New Ethylated Derivatives of Sulfur- and Nitrogen-Containing Artifacts from Tenodera sinensis Egg Pod and Their Anti-Renal Fibrosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation of the Compounds
2.2. Biological Activity
3. Materials and Methods
3.1. General
3.2. Insect Material
3.3. Extraction and Isolation
- Mantidisamide E (1): yellow powder; UV (MeOH) λmax (logε) 221 (2.72), 238 (2.98), 264 (2.43), and 280 (2.49) nm; {[α]D25 −170.00 (c 0.03, MeOH); CD (MeOH) Δε211 +4.90, Δε215 +3.13, Δε230 +10.81, Δε249 −13.52, Δε265 −3.22; (−)-1}; {[α]D25 +270.00 (c 0.04, MeOH); CD (MeOH) Δε205 −7.43, Δε213 −5.05, Δε230 −16.01, Δε248 +18.88, Δε265 +4.46; (+)-1}; HRESIMS m/z 248.0353 [M + Na]+ (calcd for C10H11NO3SNa, 248.0352); 1H; and 13C NMR data (see Table 1).
- Mantidisamide F (2): yellow powder; UV (MeOH) λmax (logε) 218 (2.87), 224 (2.85), 237 (2.95), and 263 (2.40) nm; {[α]D25 −180.00 (c 0.03, MeOH); CD (MeOH) Δε217 +13.45, Δε248 −14.95, Δε261 −3.61; (−)-2}; {[α]D25 +160.00 (c 0.03, MeOH); CD (MeOH) Δε224 −4.97, Δε248 +8.17, Δε263 +2.24; (+)-2}; HRESIMS m/z 309.0916 [M–H]− (calcd for C14H17N2O4S, 309.0915); 1H; and 13C NMR data (see Table 1).
- Mantidisamide G (3): colorless gum; UV (MeOH) λmax (logε) 205 (3.02), 221 (2.74), 232 (2.80), and 304 (2.21) nm; {[α]D25 −6.67 (c 0.03, MeOH); CD (MeOH) Δε206 −1.97, Δε215 −0.91, Δε228 −2.06; (−)-3}; {[α]D25 +3.33 (c 0.03, MeOH); CD (MeOH) Δε208 +1.94, Δε222 +0.59, Δε233 +1.17; (+)-3}; HRESIMS m/z 279.0808 [M–H]− (calcd for C13H15N2O3S, 279.0809); 1H; and 13C NMR data (see Table 2).
- Mantidisamide H (4): colorless gum; UV (MeOH) λmax (logε) 205 (3.21), 228 (2.87), 241 (2.92), and 261 (2.45) nm; HRESIMS m/z 279.0813 [M–H]− (calcd for C13H15N2O3S, 279.0809); 1H; and 13C NMR data (see Table 2).
3.4. ECD Calculations
3.5. Biological Evaluation
3.5.1. Cell Culture
3.5.2. Cell Viability Assay
3.5.3. Western Blot Analysis
3.5.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.W.; Zhang, X.Y.; Guo, H.; Yang, X.; Xing, Z.M.; Yang, W.Z.; Zhang, J.; Tian, X.X. Species diversity analysis of commercial Mantidis Ootheca samples contaminated by store pests based on DNA metabarcoding. BMC Genom. 2022, 23, 720. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.J.; Al, X.; Jia, T.Z.; Ju, C.Q. Comparasion of antis egg-case before and after preparing in reproducing kidney-yang deficiency model rats. Chin. Med. Mater. 2016, 39, 1516–1520. [Google Scholar] [CrossRef]
- Lim, H.S.; Seo, Y.S.; Ryu, S.M.; Moon, B.C.; Choi, G.; Kim, J.S. Two-week repeated oral dose toxicity study of Mantidis Ootheca water extract in C57BL/6 mice. Evid.-Based Complement. Altern. Med. 2019, 2019, 6180236. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.G.; Liu, X.N.; Sura, M.B.; Yan, Y.M.; Cheng, Y.X. Mantidisflavin A: A riboflavin derivative featuring a 6/6/6/5/5 skeleton from the egg cases of the insect Tenodera sinensis Saussure and its anti-renal fibrosis activity. Org. Lett. 2024, 26, 1316–1320. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.G.; Li, Y.P.; Tao, C.T.; Yan, Y.M.; Cheng, Y.X. N-acetyldopamine derivatives from the egg cases of the insect Tenodera sinensis Saussure with COX-2 inhibitory activity. Tetrahedron 2023, 138, 133395. [Google Scholar] [CrossRef]
- Tang, J.J.; Zhang, L.; Jiang, L.P.; Di, L.; Yan, Y.M.; Tu, Z.C.; Yang, C.P.; Zuo, Z.L.; Hou, B.; Xia, H.L.; et al. Dopamine derivatives from the insect Polyrhachis dives as inhibitors of ROCK1/2 and stimulators of neural stem cell proliferation. Tetrahedron 2014, 70, 8852–8857. [Google Scholar] [CrossRef]
- Tang, J.J.; Luo, Q.; Di, L.; Zhang, L.; Lu, Q.; Hou, B.; Zuo, Z.L.; Xia, H.L.; Ma, X.J.; Cheng, Y.X. Compounds from the Chinese black ant (Polyrhachis dives) and NMR behavior of the isomers with formamide group. J. Asian Nat. Prod. Res. 2015, 17, 20–26. [Google Scholar] [CrossRef]
- Zhu, H.J.; Xu, T.; Yan, Y.M.; Cheng, Y.X. Nonpeptidal compounds from the insect Polyphaga plancyi and their biological evaluation. Bioorg. Chem. 2020, 104, 104258. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.M.; Nam, H.H.; Kim, J.S.; Song, J.H.; Seo, Y.H.; Kim, H.S.; Lee, A.Y.; Kim, W.J.; Lee, D.; Moon, B.C.; et al. Chemical constituents of the egg cases of Tenodera angustipennis (Mantidis ootheca) with intracellular reactive oxygen species scavenging activity. Biomolecules 2021, 11, 556. [Google Scholar] [CrossRef]
- Xu, M.Z.; Lee, W.S.; Han, J.M.; Oh, H.W.; Park, D.S.; Tian, G.R.; Jeong, T.S.; Park, H.Y. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum cicadae. Bioorg. Med. Chem. 2006, 14, 7826–7834. [Google Scholar] [CrossRef]
- Yamada, K.; Ohta, M.; Kitamura, G.; Tsutsumiguchi, S.; Nishi, T. Facile synthesis of indole 3-acetic acid and azaindole 3-acetic acid derivatives. Tetrahedron 2023, 135, 133328. [Google Scholar] [CrossRef]
- Li, Y.F.; Wu, X.B.; Niaz, S.I.; Zhang, L.H.; Huang, Z.J.; Lin, Y.C.; Li, J.; Liu, L. Effect of culture conditions on metabolites produced by the crinoid-derived fungus Aspergillus ruber 1017. Nat. Prod. Res. 2017, 31, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.R.; Carté, B.K.; Sidebottom, P.J.; Yew, A.L.S.; Ng, S.B.; Huang, Y.C.; Butler, M.S. Circumdatin G, a new alkaloid from the fungus Aspergillus ochraceus. J. Nat. Prod. 2001, 64, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.L.; Chen, Y.; Chen, X.Y.; Liang, J.Y.; Qu, W. A new lignan from the roots of Ginkgo biloba. Chem. Nat. Compd. 2015, 51, 819–821. [Google Scholar] [CrossRef]
- Seidel, V.; Bailleul, F.; Waterman, P.G. Novel oligorhamnosides from the stem bark of Cleistopholis glauca. J. Nat. Prod. 2000, 63, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Jutiviboonsuk, A.; Zhang, H.J.; Tan, G.T.; Ma, C.Y.; Van Hung, N.; Cuong, N.M.; Bunyapraphatsara, N.; Soejarto, D.D.; Fong, H.H.S. Bioactive constituents from roots of Bursera tonkinensis. Phytochemistry 2005, 66, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.G.; Qin, H.; Li, Y.H.; Sun, Y.; Wang, Z.P.; Yang, T.H.; Liu, L.; Wang, M.C.; Feng, F.; Mei, Q.B. Chemical constituents of the root of Jasminum giraldii. Molecules 2013, 18, 4766–4775. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.L.; Tian, W.J.; Yang, R.J.; Bian, Y.T.; Lin, T.; Chen, L.X.; Chen, H.F. Lignans from Agrimonia pilosa. China J. Chin. Mater. Med. 2022, 47, 2982–2988. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Yuan, C.M.; Chen, J.L.; Li, Y.H.; Wei, Y.H.; Li, H.Y.; Qiu, J.L.; Huang, L.J.; Hu, Z.X.; Hao, X.J.; et al. Constituents from Zanthoxylum dimorphophyllum and their chemotaxonomic significance. Biochem. Syst. Ecol. 2023, 108, 104640. [Google Scholar] [CrossRef]
- Thuong, P.T.; Hung, T.M.; Ngoc, T.M.; Ha, D.T.; Min, B.S.; Kwack, S.J.; Kang, T.S.; Choi, J.S.; Bae, K. Antioxidant activities of coumarins from Korean medicinal plants and their structure-activity relationships. Phytother. Res. 2010, 24, 101–106. [Google Scholar] [CrossRef]
- Jiang, B.G.; Wei, H.X.; Wang, Y.T.; Zheng, K.X.; Liu, S.S.; Zhang, S.P.; Jiang, Y.; Wu, S.H. Secondary metabolites of two lichen-derived Streptomyces. Chem. Nat. Compd. 2019, 55, 783–786. [Google Scholar] [CrossRef]
- Andrioli, W.J.; Santos, M.S.; Silva, V.B.; Oliveira, R.B.; Chagas-Paula, D.A.; Jorge, J.A.; Furtado, N.A.J.C.; Pupo, M.T.; Silva, C.H.T.P.; Naal, R.M.Z.G.; et al. Δ-lactam derivative from thermophilic soil fungus exhibits in vitro anti-allergic activity. Nat. Prod. Res. 2012, 26, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Du, F.Y.; Li, X.M.; Song, J.Y.; Li, C.S.; Wang, B.G. Anthraquinone derivatives and an orsellinic acid ester from the marine alga-derived endophytic fungus Eurotium cristatum EN-220. Helv. Chim. Acta. 2014, 97, 973–978. [Google Scholar] [CrossRef]
- Luo, X.H.; Wang, X.Z.; Jiang, H.L.; Yang, J.L.; Crews, P.; Valeriote, F.A.; Wu, Q.X. The biosynthetic products of Chinese insect medicine, Aspongopus chinensis. Fitoterapia 2012, 83, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.X.; Yang, B.Y.; Xia, Y.G.; Feng, W.S. Chemical constituents from the flower of Datura metel L. Arch. Pharmacal Res. 2008, 31, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, G.J.M. Adrenergic modulation of hematopoiesis. J. Neuroimmune Pharmacol. 2020, 15, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, K.; Ohtara, K.; Ito, S. Chemical analysis of late stages of pheomelanogenesis: Conversion of dihydrobenzothiazine to a benzothiazole structure. Pigment Cell Melanoma Res. 2009, 22, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, A.; Di Donato, P.; Prota, G. New regulatory mechanisms in the biosynthesis of pheomelanins: Rearrangement vs. redox exchange reaction routes of a transient 2H-1, 4-benzothiazine-o-quinonimine intermediate. Biochim. Biophys. Acta 2000, 1475, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, H.; Liu, Y. The fibrogenic niche in kidney fibrosis: Components and mechanisms. Nat. Rev. Nephrol. 2022, 18, 545–557. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Bao, X.H.; Li, Y.P.; Li, Q.; Cheng, Y.X.; Jiao, Y.B.; Zhang, H.X.; Yan, Y.M. Racemic norneolignans from the resin of Ferula sinkiangensis and their COX-2 inhibitory activity. Fitoterapia 2023, 164, 105341. [Google Scholar] [CrossRef] [PubMed]
No. | 1 a | 1 b | 2 a | 2 b | |||
---|---|---|---|---|---|---|---|
δH (J in Hz) | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 155.0 | 134.8 | 136.6 | ||||
2 | 6.69, d (2.6) | 6.74, d (2.6) | 115.6 | 6.56, d (1.7) | 113.6 | 6.61, d (1.7) | 114.4 |
3 | 118.7 | 145.3 | 146.7 | ||||
4 | 130.3 | 122.9 | 124.1 | ||||
5 | 6.83 d (8.6) | 6.85, d (8.6) | 119.4 | 116.4 | 118.2 | ||
6 | 6.62, dd (8.6, 2.6) | 6.66, dd (8.6, 2.6) | 115.5 | 6.61, d (1.7) | 118.6 | 6.67, d (1.7) | 120.2 |
7 | 163.6 | 160.3 | 163.3 | ||||
8 | 5.12, s | 5.02, s | 79.5 | 5.15, s | 77.6 | 5.05, s | 79.5 |
9 | Ha: 3.70, dq (9.8, 7.0) | Ha: 3.83, dq (9.5, 7.0) | 65.1 | Ha: 3.69, dq (9.8, 7.0) | 63.4 | Ha: 3.83, dq (9.5, 7.0) | 65.1 |
Hb: 3.48, dq (9.8, 7.0) | Hb: 3.52, dq (9.5, 7.0) | Hb: 3.48, dq (9.8, 7.0) | Hb: 3.53, dq (9.5, 7.0) | ||||
10 | 1.04, t (7.0) | 1.12, t (7.0) | 14.9 | 1.04, t (7.0) | 14.5 | 1.12, t (7.0) | 14.9 |
11 | 2.54, m | 34.6 | 2.67, m | 35.9 | |||
12 | 3.18, m | 40.0 | 3.35, m | 41.9 | |||
13 | 169.0 | 173.3 | |||||
14 | 1.77, s | 22.6 | 1.91, s | 22.5 | |||
1-OH | 9.39, brs | ||||||
3-OH | 9.60, brs | ||||||
7-NH | 10.54, brs | 10.09, brs | |||||
12-NH | 7.88, t (5.4) |
No. | 3 | 4 | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 141.3 | 111.9 | ||
2 | 6.92, d (1.4) | 110.5 | 6.67, s | 99.4 |
3 | 153.1 a | 138.0 | ||
4 | 143.8 | 151.9 | ||
5 | 137.0 a | 138.8 | ||
6 | 7.47, d (1.4) | 111.8 | 157.2 | |
7 | 4.47, dd (8.0, 4.7) | 81.5 | 2.96, t (6.9) | 31.2 |
8 | Ha: 3.44, m | 47.2 | 3.42, t (6.9) | 39.6 |
Hb: 3.34, m | ||||
9 | 173.5 a | 173.3 | ||
10 | 1.93, s | 15.6 | 1.85, s | 22.6 |
11 | 9.04, s | 154.4 | 8.84, s | 151.4 |
12 | 3.44, m | 65.7 | 4.11, q (7.0) | 65.8 |
13 | 1.20, t (7.0) | 22.5 | 1.45, t (7.0) | 15.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-F.; Peng, S.-G.; Yan, Y.-M.; Cheng, Y.-X. New Ethylated Derivatives of Sulfur- and Nitrogen-Containing Artifacts from Tenodera sinensis Egg Pod and Their Anti-Renal Fibrosis. Molecules 2024, 29, 3491. https://doi.org/10.3390/molecules29153491
Chen Y-F, Peng S-G, Yan Y-M, Cheng Y-X. New Ethylated Derivatives of Sulfur- and Nitrogen-Containing Artifacts from Tenodera sinensis Egg Pod and Their Anti-Renal Fibrosis. Molecules. 2024; 29(15):3491. https://doi.org/10.3390/molecules29153491
Chicago/Turabian StyleChen, Ye-Fei, Shi-Gang Peng, Yong-Ming Yan, and Yong-Xian Cheng. 2024. "New Ethylated Derivatives of Sulfur- and Nitrogen-Containing Artifacts from Tenodera sinensis Egg Pod and Their Anti-Renal Fibrosis" Molecules 29, no. 15: 3491. https://doi.org/10.3390/molecules29153491
APA StyleChen, Y. -F., Peng, S. -G., Yan, Y. -M., & Cheng, Y. -X. (2024). New Ethylated Derivatives of Sulfur- and Nitrogen-Containing Artifacts from Tenodera sinensis Egg Pod and Their Anti-Renal Fibrosis. Molecules, 29(15), 3491. https://doi.org/10.3390/molecules29153491