390/molecules29153468