Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides
Abstract
:1. Introduction
2. Results
2.1. Perturbation of Membrane Integrity by REO
2.2. Changes in Cell Membrane Fatty Acids
2.3. Nuclear Condensations and ROS Generation
2.4. Metabolic Changes in the Cells
3. Discussion
4. Materials and Methods
4.1. Strain and Culture Conditions
4.2. Essential Oil
4.3. Membrane Depolarization Assay
4.4. Release of Cellular Material
4.5. Measurement of Extracellular pH
4.6. Change in Membrane Fatty Acid (FFA) Composition
4.7. Phenotypic Changes of the DNA Characteristic of Apoptosis
4.8. Intracellular Reactive Oxygen Species
4.9. Secretion of Organic Acids under REO Treatment
4.10. Semi-Quantitative Assay for Enzymes
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altendorf, S. Global Prospects for Major Tropical Fruits Short-Term Outlook, Challenges and Opportunities in a Vibrant Global Marketplace; Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Ploetz, R.C. Diseases of Tropical Fruit Crops; Ploetz, R.C., Ed.; CABI Publishing: Wallingford, UK, 2003. [Google Scholar]
- Siddiqui, Y.; Ali, A. Colletotrichum Gloeosporioides (Anthracnose); Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124115682. [Google Scholar]
- dos Passos Braga, S.; Lundgren, G.A.; Macedo, S.A.; Tavares, J.F.; dos Santos Vieira, W.A.; Câmara, M.P.S.; de Souza, E.L. Application of Coatings Formed by Chitosan and Mentha Essential Oils to Control Anthracnose Caused by Colletotrichum gloesporioides and C. brevisporum in Papaya (Carica papaya L.) Fruit. Int. J. Biol. Macromol. 2019, 139, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Lima Oliveira, P.D.; de Oliveira, K.Á.R.; dos Santos Vieira, W.A.; Câmara, M.P.S.; de Souza, E.L. Control of Anthracnose Caused by Colletotrichum Species in Guava, Mango and Papaya Using Synergistic Combinations of Chitosan and Cymbopogon citratus (D.C. Ex Nees) Stapf. Essential Oil. Int. J. Food Microbiol. 2018, 266, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Raghuwanshi, R.; Gupta, V.K.; Singh, H.B. Chilli Anthracnose: The Epidemiology and Management. Front. Microbiol. 2016, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- da Rocha Neto, A.C.; Navarro, B.B.; Canton, L.; Maraschin, M.; Di Piero, R.M. Antifungal Activity of Palmarosa (Cymbopogon martinii), Tea Tree (Melaleuca alternifolia) and Star Anise (Illicium verum) Essential Oils against Penicillium Expansum and Their Mechanisms of Action. LWT 2019, 105, 385–392. [Google Scholar] [CrossRef]
- Grande Tovar, C.D.; Delgado-Ospina, J.; Navia Porras, D.P.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, C.; Noé, M.; Mina, J.H.; Chaves López, C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta Graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Matrose, N.A.; Obikeze, K.; Belay, Z.A.; Caleb, O.J. Plant Extracts and Other Natural Compounds as Alternatives for Post-Harvest Management of Fruit Fungal Pathogens: A Review. Food Biosci. 2021, 41, 100840. [Google Scholar] [CrossRef]
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Serio, A.; Chiarini, M.; Tettamanti, E.; Paparella, A. Electronic Paramagnetic Resonance Investigation of the Activity of Origanum vulgare L. Essential Oil on the Listeria monocytogenes Membrane. Lett. Appl. Microbiol. 2010, 51, 149–157. [Google Scholar] [CrossRef]
- Tian, J.; Ban, X.; Zeng, H.; He, J.; Chen, Y.; Wang, Y. The Mechanism of Antifungal Action of Essential Oil from Dill (Anethum graveolens L.) on Aspergillus Flavus. PLoS ONE 2012, 7, e30147. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Kumar, P.; Bhatt, R.P.; Manzoor, N. Antifungal Activity of Coriaria Nepalensis Essential Oil by Disrupting Ergosterol Biosynthesis and Membrane Integrity against Candida. Yeast 2011, 28, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Chen, X.; Liang, J. In Vitro Antifungal Activity and Mechanism of Essential Oil from Fennel (Foeniculum vulgare L.) on Dermatophyte Species. J. Med. Microbiol. 2015, 64, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023, 12, 2315. [Google Scholar] [CrossRef] [PubMed]
- D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.D.C.; Alves, E.; Barbosa Camargos, R.; Ferreira Oliveira, D.; Soares Scolforo, J.R.; de Carvalho, D.A.; Sâmia Batista, T.R. Plant Extracts to Control Alternaria Alternata in Murcott Tangor Fruits. Rev. Iberoam. Micol. 2011, 28, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Quintal, P.; González-Flores, T.; Rodríguez-Buenfil, I.; Gallegos-Tintoré, S. Antifungal Activity in Ethanolic Extracts of Carica papaya L. Cv. Maradol Leaves and Seeds. Indian. J. Microbiol. 2011, 51, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Haddouchi, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical Composition and Antimicrobial Activity of the Essential Oils from Four Ruta Species Growing in Algeria. Food Chem. 2013, 141, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Meepagala, K.M.; Wedge, D.E.; Harries, D.; Hale, A.L.; Aliotta, G.; Duke, S.O. Natural Fungicides from Ruta graveolens L. Leaves, Including a New Quinolone Alkaloid. J. Agric. Food Chem. 2003, 51, 890–896. [Google Scholar] [CrossRef]
- Quiroga, R.; del Pilar, A. Conocimiento y Uso de Las Plantas Medicinales En El Municipio de Zipacón, Cundinamarca. Bachelor’s Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2003. [Google Scholar]
- Colombia, F.C. Manual de Fitoprotección y Analisis de Plaguicidas; Colombia Alternative Development: Boulder, Colombia, 2003. [Google Scholar]
- Álvarez, L.E.G. Cartilla Para Educación Agroecológica; Corporación Colombiana de Investigación Agropecuaria AGROSAVIA: Colombia, 2006. Available online: https://www.corantioquia.gov.co/wp-content/uploads/2022/01/cartillaagroecologicacomoalternativa.pdf (accessed on 5 January 2024).
- Peralta-Ruiz, Y.; Rossi, C.; Grande-Tovar, C.D.; Chaves-López, C. Green Management of Postharvest Anthracnose Caused by Colletotrichum gloeosporioides. J. Fungi 2023, 9, 623. [Google Scholar] [CrossRef]
- Landi, L.; Peralta-Ruiz, Y.; Chaves-López, C.; Romanazzi, G. Chitosan Coating Enriched With Ruta graveolens L. Essential Oil Reduces Postharvest Anthracnose of Papaya (Carica papaya L.) and Modulates Defense-Related Gene Expression. Front. Plant Sci. 2021, 12, 765806. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Grande Tovar, C.; Sinning-Mangonez, A.; Bermont, D.; Pérez Cordero, A.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioides Inhibition Using Chitosan-Ruta graveolens L. Essential Oil Coatings: Studies in Vitro and in Situ on Carica papaya Fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef]
- Molina-Hernandez, J.B.; Aceto, A.; Bucciarelli, T.; Paludi, D.; Valbonetti, L.; Zilli, K.; Scotti, L.; Chaves-López, C. The Membrane Depolarization and Increase Intracellular Calcium Level Produced by Silver Nanoclusters Are Responsible for Bacterial Death. Sci. Rep. 2021, 11, 21557. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Kanatsuka, H.; Ong, B.-H.; Tanikawa, T.; Uruno, A.; Komaru, T.; Koshida, R.; Shirato, K. Cytochrome P-450 Metabolites but Not NO, PGI2, and H2O2 Contribute to ACh-Induced Hyperpolarization of Pressurized Canine Coronary Microvessels. Am. J. Physiol. -Heart Circ. Physiol. 2003, 285, H1939–H1948. [Google Scholar] [CrossRef]
- Vylkova, S. Environmental PH Modulation by Pathogenic Fungi as a Strategy to Conquer the Host. PLoS Pathog. 2017, 13, e1006149. [Google Scholar] [CrossRef]
- Patrignani, F.; Iucci, L.; Belletti, N.; Gardini, F.; Guerzoni, M.E.; Lanciotti, R. Effects of Sub-Lethal Concentrations of Hexanal and 2-(E)-Hexenal on Membrane Fatty Acid Composition and Volatile Compounds of Listeria monocytogenes, Staphylococcus aureus, Salmonella enteritidis and Escherichia coli. Int. J. Food Microbiol. 2008, 123, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D.; Colwell, R.R. Extractable Lipids of Gram-Negative Marine Bacteria: Fatty-Acid Composition. Int. J. Syst. Evol. Microbiol. 1973, 23, 442–458. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Chaves-Lopez, C.; Oliveira, R.C.; Paparella, A.; Rodrigues, D.F. Cellular and Metabolic Approaches to Investigate the Effects of Graphene and Graphene Oxide in the Fungi Aspergillus flavus and Aspergillus niger. Carbon N. Y. 2019, 143, 419–429. [Google Scholar] [CrossRef]
- Ferreira, P.; Cardoso, T.; Ferreira, F.; Fernandes-Ferreira, M.; Piper, P.; João Sousa, M. Mentha Piperita Essential Oil Induces Apoptosis in Yeast Associated with Both Cytosolic and Mitochondrial ROS-Mediated Damage. FEMS Yeast Res. 2014, 14, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Xu, Q.; Li, X.; Chen, C.; Ma, L.; Li, S.; Che, Z.; Lin, H. Chitosan-Based Coating with Antimicrobial Agents: Preparation, Property, Mechanism, and Application Effectiveness on Fruits and Vegetables. Int. J. Polym. Sci. 2016, 2016, 4851730. [Google Scholar] [CrossRef]
- Chaves-Lopez, C.; Nguyen, H.N.; Oliveira, R.C.; Nadres, E.T.; Paparella, A.; Rodrigues, D.F. A Morphological, Enzymatic and Metabolic Approach to Elucidate Apoptotic-like Cell Death in Fungi Exposed to h- and α-Molybdenum Trioxide Nanoparticles. Nanoscale 2018, 10, 20702–20716. [Google Scholar] [CrossRef] [PubMed]
- Donato, R.; Sacco, C.; Pini, G.; Rita, A. Antifungal Activity of Different Essential Oils against Malassezia Pathogenic Species. J. Ethnopharmacol. 2020, 249, 112376. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Ahmad, M.; Prabhakar, A.; Hussain, A.; Rather, M.A. Microbial Pathogenesis A Comprehensive Review of the Antibacterial, Antifungal and Antiviral Potential of Essential Oils and Their Chemical Constituents against Drug- Resistant Microbial Pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Choi, H.; Lee, J.; Kim, M.; Sohn, H.; Gun, D. The Antifungal Activity and Membrane-Disruptive Action of Dioscin Extracted from Dioscorea nipponica. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan Coatings Enriched with Essential Oils: Effects on Fungi Involve in Fruit Decay and Mechanisms of Action. Trends Food Sci. Technol. 2018, 78, 61–71. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Y.; Zeng, H.; Li, Z.; Zhang, P.; Tessema, A.; Peng, X. Efficacy and Possible Mechanisms of Perillaldehyde in Control of Aspergillus niger Causing Grape Decay. Int. J. Food Microbiol. 2015, 202, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Dubey, R.C.; Maheswari, D.K.; Chul, S. Trachyspermum ammi (L.) Fruit Essential Oil in Fl Uencing on Membrane Permeability and Surface Characteristics in Inhibiting Food-Borne Pathogens. Food Control 2011, 22, 725–731. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y.; Zhao, Q.; Chen, M.; Zhang, Y.; Gao, C.; Jia, Z.; Song, S.; Guan, J.; Shang, Z. Volatile Organic Compounds Produced by Bacillus aryabhattai AYG1023 against Penicillium expansum Causing Blue Mold on the Huangguan Pear. Microbiol. Res. 2024, 278, 127531. [Google Scholar] [CrossRef] [PubMed]
- Badea, M.L.; Iconaru, S.L.; Groza, A.; Chifiriuc, M.C.; Beuran, M.; Predoi, D. Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules 2019, 24, 2169. [Google Scholar] [CrossRef]
- Raita, M.S.; Iconaru, S.L.; Groza, A.; Cimpeanu, C.; Predoi, G.; Ghegoiu, L.; Badea, M.L.; Chifiriuc, M.C.; Marutescu, L.; Trusca, R.; et al. Multifunctional Hydroxyapatite Coated with Arthemisia absinthium Composites. Molecules 2020, 25, 413. [Google Scholar] [CrossRef]
- Herath, H.; Abeywickrama, K. In Vitro Application of Selected Essential Oils and Their Major Components in Controlling Fungal Pathogens of Crown Rot in Embul Banana (Musa acuminata—AAB). Int. J. Food Sci. Technol. 2008, 43, 440–447. [Google Scholar] [CrossRef]
- Tao, N.; OuYang, Q.; Jia, L. Citral Inhibits Mycelial Growth of Penicillium italicum by a Membrane Damage Mechanism. Food Control 2014, 41, 116–121. [Google Scholar] [CrossRef]
- Chen, C.; Li, Q.; Zeng, Z.; Duan, S.; Wang, W.; Xu, F. Efficacy and Mechanism of Mentha haplocalyx and Schizonepeta tenuifolia Essential Oils on the Inhibition of Panax notoginseng Pathogens. Ind. Crops Prod. 2020, 145, 112073. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial Response to Acid Stress: Mechanisms and Applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Evans, R.I.; ter Steeg, P.F.; Hellemons, J.; Verheul, A.; Abee, T. Membranes as a Target for Stress Adaptation. Int. J. Food Microbiol. 1995, 28, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Lin, X.; Qi, Y.; Liu, H.; Chen, X.; Liu, L.; Chen, J. Crz1p Regulates PH Homeostasis in Candida glabrata by Altering Membrane Lipid Composition. Appl. Environ. Microbiol. 2016, 82, 6920–6929. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Y.; Du, G.; Zhou, J.; Chen, J. Exogenous Ergosterol Protects Saccharomyces cerevisiae from D-Limonene Stress. J. Appl. Microbiol. 2013, 114, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of Membrane Toxicity of Hydrocarbons. Microbiol. Mol. Biol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, G.; Wang, J.; Zhai, H.; Xue, X. Inhibitory Effect and Underlying Mechanism of Cinnamon and Clove Essential Oils on Botryosphaeria dothidea and Colletotrichum gloeosporioides Causing Rots in Postharvest Bagging-Free Apple Fruits. Front. Microbiol. 2023, 14, 1109028. [Google Scholar] [CrossRef]
- Yuan, T.; Hua, Y.; Zhang, D.; Yang, C.; Lai, Y.; Li, M.; Ding, S.; Li, S.; Chen, Y. Efficacy and Antifungal Mechanism of Rosemary Essential Oil against Colletotrichum gloeosporioides. Forests 2024, 15, 377. [Google Scholar] [CrossRef]
- Helal, G.A.; Sarhan, M.M.; Abu Shahla, A.N.K.; Abou El-Khair, E.K. Effects of Cymbopogon citratus L. Essential Oil on the Growth, Lipid Content and Morphogenesis of Aspergillus niger ML2-strain. J. Basic. Microbiol. 2006, 46, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in Membrane Fatty Acids Composition of Microbial Cells Induced by Addiction of Thymol, Carvacrol, Limonene, Cinnamaldehyde, and Eugenol in the Growing Media. J. Agric. Food Chem. 2006, 54, 2745–2749. [Google Scholar] [CrossRef] [PubMed]
- Fozo, E.M.; Quivey Jr, R.G. The FabM Gene Product of Streptococcus mutans Is Responsible for the Synthesis of Monounsaturated Fatty Acids and Is Necessary for Survival at Low PH. J. Bacteriol. 2004, 186, 4152–4158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.R.; Eid, R.; Boucher, E.; Miller, K.A.; Mandato, C.A.; Greenwood, M.T. Stress Is an Agonist for the Induction of Programmed Cell Death: A Review. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2019, 1866, 699–712. [Google Scholar] [CrossRef]
- Liu, P.; Luo, L.; Guo, J.; Liu, H.; Wang, B.; Deng, B. Farnesol Induces Apoptosis and Oxidative Stress in the Fungal Pathogen Penicillium expansum. Micologia 2010, 102, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Khani, S.; Seyedjavadi, S.S.; Hosseini, H.M.; Goudarzi, M.; Valadbeigi, S.; Khatami, S.; Ajdary, S.; Eslamifar, A.; Amani, J.; Imani Fooladi, A.A.; et al. Effects of the Antifungal Peptide Skh-AMP1 Derived from Satureja khuzistanica on Cell Membrane Permeability, ROS Production, and Cell Morphology of Conidia and Hyphae of Aspergillus fumigatus. Peptides 2020, 123, 170195. [Google Scholar] [CrossRef] [PubMed]
- Hlavatá, L.; Aguilaniu, H.; Pichová, A.; Nyström, T. The OncogenicRAS2val19 Mutation Locks Respiration, Independently of PKA, in a Mode Prone to Generate ROS. EMBO J. 2003, 22, 3337–3345. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.C.; Carvajal-Moreno, M.; Mercado-Ruaro, P.; Rojo-Callejas, F.; Correa, B. Essential Oils Trigger an Antifungal and Anti-Aflatoxigenic Effect on Aspergillus flavus via the Induction of Apoptosis-like Cell Death and Gene Regulation. Food Control 2020, 110, 107038. [Google Scholar] [CrossRef]
- Plassard, C.; Fransson, P. Regulation of Low-Molecular Weight Organic Acid Production in Fungi. Fungal Biol. Rev. 2009, 23, 30–39. [Google Scholar] [CrossRef]
- Agnello, A.C.; Huguenot, D.; Van Hullebusch, E.D.; Esposito, G. Enhanced Phytoremediation: A Review of Low Molecular Weight Organic Acids and Surfactants Used as Amendments. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2531–2576. [Google Scholar] [CrossRef]
- Pawar, V.C.; Thaker, V.S. Acid Phosphatase and Invertase Activities of Aspergillus niger. Mycoscience 2009, 50, 323–330. [Google Scholar] [CrossRef]
- Freitas-Mesquita, A.L.; Meyer-Fernandes, J.R. Biochemical Properties and Possible Roles of Ectophosphatase Activities in Fungi. Int. J. Mol. Sci. 2014, 15, 2289–2304. [Google Scholar] [CrossRef]
- Lee, W.; Lee, D.G. Fungicidal Mechanisms of the Antimicrobial Peptide Bac8c. Biochim. Biophys. Acta (BBA)-Biomembr. 2015, 1848, 673–679. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
Fatty Acid | Control | REO | |
---|---|---|---|
Straight-chain fatty acids | 6:0 | 3.3 ± 0.21 | 12.3 ± 0.21 |
8:0 | 4.4 ± 0.21 | 10.8 ± 0.21 | |
9:0 | - | - | |
10:0 | 3.1 ± 0.00 | 0.6 ± 0.01 | |
11:0 | 1.8 ± 0.10 | 54.6 ± 0.00 | |
12:0 | 2.8 ± 0.08 | 2.90 ± 0.12 | |
13:0 | - | 0.80 ± 0.02 | |
14:0 | 2.0 ± 0.03 | - | |
15:0 | - | - | |
16:0 | 2.5 ± 0.00 | 0.20 ± 0.01 | |
17:0 | - | 1.10 ± 0.00 | |
18:0 | 20.2 ± 1.00 | 0.5 ± 0.00 | |
19:0 | - | - | |
20:0 | 18.7 ± 1.00 | 5.7 ± 0.06 | |
21:0 | - | - | |
22:0 | 7.4 ± 0.00 | 3.2 ± 0.00 | |
Branched-chain fatty acids | 18:1n-9C | 21.6 ± 0.76 | - |
18:1n-9T | - | 0.6 ± 0.04 | |
18:2n-6T | - | 3.1 ± 0.08 | |
18:3n-3 | 12.2 ± 1.28 | 4.2 ± 0.12 | |
18:3n-6 | - | - | |
20:1T | - | - | |
20:1 | - | - | |
20:3n6 | - | - | |
Total | saturated unsaturated | 66.2 ± 2.63 b | 92.1 ± 0.64 a |
33.8 ± 2.04 a | 7.9 ± 0.24 b |
Time | Sample | Acid Concentrations mg g−1 DWM | ||||
---|---|---|---|---|---|---|
Citric Acid | Pyruvic Acid | Malic Acid | Succinic Acid | Formic Acid | ||
1 h | Control | 121.6 ± 11.1 a | 5.27 ± 0.48 a | 35.6 ± 3.24 a | 73.5 ± 6.68 a | 7.34 ± 0.67 a |
REO | 180.0 ± 5.14 A | 7.10 ± 0.20 A | 43.8 ± 1.25 A | 98.4 ± 2.81 A | 9.94 ± 0.28 A | |
3 days | Control | 32.11 ± 4.03 b | 1.73 ± 0.22 d | 8.56 ± 1.07 b | 20.4 ± 2.57 b | 4.57 ± 0.57 b |
REO | 149.6 ± 7.24 B | 5.25 ± 0.25 B | 40.7 ± 1.97 A | 83.1 ± 4.02 B | 6.57 ± 0.32 B | |
5 days | Control | 18.20 ± 0.10 c | 2.18 ± 0.01 c | 4.34 ± 0.02 c | 14.4 ± 0.08 c | 3.47 ± 0.02 d |
REO | 108.6 ± 1.91 C | 3.86 ± 0.07 C | 30.3 ± 0.53 B | 67.3 ± 1.18 C | 6.44 ± 0.11 B | |
7 days | Control | 18.32 ± 1.99 c | 2.53 ± 0.27 b | 3.93 ± 0.43 c | 3.54 ± 0.39 d | 3.72 ± 0.40 c |
REO | 95.33 ± 1.21 D | 3.35 ± 0.04 D | 25.3 ± 0.32 C | 59.1 ± 0.75 D | 6.13 ± 0.08 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peralta-Ruiz, Y.; Molina Hernandez, J.B.; Grande-Tovar, C.D.; Serio, A.; Valbonetti, L.; Chaves-López, C. Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides. Molecules 2024, 29, 3516. https://doi.org/10.3390/molecules29153516
Peralta-Ruiz Y, Molina Hernandez JB, Grande-Tovar CD, Serio A, Valbonetti L, Chaves-López C. Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides. Molecules. 2024; 29(15):3516. https://doi.org/10.3390/molecules29153516
Chicago/Turabian StylePeralta-Ruiz, Yeimmy, Junior Bernardo Molina Hernandez, Carlos David Grande-Tovar, Annalisa Serio, Luca Valbonetti, and Clemencia Chaves-López. 2024. "Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides" Molecules 29, no. 15: 3516. https://doi.org/10.3390/molecules29153516
APA StylePeralta-Ruiz, Y., Molina Hernandez, J. B., Grande-Tovar, C. D., Serio, A., Valbonetti, L., & Chaves-López, C. (2024). Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides. Molecules, 29(15), 3516. https://doi.org/10.3390/molecules29153516