Schiff Bases Derived from Pyridoxal 5′-Phosphate and 2-X-Phenylamine (X = H, OH, SH): Substituent Effects on UV-Vis Spectra and Hydrolysis Kinetics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Properties of SBs in DMSO
2.2. Hydrolysis of SBs in Water at Different pH Values
3. Materials and Methods
3.1. Chemicals
3.2. Experimental Techniques
3.3. Computation Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Zhai, Y.; Jiang, H.; Li, S.; Liu, P.; Gao, L.; Jiang, L. Bioinspired Light-Driven Chloride Pump with Helical Porphyrin Channels. Nat. Commun. 2024, 15, 832. [Google Scholar] [CrossRef]
- Podoliak, E.; Lamm, G.H.U.; Marin, E.; Schellbach, A.V.; Fedotov, D.A.; Stetsenko, A.; Asido, M.; Maliar, N.; Bourenkov, G.; Balandin, T.; et al. A Subgroup of Light-Driven Sodium Pumps with an Additional Schiff Base Counterion. Nat. Commun. 2024, 15, 3119. [Google Scholar] [CrossRef] [PubMed]
- Ajormal, F.; Bikas, R.; Noshiranzadeh, N.; Emami, M.; Kozakiewicz-Piekarz, A. Synthesis of Chiral Cu(II) Complexes from pro-Chiral Schiff Base Ligand and Investigation of Their Catalytic Activity in the Asymmetric Synthesis of 1,2,3-Triazoles. Sci. Rep. 2024, 14, 10603. [Google Scholar] [CrossRef]
- Sedighi, R.E.; Behzad, M.; Azizi, N. Metallosalen Modified Carbon Nitride a Versatile and Reusable Catalyst for Environmentally Friendly Aldehyde Oxidation. Sci. Rep. 2024, 14, 8498. [Google Scholar] [CrossRef] [PubMed]
- Aitbella, H.; Belachemi, L.; Merle, N.; Zinck, P.; Kaddami, H. Schiff Base Functionalized Cellulose: Towards Strong Support-Cobalt Nanoparticles Interactions for High Catalytic Performances. Molecules 2024, 29, 1734. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Salazar, J.; Restrepo-Acevedo, A.; Torres, J.E.; Abonia, R.; Svetaz, L.; Zacchino, S.A.; Le Lagadec, R.; Cuenú-Cabezas, F. Synthesis and Characterization of New Bases Derived from Nitrophenylpyrazoles, Coordination to Palladium and Antifungal Activity and Catalytic Activity in Mizoroki–Heck Reactions. Catalysts 2024, 14, 387. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, D.; Song, Z.; Liu, W.; Shang, S.; Cao, H.; Du, J.; Ren, J.; Cui, S. Tannic Acid-Assisted Construction of Amino-Functionalized Cellulose Nanofiber Composite Aerogel for High-Performance Adsorption of Cr(VI), Cu(II) and Congo Red: Experimental and DFT Studies. Sep. Purif. Technol. 2024, 350, 127979. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Y.; Du, X.; Jia, H.; Xu, S.; Zhang, M.; Liu, B. Photocatalytic and Fouling Resistant MXene/3D-S-COF for Efficient Oil-Water Emulsion Separation. Sep. Purif. Technol. 2025, 352, 128242. [Google Scholar] [CrossRef]
- Sun, H.; Chen, X.; Li, S.; Ma, W.; Chen, X.; Wu, D.; Fu, K.; Xiao, M.; Wen, M. Core–Shell MOF@COF Composites for Ultra-Efficient Selective Recovery of Pd(II). Sep. Purif. Technol. 2024, 349, 127571. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Abdelrahman, E.A. Functionalization of Strontium Ferrite Nanoparticles with Novel Chitosan–Schiff Base Ligand for Efficient Removal of Pb(II) Ions from Aqueous Media. Inorganics 2024, 12, 148. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, Q.; Shang, X.; Yang, D.; Shi, R.; Zhao, J.; Zhang, L.; Zhao, Y.; Chen, L. Bio-Inspired Co-Deposition of Dopamine and N-Oxide Zwitterionic Polyethyleneimine to Fabricate Anti-Fouling Loose Nanofiltration Membranes for Dye Desalination. Sep. Purif. Technol. 2024, 349, 127801. [Google Scholar] [CrossRef]
- Tian, N.; Wu, B.; Zhang, W.-H.; Jin, C.-G.; Yin, M.-J.; An, Q.-F. Tailoring the Microstructure of Zwitterionic Nanofiltration Membranes via Post-Treatment for Antibiotic Desalination. Sep. Purif. Technol. 2024, 349, 127884. [Google Scholar] [CrossRef]
- Kataria, Y.V.; Klushin, V.A.; Kashparova, V.P.; Sokolova, V.A.; Smirnova, N.V. Synthesis and properties of polyimines based on dialdehydes of the furan series and various diamines. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2023, 66, 6–12. [Google Scholar] [CrossRef]
- Da Silva, C.M.; Da Silva, D.L.; Modolo, L.V.; Alves, R.B.; De Resende, M.A.; Martins, C.V.B.; De Fátima, Â. Schiff Bases: A Short Review of Their Antimicrobial Activities. J. Adv. Res. 2011, 2, 1–8. [Google Scholar] [CrossRef]
- Al Maqbali, A.S.; Al Rasbi, N.K.; Zoghaib, W.M.; Sivakumar, N.; Robertson, C.C.; Shongwe, M.S.; Grzegorzek, N.; Abdel-Jalil, R.J. Stereoselective Asymmetric Syntheses of Molecules with a 4,5-Dihydro-1H-[1,2,4]-Triazoline Core Possessing an Acetylated Carbohydrate Appendage: Crystal Structure, Spectroscopy, and Pharmacology. Molecules 2024, 29, 2839. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Ullah, A.; Waqas, M.; Halim, S.A.; Pasha, A.R.; Shafiq, Z.; Mali, S.N.; Jawarkar, R.D.; Khan, A.; Khalid, A.; et al. Structural, Dynamic Behaviour, in-Vitro and Computational Investigations of Schiff’s Bases of 1,3-Diphenyl Urea Derivatives against SARS-CoV-2 Spike Protein. Sci. Rep. 2024, 14, 12588. [Google Scholar] [CrossRef]
- Belay, Y.; Muller, A.; Mokoena, F.S.; Adeyinka, A.S.; Motadi, L.R.; Oyebamiji, A.K. 1,2,3-Triazole and Chiral Schiff Base Hybrids as Potential Anticancer Agents: DFT, Molecular Docking and ADME Studies. Sci. Rep. 2024, 14, 6951. [Google Scholar] [CrossRef]
- Aziz, Y.M.A.; Nafie, M.S.; Hanna, P.A.; Ramadan, S.; Barakat, A.; Elewa, M. Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity. Pharmaceuticals 2024, 17, 710. [Google Scholar] [CrossRef]
- Gul, S.; Jan, F.; Alam, A.; Shakoor, A.; Khan, A.; AlAsmari, A.F.; Alasmari, F.; Khan, M.; Bo, L. Synthesis, Molecular Docking and DFT Analysis of Novel Bis-Schiff Base Derivatives with Thiobarbituric Acid for α-Glucosidase Inhibition Assessment. Sci. Rep. 2024, 14, 3419. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; George Joy, J.; Sharma, A.R.; Kim, J.-C. Accelerated Full-Thickness Skin Wound Tissue Regeneration by Self-Crosslinked Chitosan Hydrogel Films Reinforced by Oxidized CNC-AgNPs Stabilized Pickering Emulsion for Quercetin Delivery. J. Nanobiotechnol. 2024, 22, 323. [Google Scholar] [CrossRef]
- Bui, H.L.; Su, Y.-H.; Yang, C.-J.; Huang, C.-J.; Lai, J.-Y. Mucoadhesive, Antioxidant, and Lubricant Catechol-Functionalized Poly(Phosphobetaine) as Biomaterial Nanotherapeutics for Treating Ocular Dryness. J. Nanobiotechnol. 2024, 22, 160. [Google Scholar] [CrossRef] [PubMed]
- Azadi, S.; Azizipour, E.; Amani, A.M.; Vaez, A.; Zareshahrabadi, Z.; Abbaspour, A.; Firuzyar, T.; Dortaj, H.; Kamyab, H.; Chelliapan, S.; et al. Antifungal Activity of Fe3O4@SiO2/Schiff-Base/Cu(II) Magnetic Nanoparticles against Pathogenic Candida Species. Sci. Rep. 2024, 14, 5855. [Google Scholar] [CrossRef] [PubMed]
- Tincu, C.E.; Daraba, O.M.; Jérôme, C.; Popa, M.; Ochiuz, L. Albumin-Based Hydrogel Films Covalently Cross-Linked with Oxidized Gellan with Encapsulated Curcumin for Biomedical Applications. Polymers 2024, 16, 1631. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, S.; Cai, H.; Hu, H.; Hu, K.; Sun, Z.; Liu, R.; Wei, Y.; Han, L. A Dual-Crosslinking Electroactive Hydrogel Based on Gelatin Methacrylate and Dibenzaldehyde-Terminated Telechelic Polyethylene Glycol for 3D Bio-Printing. Sci. Rep. 2024, 14, 4118. [Google Scholar] [CrossRef]
- Saad, H.E.; El-Reash, G.M.A.; Gaber, M.; Hashem, M.A.; El-Reash, Y.G.A.; Elamin, N.Y.; Elamin, M.R.; El-Sayed, Y.S. A Novel Isatin Schiff Based Cerium Complex: Synthesis, Characterization, Antimicrobial Activity and Molecular Docking Studies. BMC. Genom. 2024, 25, 162. [Google Scholar] [CrossRef] [PubMed]
- Olar, R.; Badea, M.; Chifiriuc, M.C. Metal Complexes—A Promising Approach to Target Biofilm Associated Infections. Molecules 2022, 27, 758. [Google Scholar] [CrossRef] [PubMed]
- Laurent, R.; Maraval, V.; Bernardes-Génisson, V.; Caminade, A.-M. Dendritic Pyridine–Imine Copper Complexes as Metallo-Drugs. Molecules 2024, 29, 1800. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Xie, Z.; Mo, X.; Feng, Y.; Peng, T.; Wu, F.; Yu, M.; Zhao, J.; Zhang, L.; Guo, J. Synthesis and Application of Salicylhydrazone Probes with High Selectivity for Rapid Detection of Cu2+. Molecules 2024, 29, 2032. [Google Scholar] [CrossRef] [PubMed]
- Gowda, B.G.; Iqbal, M.; Kollur, S.P. A “Turn-Off” Pyrene-Based Ligand as a Fluorescent Sensor for the Detection of Cu2+ and Fe2+ Ions: Synthesis and Application in Real Water Samples, Logic Gate Construction, and Bio-Imaging. Chemosensors 2024, 12, 91. [Google Scholar] [CrossRef]
- Jin, F.; Yan, Y.; Li, X.; Liu, Y.; Liu, L. A Reversible Fluorescent Sensor for Continuous Detection of Fluoride Ion and Trace Water in Chemical Reagents. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 312, 124059. [Google Scholar] [CrossRef]
- Gurusamy, S.; Sankarganesh, M.; Sathish, V.; Rajakumar, K.; Mathavan, A. Fluorescence Chemosensor for Anion Recognition, Solvatochromism and Protein Binding Studies Based on Schiff-Base Derivative. J. Mol. Struct. 2024, 1312, 138542. [Google Scholar] [CrossRef]
- Güngör, Ö.; Nuralin, L. A Novel Naphthylidene-Diimine Chemosensor for Selective Colorimetric and Fluorometric Detection of Al3+ and CN− Ions. J. Fluoresc. 2024, 34, 1319–1342. [Google Scholar] [CrossRef] [PubMed]
- Gamov, G.A.; Zavalishin, M.N.; Petrova, M.V.; Khokhlova, A.; Gashnikova, A.V.; Kiselev, A.N.; Sharnin, V.A. Interaction of Pyridoxal-Derived Hydrazones with Anions and Co2+, Co3+, Ni2+, Zn2+ Cations. Phys. Chem. Liq. 2021, 59, 666–678. [Google Scholar] [CrossRef]
- Lajoie, L.; Fabiano-Tixier, A.-S.; Chemat, F. Water as Green Solvent: Methods of Solubilisation and Extraction of Natural Products—Past, Present and Future Solutions. Pharmaceuticals 2022, 15, 1507. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kuba, A.; Thomas, R.; Ashok Kumar, S.K.; Kuwar, A.; Choi, H.-J.; Sahoo, S.K. Acetate Selective Fluorescent Turn-on Sensors Derived Using Vitamin B6 Cofactor Pyridoxal-5-Phosphate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 157, 110–115. [Google Scholar] [CrossRef]
- Sharma, D.; Moirangthem, A.; Roy, S.M.; Kumar, A.S.K.; Nandre, J.P.; Patil, U.D.; Basu, A.; Sahoo, S.K. Bioimaging Application of a Novel Anion Selective Chemosensor Derived from Vitamin B6 Cofactor. J. Photochem. Photobiol. B Biol. 2015, 148, 37–42. [Google Scholar] [CrossRef]
- Dhanshri, S.; Vardhan, S.; Sahoo, S.K. Fluorescent Turn-on Sensing of Albumin Proteins (BSA and Ovalbumin) Using Vitamin B6 Cofactor Derived Schiff Base. Methods 2022, 206, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Dhanshri, S.; Dutta, S.; Sahoo, S.K. A Schiff Base Fluorescence Switch-on Probe Derived from Vitamin B6 Cofactor for Simultaneous Detection of Bovine Serum Albumin and Ovalbumin. J. Photochem. Photobiol. A Chem. 2023, 444, 114905. [Google Scholar] [CrossRef]
- Gamov, G.A.; Kiselev, A.N.; Zavalishin, M.N.; Yarullin, D.N. Formation and Hydrolysis of Pyridoxal-5′-Phosphate Hydrazones and Schiff Bases: Prediction of Equilibrium and Rate Constants. J. Mol. Liq. 2023, 369, 120961. [Google Scholar] [CrossRef]
- Khodov, I.A.; Belov, K.V.; Pogonin, A.E.; Savenkova, M.A.; Gamov, G.A. Spatial Structure and Conformations of Hydrazones Derived from Pyridoxal 5′-Phosphate and 2-, 3-Pyridinecarbohydrazide in the Light of NMR Study and Quantum Chemical Calculations. J. Mol. Liq. 2021, 342, 117372. [Google Scholar] [CrossRef]
- Erdtman, E.; Bushnell, E.A.C.; Gauld, J.W.; Eriksson, L.A. Computational Studies on Schiff-Base Formation: Implications for the Catalytic Mechanism of Porphobilinogen Synthase. Comput. Theor. Chem. 2011, 963, 479–489. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Duley, S.; Domingo, L.R. Understanding Local Electrophilicity/Nucleophilicity Activation through a Single Reactivity Difference Index. Org. Biomol. Chem. 2012, 10, 2855. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, C.J.; Anderson, J.A.; Chang, H.-F.W. Nature of the Binding Site of Pyridoxal 5′-Phosphate to Bovine Serum Albumin. Biochemistry 1971, 10, 2408–2415. [Google Scholar] [CrossRef] [PubMed]
- Peters, T. Serum Albumin. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 1985; Volume 37, pp. 161–245. [Google Scholar]
- Zhang, F.; Thottananiyil, M.; Martin, D.L.; Chen, C.-H. Conformational Alteration in Serum Albumin as a Carrier for Pyridoxal Phosphate: A Distinction from Pyridoxal Phosphate-Dependent Glutamate Decarboxylase. Arch. Biochem. Biophys. 1999, 364, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Fonda, M.L.; Trauss, C.; Guempel, U.M. The Binding of Pyridoxal 5′-Phosphate to Human Serum Albumin. Arch. Biochem. Biophys. 1991, 288, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, W.B.; Christensen, H.N. The Specific Binding of Pyridoxal 5′-Phosphate to Bovine Plasma Albumin. J. Biol. Chem. 1962, 237, 1113–1120. [Google Scholar] [CrossRef]
- Gamov, G.A.; Meshkov, A.N.; Zavalishin, M.N.; Petrova, M.V.; Khokhlova, A.Y.; Gashnikova, A.V.; Sharnin, V.A. Binding of Pyridoxal, Pyridoxal 5′-Phosphate and Derived Hydrazones to Bovine Serum Albumin in Aqueous Solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118165. [Google Scholar] [CrossRef]
- Liu, M.; Mao, X.; Ye, C.; Huang, H.; Nicholson, J.K.; Lindon, J.C. Improved WATERGATE Pulse Sequences for Solvent Suppression in NMR Spectroscopy. J. Magn. Reson. 1998, 132, 125–129. [Google Scholar] [CrossRef]
- Абраменкoв, А.В. KINET—Прoграмма Для Численнoгo Мoделирoвания Кинетики Слoжных Химических Реакций. Available online: https://www.chem.msu.su/rus/teaching/KINET2012/ (accessed on 18 June 2024).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision, A.02 2016. Available online: https://www.scienceopen.com/document?vid=6be7271f-f651-464b-aee6-ef20b0743b6b (accessed on 24 June 2024).
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and Properties of Excited States in the Gas Phase and in Solution: Theory and Application of a Time-Dependent Density Functional Theory Polarizable Continuum Model. J. Chem. Phys. 2006, 124, 094107. [Google Scholar] [CrossRef]
- Caricato, M. Absorption and Emission Spectra of Solvated Molecules with the EOM–CCSD–PCM Method. J. Chem. Theory Comput. 2012, 8, 4494–4502. [Google Scholar] [CrossRef] [PubMed]
- Chemcraft—Graphical Program for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com/ (accessed on 18 April 2023).
- Ríos-Gutiérrez, M.; Falcioni, F.; Domingo, L.R.; Popelier, P.L.A. A Combined BET and IQA–REG Study of the Activation Energy of Non-Polar Zw-Type [3+2] Cycloaddition Reactions. Phys. Chem. Chem. Phys. 2023, 25, 10853–10865. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R. In the Searching for Zwitterionic Intermediates on Reaction Paths of [3 + 2] Cycloaddition Reactions between 2,2,4,4-Tetramethyl-3-Thiocyclobutanone S-Methylide and Polymerizable Olefins. RSC. Adv. 2015, 5, 101045–101048. [Google Scholar] [CrossRef]
Schiff Base/Conformer | Excited State | λcal (nm) | Oscillator Strength (f) | Composition * |
---|---|---|---|---|
1/1 | A1 | 354.78 | 0.3492 | HOMO→LUMO (100%) |
A3 | 309.68 | 0.1650 | HOMO-3→LUMO (15%), HOMO-2→LUMO (68%), HOMO-1→LUMO (17%) | |
1/2 | A1 | 347.97 | 0.3448 | HOMO-1→LUMO (10%), HOMO→LUMO (88%) |
A5 | 267.44 | 0.3267 | HOMO-5→LUMO (16%), HOMO-4→LUMO (79%) | |
1/3 | A1 | 342.10 | 0.2732 | HOMO→LUMO (93%) |
A5 | 258.10 | 0.3088 | HOMO-5→LUMO (24%), HOMO-4→LUMO (72%) | |
2/1 | A1 | 387.48 | 0.3186 | HOMO→LUMO (100%) |
A2 | 345.96 | 0.0928 | HOMO-1→LUMO (100%) | |
A4 | 311.15 | 0.1442 | HOMO-3→LUMO (55%), HOMO-2→LUMO (45%) | |
2/2 | A1 | 380.57 | 0.3921 | HOMO→LUMO (100%) |
A2 | 336.30 | 0.0830 | HOMO-1→LUMO (100%) | |
A3 | 315.36 | 0.0686 | HOMO-3→LUMO (20%), HOMO-2→LUMO (78%) | |
3/1 | A1 | 333.00 | 0.3150 | HOMO-1→LUMO (12%), HOMO→LUMO (84%) |
3/2 | A1 | 332.70 | 0.2737 | HOMO-2→LUMO (7%), HOMO→LUMO (86%) |
A2 | 294.26 | 0.1598 | HOMO-2→LUMO (9%), HOMO-1→LUMO (91%) |
Schiff base derived from PLP and aniline (1) * | |||
Parameter | pH = 4.5 | pH = 7.4 | pH = 9.5 |
log k1 | 2.34 | 3.25 | 3.04 |
log k−1 | 0.41 | 0.31 | 0.42 |
log K | 1.93 | 2.94 | 2.62 |
Schiff base derived from PLP and 2-hydroxyaniline (2) | |||
Parameter | pH = 4.5 | pH = 7.0 | pH = 9.5 |
log k1 | 4.22 ± 0.10 | 4.11 ± 0.07 | 4.48 ± 0.01 |
log k−1 | 0.56 ± 0.10 | 0.41 ± 0.02 | 1.21 ± 0.05 |
log K | 3.66 ± 0.14 | 3.70 ± 0.07 | 3.27 ± 0.05 |
Schiff base derived from PLP and 2-mercaptoaniline (3) | |||
log k1 | 3.50 ± 0.10 | 3.29 ± 0.08 | 2.51 ± 0.01 |
log k−1 | −2.03 ± 0.10 | −1.26 ± 0.07 | −0.42 ± 0.01 |
log K | 5.53 ± 0.14 | 4.55 ± 0.11 | 2.93 ± 0.01 |
Schiff Base/Conformer | 1/1 | 2/1 | 3/1 |
µ, eV | −4.50 | −4.48 | −4.54 |
η, eV | 4.05 | 3.81 | 6.30 |
ω, eV | 2.50 | 2.63 | 1.63 |
N, eV | 2.55 | 2.69 | 2.89 |
ωC | −1.15 | −1.23 | −0.82 |
ωN | −0.37 | −0.48 | −0.22 |
NC | −0.72 | −0.62 | −0.77 |
NN | 0.26 | 0.22 | 0.18 |
RC | −0.94 | −0.93 | −0.79 |
RN | −0.62 | −0.69 | −0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavalishin, M.N.; Kiselev, A.N.; Gamov, G.A. Schiff Bases Derived from Pyridoxal 5′-Phosphate and 2-X-Phenylamine (X = H, OH, SH): Substituent Effects on UV-Vis Spectra and Hydrolysis Kinetics. Molecules 2024, 29, 3504. https://doi.org/10.3390/molecules29153504
Zavalishin MN, Kiselev AN, Gamov GA. Schiff Bases Derived from Pyridoxal 5′-Phosphate and 2-X-Phenylamine (X = H, OH, SH): Substituent Effects on UV-Vis Spectra and Hydrolysis Kinetics. Molecules. 2024; 29(15):3504. https://doi.org/10.3390/molecules29153504
Chicago/Turabian StyleZavalishin, Maksim N., Aleksei N. Kiselev, and George A. Gamov. 2024. "Schiff Bases Derived from Pyridoxal 5′-Phosphate and 2-X-Phenylamine (X = H, OH, SH): Substituent Effects on UV-Vis Spectra and Hydrolysis Kinetics" Molecules 29, no. 15: 3504. https://doi.org/10.3390/molecules29153504
APA StyleZavalishin, M. N., Kiselev, A. N., & Gamov, G. A. (2024). Schiff Bases Derived from Pyridoxal 5′-Phosphate and 2-X-Phenylamine (X = H, OH, SH): Substituent Effects on UV-Vis Spectra and Hydrolysis Kinetics. Molecules, 29(15), 3504. https://doi.org/10.3390/molecules29153504