Method Development and Validation of an Aerosol Sampling Technique for the Analysis of Nicotine in Electronic Cigarette Aerosols
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development and Optimization
2.2. Method Validation
2.2.1. Accuracy Profiles
2.2.2. Robustness of the Method
2.3. Method Application
3. Materials and Methods
3.1. Standards and Reagents
3.2. Standard Solution Preparation
3.3. Preparation of Spiked Matrix Validation Samples
3.4. Aerosol Sample Generation and Collection
3.5. Chromatographic Analysis
3.6. Method Validation
3.7. Method Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holt, A.K.; Poklis, J.L.; Peace, M.R. The History, Evolution, and Practice of Cannabis and E-Cigarette Industries Highlight Necessary Public Health and Public Safety Considerations. J. Saf. Res. 2023, 84, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Statistica Market Insights, E-Cigarettes—Worldwide, Statistica (n.d.). Available online: https://www.statista.com/outlook/cmo/tobacco-products/e-cigarettes/worldwide (accessed on 15 January 2024).
- European Commission. Directorate General for Health and Food Safety. European Commission. Directorate General for Communication. Kantar. Attitudes of Europeans towards Tobacco and Electronic Cigarettes: Report. Publications Office, LU. 2021. Available online: https://data.europa.eu/doi/10.2875/490366 (accessed on 15 January 2024).
- Pisinger, C.; Godtfredsen, N.; Bender, A.M. A Conflict of Interest Is Strongly Associated with Tobacco Industry–Favourable Results, Indicating No Harm of e-Cigarettes. Prev. Med. 2019, 119, 124–131. [Google Scholar] [CrossRef]
- Krüsemann, E.J.Z.; Havermans, A.; Pennings, J.L.A.; de Graaf, K.; Boesveldt, S.; Talhout, R. Comprehensive Overview of Common E-Liquid Ingredients and How They Can Be Used to Predict an e-Liquid’s Flavour Category. Tob. Control 2021, 30, 185–191. [Google Scholar] [CrossRef]
- Tayyarah, R.; Long, G.A. Comparison of Select Analytes in Aerosol from E-Cigarettes with Smoke from Conventional Cigarettes and with Ambient Air. Regul. Toxicol. Pharmacol. 2014, 70, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Mulder, H.A.; Stewart, J.B.; Blue, I.P.; Krakowiak, R.I.; Patterson, J.L.; Karin, K.N.; Royals, J.M.; DuPont, A.C.; Forsythe, K.E.; Poklis, J.L.; et al. Characterization of E-Cigarette Coil Temperature and Toxic Metal Analysis by Infrared Temperature Sensing and Scanning Electron Microscopy—Energy-Dispersive X-ray. Inhal. Toxicol. 2020, 32, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Campus, B.; Fafard, P.; St. Pierre, J.; Hoffman, S.J. Comparing the Regulation and Incentivization of E-Cigarettes across 97 Countries. Social Sci. Med. 2021, 291, 114187. [Google Scholar] [CrossRef] [PubMed]
- Directive 2014/40/EU of the European Parliament and of the Council of 3 April 2014 on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Concerning the Manufacture, Presentation and Sale of Tobacco and Related Products and Repealing Directive 2001/37/EC. Off. J. Eur. Union 2014. Available online: https://eur-lex.europa.eu/eli/dir/2014/40/oj (accessed on 15 January 2024).
- FDA. Tobacco Control Act. 2009. Available online: https://www.govinfo.gov/content/pkg/PLAW-111publ31/pdf/PLAW-111publ31.pdf (accessed on 15 January 2024).
- U.S. Department of Health and Human Services, Food and Drug Administration. Center for Tobacco Products, Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems—Guidance for Industry. 2023. Available online: https://www.fda.gov/media/127853/download (accessed on 16 January 2024).
- CEN/TR 17236:2018; Electronic Cigarettes and e-Liquids—Constituents to be Measured in the Aerosol of Vaping Products. European Committee for Standardization: Brussels, Belgium, 2018.
- XP D 90-300-1; AFNOR. 2021. Available online: https://www.boutique.afnor.org/en-gb/standard/xp-d903003/electronic-cigarettes-and-eliquids-requirements-and-test-methods-for-emissi/fa197820/319142 (accessed on 11 March 2024).
- ISO 20768:2018; Vapour Products—Routine Analytical Vaping Machine—Definitions and Standard Conditions. International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/69019.html (accessed on 16 January 2024).
- Coresta Recommended Method N° 81—Routine Analytical Machine for E-Cigarette Aerosol Generation and Collection—Definitions and Standard Conditions. 2015. Available online: https://www.coresta.org/routine-analytical-machine-e-cigarette-aerosol-generation-and-collection-definitions-and-standard (accessed on 16 January 2024).
- Soulet, S.; Sussman, R.A. A Critical Review of Recent Literature on Metal Contents in E-Cigarette Aerosol. Toxics 2022, 10, 510. [Google Scholar] [CrossRef]
- ISO 24199:2022; Vapour Products—Determination of Nicotine in Vapour Product Emissions—Gas Chromatographic Method. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/78095.html (accessed on 16 January 2024).
- Chen, M.; Qin, Y.; Wang, S.; Liu, S.; Zhao, G.; Lu, H.; Cui, H.; Cai, J.; Wang, X.; Yan, Q.; et al. Electromembrane Extraction of Nicotine in Inhaled Aerosols from Tobacco Cigarettes, Electronic Cigarettes, and Heated Tobacco Products. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1208, 123391. [Google Scholar] [CrossRef] [PubMed]
- Ogunwale, M.A.; Chen, Y.; Theis, W.S.; Nantz, M.H.; Conklin, D.J.; Fu, X.-A. A Novel Method of Nicotine Quantification in Electronic Cigarette Liquids and Aerosols. Anal. Methods 2017, 9, 4261–4266. [Google Scholar] [CrossRef]
- Silinski, M.A.R.; Uenoyama, T.; Coleman, D.P.; Blake, J.C.; Thomas, B.F.; Marusich, J.A.; Jackson, K.J.; Meredith, S.E.; Gahl, R.F. Analysis of Nicotine and Non-Nicotine Tobacco Constituents in Aqueous Smoke/Aerosol Extracts by UHPLC and Ultraperformance Convergence Chromatography–Tandem Mass Spectrometry. Chem. Res. Toxicol. 2020, 33, 2988–3000. [Google Scholar] [CrossRef] [PubMed]
- El-Hellani, A.; Salman, R.; El-Hage, R.; Talih, S.; Malek, N.; Baalbaki, R.; Karaoghlanian, N.; Nakkash, R.; Shihadeh, A.; Saliba, N.A. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics. Nicotine Tob. Res. 2018, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.I.; Thissen, J.; Hermes, N.; Cunningham, A.; Digard, H.; Murphy, J. Chemical Characterisation of the Vapour Emitted by an E-Cigarette Using a Ceramic Wick-Based Technology. Sci. Rep. 2022, 12, 16497. [Google Scholar] [CrossRef] [PubMed]
- Pagano, T.; DiFrancesco, A.G.; Smith, S.B.; George, J.; Wink, G.; Rahman, I.; Robinson, R.J. Determination of Nicotine Content and Delivery in Disposable Electronic Cigarettes Available in the United States by Gas Chromatography-Mass Spectrometry. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2016, 18, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Bozhilova, S.; Baxter, A.; Bishop, E.; Breheny, D.; Thorne, D.; Hodges, P.; Gaça, M. Optimization of Aqueous Aerosol Extract (AqE) Generation from e-Cigarettes and Tobacco Heating Products for in Vitro Cytotoxicity Testing. Toxicol. Lett. 2020, 335, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, G.; Demir, K.; Yao, J.; Wolz, R.L.; Kosachevsky, P.; Gillman, I.G.; Oldham, M.J. Characterization of a Rapid Condensate Collection Apparatus for in Vitro Assays of Electronic Nicotine Delivery Systems. Toxicol. Vitr. 2022, 84, 105434. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Niu, Z.Y.; Xu, J.; Li, X.D.; Luo, Q.; Luo, A.; Huang, Y.L.; Jiang, X.T.; Wu, Z.H. Chemical Analysis of Selected Harmful and Potentially Harmful Constituents and in Vitro Toxicological Evaluation of Leading Flavoured E-Cigarette Aerosols in the Chinese Market. Drug Test. Anal. 2022, 15, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Adamson, J.; Li, X.; Cui, H.; Thorne, D.; Xie, F.; Gaca, M.D. Nicotine Quantification In Vitro: A Consistent Dosimetry Marker for e-Cigarette Aerosol and Cigarette Smoke Generation. Appl. Vitr. Toxicol. 2017, 3, 14–27. [Google Scholar] [CrossRef]
- Haswell, L.E.; Baxter, A.; Banerjee, A.; Verrastro, I.; Mushonganono, J.; Adamson, J.; Thorne, D.; Gaça, M.; Minet, E. Reduced Biological Effect of E-Cigarette Aerosol Compared to Cigarette Smoke Evaluated in Vitro Using Normalized Nicotine Dose and RNA-Seq-Based Toxicogenomics. Sci. Rep. 2017, 7, 888. [Google Scholar] [CrossRef]
- McAdam, K.; Davis, P.; Ashmore, L.; Eaton, D.; Jakaj, B.; Eldridge, A.; Liu, C. Influence of Machine-Based Puffing Parameters on Aerosol and Smoke Emissions from next Generation Nicotine Inhalation Products. Regul. Toxicol. Pharmacol. RTP 2019, 101, 156–165. [Google Scholar] [CrossRef]
- Talih, S.; Salman, R.; El-Hage, R.; Karam, E.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Eissenberg, T.; Shihadeh, A. Might Limiting Liquid Nicotine Concentration Result in More Toxic Electronic Cigarette Aerosols? Tob. Control 2021, 30, 348. [Google Scholar] [CrossRef]
- Gholap, V.V.; Pearcy, A.C.; Halquist, M.S. Potential Factors Affecting Free Base Nicotine Yield in Electronic Cigarette Aerosols. Expert Opin. Drug Deliv. 2021, 18, 979–989. [Google Scholar] [CrossRef]
- Cunningham, A.; Slayford, S.; Vas, C.; Gee, J.; Costigan, S.; Prasad, K. Development, Validation and Application of a Device to Measure e-Cigarette Users’ Puffing Topography. Nat. Publ. Group 2016, 6, 35071. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, D.L.; Caudill, J.; Baron, J.; Cooper, K. Fabrication and Validation of an Economical, Programmable, Dual-Channel, Electronic Cigarette Aerosol Generator. Int. J. Environ. Res. Public Health 2021, 18, 13190. [Google Scholar] [CrossRef] [PubMed]
- Havel, C.M.; Benowitz, N.L.; Jacob, P.; Helen, G.S. An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition. Nicotine Tob. Res. 2017, 19, 1224. [Google Scholar] [CrossRef]
- Cooperation Centre for Scientific Research Relative to Tobacco, Membership, (n.d.). Available online: https://www.coresta.org/membership (accessed on 18 January 2024).
- Alderman, S.L.; Song, C.; Moldoveanu, S.C.; Cole, S.K. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency. Beitr. Tab./Contrib. Tob. Res. 2015, 26, 183–190. [Google Scholar] [CrossRef]
- Eddingsaas, N.; Pagano, T.; Cummings, C.; Rahman, I.; Robinson, R.; Hensel, E. Qualitative Analysis of E-Liquid Emissions as a Function of Flavor Additives Using Two Aerosol Capture Methods. Int. J. Environ. Res. Public Health 2018, 15, 323. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Leverette, R.D.; Cooper, B.T.; Bennett, M.B.; Brown, S.E. Comparative in Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols. Int. J. Environ. Res. Public Health 2014, 11, 11325–11347. [Google Scholar] [CrossRef] [PubMed]
- O’ Connell, G.; Colard, S.; Breiev, K.; Sulzer, P.; Biel, S.S.; Cahours, X.; Pritchard, J.D.; Burseg, K.M.M. An Experimental Method to Determine the Concentration of Nicotine in Exhaled Breath and Its Retention Rate Following Use of an Electronic Cigarette. J. Environ. Anal. Chem. 2015, 2, 2380–2391. [Google Scholar] [CrossRef]
- Talih, S.; Balhas, Z.; Eissenberg, T.; Salman, R.; Karaoghlanian, N.; El Hellani, A.; Baalbaki, R.; Saliba, N.; Shihadeh, A. Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield: Measurements and Model Predictions. Nicotine Tob. Res. 2015, 17, 150–157. [Google Scholar] [CrossRef]
- The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH Topic Q2 (R2) Validation of Analytical Procedures: Text and Methodology. Int. Conf. Harmon. 2023, 1–32. Available online: https://database.ich.org/sites/default/files/ICH_Q2%28R2%29_Guideline_2023_1130.pdf (accessed on 22 March 2024).
- Barhdadi, S.; Desmedt, B.; Courselle, P.; Rogiers, V.; Vanhaecke, T.; Deconinck, E. A Simple Dilute-and Shoot Method for Screening and Simultaneous Quantification of Nicotine and Alkaloid Impurities in Electronic Cigarette Refills (e-Liquids) by UHPLC-DAD. J. Pharm. Biomed. Anal. 2019, 169, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Blank, M.D.; Pearson, J.; Cobb, C.O.; Felicione, N.J.; Hiler, M.M.; Spindle, T.R.; Breland, A. What Factors Reliably Predict Electronic Cigarette Nicotine Delivery? Tob. Control 2020, 29, 644. [Google Scholar] [CrossRef]
- Peace, M.R.; Mulder, H.A.; Baird, T.R.; Butler, K.E.; Friedrich, A.K.; Stone, J.W.; Turner, J.B.M.; Poklis, A.; Poklis, J.L. Evaluation of Nicotine and the Components of E-Liquids Generated from e-Cigarette Aerosols. J. Anal. Toxicol. 2018, 42, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Nelson, J.; Dada, O.; Pyrgiotakis, G.; Kavouras, I.G.; Demokritou, P. Assessing Electronic Cigarette Emissions: Linking Physico-Chemical Properties to Product Brand, e-Liquid Flavoring Additives, Operational Voltage and User Puffing Patterns. Inhal. Toxicol. 2018, 30, 78–88. [Google Scholar] [CrossRef]
- Li, Y.; Burns, A.E.; Tran, L.N.; Abellar, K.A.; Poindexter, M.; Li, X.; Madl, A.K.; Pinkerton, K.E.; Nguyen, T.B. Impact of E-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes. Chem. Res. Toxicol. 2021, 34, 1640–1654. [Google Scholar] [CrossRef]
- Cheng, T. Chemical Evaluation of Electronic Cigarettes. Tob. Control 2014, 23 (Suppl. S2), ii11–ii17. [Google Scholar] [CrossRef]
- Zuccarello, P.; Rust, S.; Caruso, M.; Emma, R.; Pulvirenti, R.; Favara, C.; Polosa, R.; Li Volti, G.; Ferrante, M. Nicotine Dosimetry and Stability in Cambridge Filter PADs (CFPs) Following Different Smoking Regime Protocols and Storage Conditions. Regul. Toxicol. Pharmacol. 2021, 122, 104917. [Google Scholar] [CrossRef]
- Shihadeh, A.; Eissenberg, T. Electronic Cigarette Effectiveness and Abuse Liability: Predicting and Regulating Nicotine Flux. Nicotine Tob. Res. 2015, 17, 158. [Google Scholar] [CrossRef]
- Barhdadi, S.; Moens, G.; Canfyn, M.; Vanhee, C.; Desmedt, B.; Courselle, P.; Rogiers, V.; Vanhaecke, T.; Deconinck, E. Corrigendum to: Impact of the Revised European Tobacco Product Directive on the Quality of E-Cigarette Refill Liquids in Belgium. Nicotine Tob. Res. 2021, 23, 235. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/66912.html (accessed on 22 July 2024).
Accuracy (Total Overall Bias %) | Repeatability (RSD) | Intermediate Precision (RSD) | β-Expectation Tolerance Limit | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg/mL) | 0.2 ± 0.04 | 10 ± 2 | 20 ± 2 | 0.2 ± 0.04 | 10 ± 2 | 20 ± 2 | 0.2 ± 0.04 | 10 ± 2 | 20 ± 2 | 0.2 ± 0.04 | 10 ± 2 | 20 ± 2 |
4.87% | 0.17% | −6.26% | 3.47% | 2.09% | 1.68% | 4.55% | 3.48% | 1.68% | [−9.65%; 19.39%] | [−12.24%; 12.59%] | [−10.18%; −2.34%] |
E-Liquid 1 | E-Liquid 2 | E-Liquid 3 |
---|---|---|
−5.86 | 1.21 | −0.660 |
−8.11 * | −3.43 | −3.59 |
4.40 | 3.83 | 3.93 |
3.88 | 0.645 | −0.756 |
5.70 | −2.25 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dill, M.; Deconinck, E.; Barhdadi, S. Method Development and Validation of an Aerosol Sampling Technique for the Analysis of Nicotine in Electronic Cigarette Aerosols. Molecules 2024, 29, 3487. https://doi.org/10.3390/molecules29153487
Dill M, Deconinck E, Barhdadi S. Method Development and Validation of an Aerosol Sampling Technique for the Analysis of Nicotine in Electronic Cigarette Aerosols. Molecules. 2024; 29(15):3487. https://doi.org/10.3390/molecules29153487
Chicago/Turabian StyleDill, Maarten, Eric Deconinck, and Sophia Barhdadi. 2024. "Method Development and Validation of an Aerosol Sampling Technique for the Analysis of Nicotine in Electronic Cigarette Aerosols" Molecules 29, no. 15: 3487. https://doi.org/10.3390/molecules29153487
APA StyleDill, M., Deconinck, E., & Barhdadi, S. (2024). Method Development and Validation of an Aerosol Sampling Technique for the Analysis of Nicotine in Electronic Cigarette Aerosols. Molecules, 29(15), 3487. https://doi.org/10.3390/molecules29153487