A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs
Abstract
:1. Introduction
1.1. Native G4 Structures
1.2. Structures of G4 Small Molecule Complexes
2. The Targeting of Human Telomeric G4s
3. Promoter G4s as Therapeutic Targets
- The overwhelming majority of known G4 structures have broadly similar small-molecule recognition features. These are: (1) the planar terminal G-quartets at the ends of a G4, and (2) multiple grooves/loops, albeit of differing sizes and electrostatic charge/hydrogen bond donor/acceptor distribution, depending on the G4 topology and sequence. The recognition challenge involves the selection of a single G4 in a single gene in a cell by a typical small molecule ligand from the set of ca 10,000 G4s encoded in the transcriptionally active genes in a cancer cell [32] (see the G4 ligand database https://www.g4ldb.com/ with over 4800 entries, last accessed 25 July 2024).
- b.
- It is possible to unequivocally identify the complete set of G4-containing genes in a cell type [32,112,113,114,115]. However, we are very far at present from identifying, validating, and determining the tertiary folds of the totality of G4s encoded within the promoters of all these genes. The scale of this challenge is again highlighted by the very small number of promoter gene G4s for which structural data are currently available and which have been targets for structure-based design (see for example references [116,117,118]);
- c.
- Targeting a single G4 may be therapeutically sufficient in some cancers that have a single dominant driver gene, e.g., c-KIT in gastro-intestinal tumors (GIST), especially in early-stage disease [119]. Liposarcomas also fall into this category since they are characterized by dysregulation of the MDM2 gene, which contains a G4 region in its promoter [120] and which can be successfully targeted by the G4 ligand QN-302 [121]. On the other hand, complex hard-to-treat cancers such as pancreatic cancer (PDAC) involve the dis-regulation of many genes and their pathways [122,123]—there are, therefore, very many G4s that are potential targets in these diseases.
4. The Discovery and Optimization of Substituted Naphthalene Diimides Targeting G4s
4.1. An Overview of Pancreatic Cancer
4.2. Early-Generation Naphthalene Diimides
4.3. The Development of the Phenotypic Approach to Later-Generation ND Compounds
4.4. The Current Lead Compound, the Experimental Drug QN-302
- The GLI1 gene encodes the major transcription factor GLI1 in the Hedgehog pathway and its expression is down-regulated to a greater extent by QN-302 than by the other two compounds, which mostly affect the expression of the GLI4 gene, which is of lesser therapeutic significance. The GLI1 protein is significantly upregulated in human PDAC and has been studied as a potential therapeutic target since its upregulation promotes cell migration and metastasis;
- The S100P gene is frequently upregulated in PDAC, and both the gene and the S100P protein have been considered as plausible therapeutic targets and biomarkers in PDAC, since cancer cell apoptosis and anti-tumor activity are consequences of its targeting and downregulation ([147] and references therein). A plausible G4 sequence in the promoter of the S100P gene has been identified [147], 48 nucleotides upstream from the transcription start site. This sequence forms a stable G4 structure under physiological K+ conditions and is further stabilized by QN-302.
- Notes
- S100P codes for a Ca-binding protein involved in migration and metastasis and, especially in pancreatic cancer, binds to and inactivates p53.
- CX3CL1 codes for a chemokine involved in pancreatic cancer cell migration and viability.
- CLIC3 codes for a chloride ion channel associated with metastasis in pancreatic cancer.
- NTN4 codes for a laminin family member that inhibits senescence.
- SLC19A1 codes for the folate transporter gene, up regulated in several cancers.
- KRT16 codes for a keratin associated with cancer cell motility and metastasis.
- PRDM16 codes for a transcription factor that suppresses TGF-β signaling.
- RTN4R codes for a protein that regulates AKT signaling and enhances cancer cell proliferation.
- GLI1 codes for a transcription factor that is a key effector of the Hedgehog pathway and an established anticancer target, notably in PDAC.
- MAPK11 codes for a mitogen-activated protein kinase involved in pathway regulation and cancer cell proliferation.
- HSPA1A is a heat shock gene encoding for the HSP70 protein, associated with 20 different cancers.
- GPRC5B codes for a G protein-coupled receptor class C member involved in extracellular glucose sensing and glucose metabolism. It is upregulated in several cancers including pancreatic cancer. It is regulated by the transcription factor RUNX1.
4.5. QN-302 in the Clinic
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueiredo, J.; Mergny, J.-L.; Cruz, C. G-quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci. 2024, 340, 122481. [Google Scholar] [CrossRef] [PubMed]
- Iachettini, S.; Biroccio, A.; Zizza, P. Therapeutic use of G4-ligands in cancer: State-of-the-art and future perspectives. Pharmaceuticals 2024, 17, 771. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.P.; Wee, C.E.; Yen, K.P.; Stevens, A.; Wai, L.K. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med. Chem. 2023, 15, 1987–2009. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, I.; Recagni, M.; Zaffaroni, N.; Folini, M. On the road to fight cancer: The potential of G-quadruplex ligands as novel therapeutic agents. Int. J. Mol. Sci. 2021, 22, 5947. [Google Scholar] [CrossRef] [PubMed]
- Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-quadruplexes: A promising target for cancer therapy. Mol. Cancer 2021, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N.J.; Santos, N.D.; Silvester, J.; Wei, V.; Garcia, J.; et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumors. Nat. Commun. 2017, 8, 14432. [Google Scholar] [CrossRef]
- Hilton, J.; Gelmon, K.; Bedard, P.L.; Tu, D.; Xu, H.; Tinker, A.V.; Goodwin, R.; Laurie, S.A.; Jonker, D.; Hansen, A.R.; et al. Results of the phase I CCTG IND.231 trial of CX-5461 in patients with advanced solid tumors enriched for DNA-repair deficiencies. Nat. Commun. 2022, 13, 3607. [Google Scholar] [CrossRef]
- Xu, H.; Hurley, L.H. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorg. Med. Chem. Lett. 2022, 77, 129016. [Google Scholar] [CrossRef]
- Arshad, T.; Neidle, S.; Chandara, S.; Borazanci, E. Early clinical experience with a novel first-in-class G-quadruplex experimental anti-cancer drug. Cancer Res. 2024, 84, CT105. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Angell, R.; Oxenford, S.; Worthington, J.; Williams, N.; Barton, N.; Fowler, T.G.; O’Flynn, D.E.; Sunose, M.; McConville, M.; et al. Asymmetrically substituted quadruplex-binding naphthalene diimide showing potent activity in pancreatic cancer models. ACS Med. Chem. Lett. 2020, 11, 1634–1644. [Google Scholar] [CrossRef]
- Brázda, V.; Valková, N.; Dobrovolná, M.; Mergny, J.-L. Abundance of G-quadruplex forming sequences in the hepatitis delta virus genomes. ACS Omega 2024, 9, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
- Gazanion, E.; Lacroix, L.; Alberti, P.; Gurung, P.; Wein, S.; Cheng, M.; Mergny, J.-L.; Gomes, A.R.; Lopez-Rubio, J.-J. Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet. 2020, 16, e1008917. [Google Scholar] [CrossRef] [PubMed]
- Lavezzo, E.; Berselli, M.; Frasson, I.; Perrone, R.; Palù, G.; Brazzale, A.R.; Richter, S.N.; Toppo, S. G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide. PLoS Comput. Biol. 2018, 14, e1006675. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Jain, N.; Shankar, U.; Tawani, A.; Sharma, T.K.; Kumar, A. Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae. Sci. Rep. 2019, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.M.; Monsell, K.R.; Noulin, F.; Famodimu, M.T.; Smargiasso, N.; Damblon, C.; Horrocks, P.; Merrick, C.J. G-quadruplex DNA motifs in the malaria parasite plasmodium falciparum and their potential as novel antimalarial drug targets. Antimicrob. Agents Chemother. 2018, 62, e01828-17. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, E.; Richter, S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res. 2018, 46, 3270–3283. [Google Scholar] [CrossRef] [PubMed]
- Gellert, M.; Lipsett, M.N.; Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 1962, 48, 2013–2018. [Google Scholar] [CrossRef]
- Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006, 34, 5402–5415. [Google Scholar] [CrossRef] [PubMed]
- Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA secondary structures: Stability and function of G-quadruplex structures. Nat. Rev. Genet. 2017, 13, 770–780. [Google Scholar] [CrossRef]
- Spiegel, J.; Adhikari, S.; Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem. 2019, 2, 123–136. [Google Scholar] [CrossRef]
- Winnerdy, F.R.; Phan, A.T. Quadruplex structure and diversity. Ann. Rep. Med. Chem. 2020, 54, 45–73. [Google Scholar]
- Todd, A.K.; Johnston, M.; Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005, 33, 2901–2907. [Google Scholar] [CrossRef] [PubMed]
- Huppert, J.L.; Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005, 33, 2908–2916. [Google Scholar] [CrossRef]
- Farag, M.; Mouawad, L. Comprehensive analysis of intramolecular G-quadruplex structures: Furthering the understanding of their formalism. Nucleic Acids Res. 2024, 52, 3522–3546. [Google Scholar] [CrossRef]
- Dai, J.; Carver, M.; Yang, D. Polymorphism of human telomeric quadruplex structures. Biochimie 2008, 90, 1172–1183. [Google Scholar] [CrossRef]
- Xu, Y.; Komiyama, M. G-quadruplexes in human telomere: Structures, properties, and applications. Molecules 2024, 29, 174. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Run, Y.; Monchaud, D.; Zhang, W. i-Motif DNA: Identification, formation, and cellular functions. Trends Genet. 2024; in press. [Google Scholar] [CrossRef]
- Irving, K.L.; King, J.J.; Waller ZA, E.; Evans, C.W.; Smith, N.M. Stability and context of intercalated motifs (i-motifs) for biological applications. Biochimie 2022, 198, 33–47. [Google Scholar] [CrossRef]
- Bedrat, A.; Lacroix, L.; Mergny, J.-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. [Google Scholar] [CrossRef]
- Puig Lombardi, E.; Londoño-Vallejo, A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020, 48, 1–15. [Google Scholar] [CrossRef]
- Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013, 5, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Hansel-Hertsch, R.; Beraldi, D.; Lensing, S.V.; Marsico, G.; Zyner, K.; Parry, A.; Di Antonio, M.; Pike, J.; Kimura, H.; Narita, M.; et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 2016, 48, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Huppert, J.L.; Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007, 35, 406–413. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Hurley, L.H.; Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011, 10, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Rigo, R.; Palumbo, M.; Sissi, C. G-quadruplexes in human promoters: A challenge for therapeutic applications. Biochim. Biophys. Acta 2017, 1861, 1399–1413. [Google Scholar] [CrossRef] [PubMed]
- Lago, S.; Nadai, M.; Cernilogar, F.M.; Kazerani, M.; Domíniguez Moreno, H.; Schotta, G.; Richter, S.N. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat. Commun. 2021, 12, 3885. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Di Porzio, A.; Iaccarino, N.; Riccardi, G.; Di Lorenzo, R.; Laneri, S.; Pagano, B.; Amato, J.; Randazzo, A. G-quadruplexes in cancer-related gene promoters: From identification to therapeutic targeting. Expert. Opin. Ther. Pat. 2023, 33, 745–773. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Bugaut, A.; Huppert, J.L.; Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 2007, 3, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Huppert, J.L.; Bugautm, A.; Kumar, S.; Balasubramanian, S. G-quadruplexes: The beginning and end of UTRs. Nucleic Acids Res. 2008, 36, 6260–6268. [Google Scholar] [CrossRef]
- Lee, C.Y.; Joshi, M.; Wang, A.; Myong, S. 5′UTR G-quadruplex structure enhances translation in size dependent manner. Nat. Commun. 2024, 15, 3963. [Google Scholar] [CrossRef]
- Cogoi, S.; Xodo, L.E. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 2006, 34, 2536–2549. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.B.; Liu, Y.; Li, J.; Xiao, C.; Wang, Y.; Gu, W.; Li, Y.; Xia, Y.Z.; Yan, T.; Yang, M.H.; et al. Structural insight into the bulge-containing KRAS oncogene promoter G-quadruplex bound to berberine and coptisine. Nat. Commun. 2022, 13, 6016. [Google Scholar] [CrossRef] [PubMed]
- Rankin, S.; Reszka, A.P.; Huppert, J.; Zloh, M.; Parkinson, G.N.; Todd, A.K.; Ladame, S.; Balasubramanian, S.; Neidle, S. Putative DNA quadruplex formation within the human c-kit oncogene. J. Am. Chem. Soc. 2005, 127, 10584–10589. [Google Scholar] [CrossRef]
- Fatma, K.; Thumpati, P.; Panda, D.; Velayutham, R.; Dash, J. Selective recognition of c-KIT 1 G-quadruplex by structural tuning of heteroaromatic scaffolds and side chains. ACS Med. Chem. Lett. 2024, 15, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 2002, 99, 11593–11598. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.A.; Hurley, L.H. Targeting MYC expression through G-quadruplexes. Genes. Cancer 2010, 1, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Paul, R.; Debnath, M.; Bessi, I.; Mandal, S.; Schwalbe, H.; Dash, J. Synthesis of fluorescent binaphthyl amines that bind c-MYC G-quadruplex DNA and repress c-MYC expression. J. Med. Chem. 2016, 59, 7275–7281. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Buric, A.; Chintareddy, V.; DeMoss, M.; Chen, L.; Dickerhoff, J.; De Dios, R.; Chand, P.; Riggs, R.; Yang, D.; et al. Design, synthesis, and investigation of the pharmacokinetics and anticancer activities of indenoisoquinoline derivatives that stabilize the G-quadruplex in the MYC promoter and inhibit topoisomerase I. J. Med. Chem. 2024, 67, 7006–7032. [Google Scholar] [CrossRef] [PubMed]
- Haldar, S.; Zhang, Y.; Xia, Y.; Islam, B.; Liu, S.; Gervasio, F.L.; Mulholland, A.J.; Waller ZA, E.; Wei, D.; Haider, S. Mechanistic insights into the ligand-induced unfolding of an RNA G-quadruplex. J. Am. Chem. Soc. 2022, 144, 935–950. [Google Scholar] [CrossRef]
- Cammas, A.; Desprairies, A.; Dassi, E.; Millevoi, S. The shaping of mRNA translation plasticity by RNA G-quadruplexes in cancer progression and therapy resistance. NAR Cancer 2024, 6, zcae025. [Google Scholar] [CrossRef]
- Prestwood, P.R.; Yang, M.; Lewis, G.V.; Balaratnam, S.; Yazdani, K.; Schneekloth, J.S., Jr. Competitive microarray screening reveals functional ligands for the DHX15 RNA G-quadruplex. ACS Med. Chem. Lett. 2024, 15, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Sinkala, M. Mutational landscape of cancer-driver genes across human cancers. Sci. Rep. 2023, 13, 12742. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Vasquez, K.M. Dynamic alternative DNA structures in biology and disease. Nat. Rev. Genet. 2023, 24, 211–234. [Google Scholar] [CrossRef]
- Mellor, C.; Perez, C.; Sale, J.E. Creation and resolution of non-B-DNA structural impediments during replication. Crit. Rev. Biochem. Mol. Biol. 2022, 57, 412–442. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Müller, S.; Yeoman, J.A.; Trentesaux, C.; Riou, J.-F.; Balasubramanian, S. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 2008, 130, 15758–15759. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Miller, K.M.; Forment, J.V.; Bradshaw, C.R.; Nikan, M.; Britton, S.; Oelschlaegel, T.; Xhemalce, B.; Balasubramanian, S.; Jackson, S.P. Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 2012, 8, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Dézé, O.; Ordanoska, D.; Rossille, D.; Miglierina, E.; Laffleur, B.; Cogné, M. Unique repetitive nucleic acid structures mirror switch regions in the human IgH locus. Biochimie 2023, 214, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Cheloshkina, K.; Poptsova, M. Comprehensive analysis of cancer breakpoints reveals signatures of genetic and epigenetic contribution to cancer genome rearrangements. PLoS Comput. Biol. 2021, 17, e1008749. [Google Scholar] [CrossRef] [PubMed]
- Duardo, R.C.; Guerra, F.; Pepe, S.; Capranico, G. Non-B DNA structures as a booster of genome instability. Biochimie 2023, 214, 176–192. [Google Scholar] [CrossRef]
- Esain-Garcia, I.; Kirchner, A.; Melidis, L.; Tavares RD, C.A.; Dhir, S.; Simeone, A.; Yu, Z.; Madden, S.K.; Hermann, R.; Tannahill, D.; et al. G-quadruplex DNA structure is a positive regulator of MYC transcription. Proc. Natl. Acad. Sci. USA 2024, 121, e2320240121. [Google Scholar] [CrossRef]
- Catalano, R.; Moraca, F.; Amato, J.; Cristofari, C.; Rigo, R.; Via, L.D.; Rocca, R.; Lupia, A.; Maruca, A.; Costa, G.; et al. Targeting multiple G-quadruplex-forming DNA sequences: Design, biophysical and biological evaluations of indolo-naphthyridine scaffold derivatives. Eur. J. Med. Chem. 2019, 182, 111627. [Google Scholar] [CrossRef] [PubMed]
- Amato, J.; Platella, C.; Iachettini, S.; Zizza, P.; Musumeci, D.; Cosconati, S.; Pagano, A.; Novellino, E.; Biroccio, A.; Randazzo, A.; et al. Tailoring a lead-like compound targeting multiple G-quadruplex structures. Eur. J. Med. Chem. 2019, 163, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Platella, C.; Napolitano, E.; Riccardi, C.; Musumeci, D.; Montesarchio, D. Disentangling the structure-activity relationships of naphthalene diimides as anticancer G-quadruplex-targeting drugs. J. Med. Chem. 2021, 64, 3578–3603. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, C.; Zyner, K.G.; Ohnmacht, S.A.; Robson, M.; Haider, S.M.; Morton, J.P.; Marsico, G.; Vo, T.; Laughlin-Toth, S.; Ahmed, A.A.; et al. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J. Med. Chem. 2018, 61, 2500–2517. [Google Scholar] [CrossRef] [PubMed]
- Boddupally, P.V.; Hahn, S.; Beman, C.; De, B.; Brooks, T.A.; Gokhale, V.; Hurley, L.H. Anticancer activity and cellular repression of c-MYC by the G-quadruplex-stabilizing 11-piperazinylquindoline is not dependent on direct targeting of the G-quadruplex in the c-MYC promoter. J. Med. Chem. 2012, 55, 6076–6086. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.V.; Danford, F.L.; Gokhale, V.; Hurley, L.H.; Brooks, T.A. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J. Biol. Chem. 2011, 286, 41018–41027. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yatsunyk, L.; Neidle, S. Water spines and networks in G-quadruplex structures. Nucleic Acids Res. 2021, 49, 519–528. [Google Scholar] [CrossRef]
- Neidle, S. Structured waters mediate small molecule binding to G-quadruplex nucleic acids. Pharmaceuticals 2021, 15, 7. [Google Scholar] [CrossRef]
- Monsen, R.C.; Chua EY, D.; Hopkins, J.B.; Chaires, J.B.; Trent, J.O. Structure of a 28.5 kDa duplex-embedded G-quadruplex system resolved to 7.4 Å resolution with cryo-EM. Nucleic Acids Res. 2023, 51, 1943–1959. [Google Scholar] [CrossRef]
- Vianney, Y.M.; Weisz, K. Indoloquinoline ligands favor intercalation at quadruplex-duplex interfaces. Chemistry 2022, 28, e202103718. [Google Scholar] [CrossRef]
- Russo Krauss, I.; Ramaswamy, S.; Neidle, S.; Haider, S.; Parkinson, G.N. Structural insights into the quadruplex-duplex 3′ interface formed from a telomeric repeat: A potential molecular target. J. Am. Chem. Soc. 2016, 138, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Shin-ya, K.; Wierzba, K.; Matsuo, K.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. Telomestatin, a Novel Telomerase Inhibitor from Streptomyces anulatus. J. Am. Chem. Soc. 2001, 123, 1262–1263. [Google Scholar] [CrossRef]
- Chung, W.J.; Heddi, B.; Tera, M.; Iida, K.; Nagasawa, K.; Phan, A.T. Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J. Am. Chem. Soc. 2013, 135, 13495–13501. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-Y.; Ma, T.Z.; Zeng, Y.L.; Liu, W.; Mao, Z.-W. Structural basis of pyridostatin and its derivatives specifically binding to G-quadruplexes. J. Am. Chem. Soc. 2022, 144, 11878–11887. [Google Scholar] [CrossRef]
- Felsenstein, K.M.; Saunders, L.B.; Simmons, J.K.; Leon, E.; Calabrese, D.R.; Zhang, S.; Michalowski, A.; Gareiss, P.; Mock, B.A.; Schneekloth, J.S., Jr. Small molecule microarrays enable the identification of a selective, quadruplex-binding inhibitor of MYC expression. ACS Chem. Biol. 2016, 11, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, D.R.; Chen, X.; Leon, E.C.; Gaikwad, S.M.; Phyo, Z.; Hewitt, W.M.; Alden, S.; Hilimire, T.A.; He, F.; Michalowski, A.M.; et al. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat. Commun. 2018, 9, 4229. [Google Scholar] [CrossRef] [PubMed]
- Meyne, J.; Ratliff, R.L.; Moyzis, R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA 1989, 86, 7049–7053. [Google Scholar] [CrossRef] [PubMed]
- Sen, D.; Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 1988, 334, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Sundquist, W.I.; Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 1989, 342, 825–829. [Google Scholar] [CrossRef]
- Zaug, A.J.; Podell, E.R.; Cech, T.R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl. Acad. Sci. USA 2005, 102, 10864–10869. [Google Scholar] [CrossRef]
- Rousseau, P.; Autexier, C. Telomere biology: Rationale for diagnostics and therapeutics in cancer. RNA Biol. 2015, 12, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.W.; Wright, W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Zahler, A.M.; Williamson, J.R.; Cech, T.R.; Prescott, D.M. Inhibition of telomerase by G-quartet DNA structures. Nature 1991, 350, 718–720. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, J.O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 1997, 40, 2113–2116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Patel, D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1993, 1, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Riou, J.-F.; Guittat, L.; Mailliet, P.; Laoui, A.; Renou, E.; Petitgenet, O.; Mégnin-Chanet, F.; Hélène, C.; Mergny, J.-L. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl. Acad. Sci. USA 2002, 99, 2672–2677. [Google Scholar] [CrossRef] [PubMed]
- Monchaud, D.; Teulade-Fichou, M.-P. A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem. 2008, 6, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Perry, P.J.; Reszka, A.P.; Wood, A.A.; Read, M.A.; Gowan, S.M.; Dosanjh, H.S.; Trent, J.O.; Jenkins, T.C.; Kelland, L.R.; Neidle, S. Human telomerase inhibition by regioisomeric disubstituted amidoanthracene-9,10-diones. J. Med. Chem. 1998, 41, 4873–4884. [Google Scholar] [CrossRef] [PubMed]
- Burger, A.M.; Dai, F.; Schultes, C.M.; Reszka, A.P.; Moore, M.J.; Double, J.A.; Neidle, S. A G-quadruplex binding telomerase inhibitor with in vivo anticancer activity. Cancer Res. 2005, 65, 1489–1496. [Google Scholar] [CrossRef]
- Read, M.; Harrison, R.J.; Romagnoli, B.; Tanious, F.A.; Gowan, S.H.; Reszka, A.P.; Wilson, W.D.; Kelland, L.R.; Neidle, S. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci. USA 2001, 98, 4844–4849. [Google Scholar] [CrossRef]
- Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc. 2008, 130, 6722–6724. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Okabe, S.; Yoshida, H.; Iida, K.; Ma, Y.; Sasaki, S.; Yamori, T.; Shin-Ya, K.; Nakano, I.; Nagasawa, K.; et al. Targeting glioma stem cells in vivo by a G-quadruplex-stabilizing synthetic macrocyclic hexaoxazole. Sci. Rep. 2017, 7, 3605. [Google Scholar] [CrossRef] [PubMed]
- Tauchi, T.; Shin-ya, K.; Sashida, G.; Sumi, M.; Okabe, S.; Ohyashiki, J.H.; Ohyashiki, K. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: In vitro and in vivo studies in acute leukemia. Oncogene 2006, 25, 5719–5725. [Google Scholar] [CrossRef]
- Martins, C.; Gunaratnam, M.; Stuart, J.; Makwana, V.; Greciano, O.; Reszka, A.P.; Kelland, L.R.; Neidle, S. Structure-based design of benzylamino-acridine compounds as G-quadruplex DNA telomere targeting agents. Bioorg. Med. Chem. Lett. 2007, 17, 2293–2298. [Google Scholar] [CrossRef] [PubMed]
- Gowan, S.M.; Heald, R.; Stevens, M.F.; Kelland, L.R. Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol. Pharm. 2001, 60, 981–988. [Google Scholar] [CrossRef]
- Rizzo, A.; Iachettini, S.; Zizza, P.; Cingolani, C.; Porru, M.; Artuso, S.; Stevens, M.; Hummersone, M.; Biroccio, A.; Salvati, E.; et al. Identification of novel RHPS4-derivative ligands with improved toxicological profiles and telomere-targeting activities. J. Exp. Clin. Cancer Res. 2014, 33, 81. [Google Scholar] [CrossRef]
- Iachettini, S.; Stevens, M.F.; Frigerio, M.; Hummersone, M.G.; Hutchinson, I.; Garner, T.P.; Searle, M.S.; Wilson, D.W.; Munde, M.; Nanjunda, R.; et al. On and off-target effects of telomere uncapping G-quadruplex selective ligands based on pentacyclic acridinium salts. J. Exp. Clin. Cancer Res. 2013, 32, 68. [Google Scholar] [CrossRef]
- Salvati, E.; Leonetti, C.; Rizzo, A.; Scarsella, M.; Mottolese, M.; Galati, R.; Sperduti, I.; Stevens, M.F.; D’Incalci, M.; Blasco, M.; et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Investig. 2007, 117, 3236–3247. [Google Scholar] [CrossRef]
- Long, W.; Zeng, Y.X.; Zheng, B.X.; Li, Y.B.; Wang, Y.K.; Chan, K.H.; She, M.T.; Lu, Y.J.; Cao, C.; Wong, W.L. Targeting hTERT promoter G-quadruplex DNA structures with small-molecule ligand to downregulate hTERT expression for triple-negative breast cancer therapy. J. Med. Chem. 2024; ahead of print. [Google Scholar] [CrossRef]
- Johnson, K.; Seidel, J.M.; Cech, T.R. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA 2024, 25, rna.080043.124. [Google Scholar] [CrossRef]
- Wang, J.X.; Wang, X.D.; Hu, M.H. Novel quinoxaline analogs as telomeric G-quadruplex ligands exert antitumor effects related to enhanced immunomodulation. Eur. J. Med. Chem. 2024, 274, 116536. [Google Scholar] [CrossRef]
- Song, J.H.; Kang, H.J.; Luevano, L.A.; Gokhale, V.; Wu, K.; Pandey, R.; Sherry Chow, H.H.; Hurley, L.H.; Kraft, A.S. Small-molecule-targeting hairpin loop of hTERT promoter G-quadruplex induces cancer cell death. Cell Chem. Biol. 2019, 26, 1110–1121.e4. [Google Scholar] [CrossRef] [PubMed]
- D’Aria, F.; D’Amore, V.M.; Leva FS, D.; Amato, J.; Caterino, M.; Russomanno, P.; Salerno, S.; Barresi, E.; De Leo, M.; Marini, A.M.; et al. Targeting the KRAS oncogene: Synthesis, physicochemical and biological evaluation of novel G-quadruplex DNA binders. Eur. J. Pharm. Sci. 2020, 149, 105337. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.B.; Elsayed MS, A.; Wu, G.; Deng, N.; Cushman, M.; Yang, D. Indenoisoquinoline topoisomerase inhibitors strongly bind and stabilize the MYC promoter G-quadruplex and downregulate MYC. J. Am. Chem. Soc. 2019, 141, 11059–11070. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-H.; Wu, T.-Y.; Huang, Q.; Jin, G. New substituted quinoxalines inhibit triple-negative breast cancer by specifically downregulating the c-MYC transcription. Nucleic Acids Res. 2019, 47, 10529–10542. [Google Scholar] [CrossRef] [PubMed]
- McLuckie, K.I.; Waller, Z.A.; Sanders, D.A.; Alves, D.; Rodriguez, R.; Dash, J.; McKenzie, G.J.; Venkitaraman, A.R.; Balasubramanian, S. G-quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J. Am. Chem. Soc. 2011, 133, 2658–2663. [Google Scholar] [CrossRef] [PubMed]
- Monsen, R.C.; Maguire, J.M.; DeLeeuw, L.W.; Chaires, J.B.; Trent, J.O. Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex. PLoS ONE 2022, 17, e0270165. [Google Scholar] [CrossRef]
- Monsen, R.C.; Trent, J.O. G-quadruplex virtual drug screening: A review. Biochimie 2018, 152, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.; Mondal, S.; Sengupta, P.; Chatterjee, S. In silico screening and binding characterization of small molecules toward a G-quadruplex structure formed in the promoter region of c-MYC oncogene. ACS Omega 2017, 2, 4382–4397. [Google Scholar] [CrossRef] [PubMed]
- Kaserer, T.; Rigo, R.; Schuster, P.; Alcaro, S.; Sissi, C.; Schuster, D. optimized virtual screening workflow for the identification of novel G-quadruplex ligands. J. Chem. Inf. Model. 2016, 56, 484–500. [Google Scholar] [CrossRef]
- Bhat-Ambure, J.; Ambure, P.; Serrano-Candelas, E.; Galiana-Roselló, C.; Gil-Martínez, A.; Guerrero, M.; Martin, M.; González-García, J.; García-España, E.; Gozalbes, R. G4-QuadScreen: A computational tool for identifying multi-target-directed anticancer leads against G-quadruplex DNA. Cancers 2023, 15, 3817. [Google Scholar] [CrossRef]
- Hui WW, I.; Simeone, A.; Zyner, K.G.; Tannahill, D.; Balasubramanian, S. Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci. Rep. 2021, 11, 23641. [Google Scholar]
- Zyner, K.G.; Mulhearn, D.S.; Adhikari, S.; Martínez Cuesta, S.; Di Antonio, M.; Erard, N.; Hannon, G.J.; Tannahill, D.; Balasubramanian, S. Genetic interactions of G-quadruplexes in humans. Elife 2019, 8, e46793. [Google Scholar] [CrossRef] [PubMed]
- Hänsel-Hertsch, R.; Spiegel, J.; Marsico, G.; Tannahill, D.; Balasubramanian, S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 2018, 13, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Hänsel-Hertsch, R.; Simeone, A.; Shea, A.; Hui WW, I.; Zyner, K.G.; Marsico, G.; Rueda, O.M.; Bruna, A.; Martin, A.; Zhang, X.; et al. Landscape of G-quadruplex DNA structural regions in breast cancer. Nat. Genet. 2020, 52, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dickerhoff, J.; Sakai, S.; Yang, D. DNA G-quadruplex in human telomeres and oncogene promoters: Structures, functions, and small molecule targeting. Acc. Chem. Res. 2022, 55, 2628–2646. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Carver, M.; Hurley, L.H.; Yang, D. Solution structure of a 2:1 quindoline-c-MYC G-quadruplex: Insights into G-quadruplex-interactive small molecule drug design. J. Am. Chem. Soc. 2011, 133, 17673–17680. [Google Scholar] [CrossRef] [PubMed]
- Rocca, R.; Moraca, F.; Costa, G.; Nadai, M.; Scalabrin, M.; Talarico, C.; Distinto, S.; Maccioni, E.; Ortuso, F.; Artese, A.; et al. Identification of G-quadruplex DNA/RNA binders: Structure-based virtual screening and biophysical characterization. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1329–1340. [Google Scholar] [CrossRef]
- Parab, T.M.; DeRogatis, M.J.; Boaz, A.M.; Grasso, S.A.; Issack, P.S.; Duarte, D.A.; Urayeneza, O.; Vahdat, S.; Qiao, J.H.; Hinika, G.S. Gastrointestinal stromal tumors: A comprehensive review. J. Gastrointest. Oncol. 2019, 10, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Lago, S.; Nadai, M.; Ruggiero, E.; Tassinari, M.; Marušič, M.; Tosoni, B.; Frasson, I.; Cernilogar, F.M.; Pirota, V.; Doria, F.; et al. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Res. 2021, 49, 847–863. [Google Scholar] [CrossRef]
- Tosoni, B.; Naghshineh, E.; Zanin, I.; Gallina, I.; Di Pietro, L.; Cleris, L.; Nadai, M.; Lecchi, M.; Verderio, P.; Pasquali, S.; et al. The G-quadruplex ligand QN-302 impairs liposarcoma cell growth by inhibiting MDM2 expression and restoring p53 levels. 2024; (Unpublished work). [Google Scholar]
- The Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef]
- Swanton, C.; Bernard, E.; Abbosh, C.; André, F.; Auwerx, J.; Balmain, A.; Bar-Sagi, D.; Bernards, R.; Bullman, S.; DeGregori, J.; et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024, 187, 1589–1616. [Google Scholar] [CrossRef] [PubMed]
- Argentiero, A.; Andriano, A.; Caradonna, I.C.; de Martino, G.; Desantis, V. Decoding the intricate landscape of pancreatic cancer: Insights into tumor biology, microenvironment, and therapeutic interventions. Cancers 2024, 16, 2438. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Fagman, J.B.; Ma, Y.; Liu, J.; Vihav, C.; Engstrom, C.; Liu, D.; Chen, C. A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging 2022, 14, 7635–7649. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic cancer: A review. J. Am. Med. Assoc. 2021, 326, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2010, 388, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Taieb, J.; Prager, G.W.; Melisi, D.; Westphalen, C.B.; D’Esquermes, N.; Ferreras, A.; Carrato, A.; Macarulla, T. First-line and second-line treatment of patients with metastatic pancreatic adenocarcinoma in routine clinical practice across Europe: A retrospective, observational chart review study. ESMO Open 2020, 5, e000587. [Google Scholar] [CrossRef] [PubMed]
- Beutel, A.K.; Halbrook, C.J. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am. J. Physiol. Cell Physiol. 2023, 324, C540–C552. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, J.; Fink, U.; Russell, R.C.; Spittle, M.F.; Harris, A.L.; Spiessi, G.; Blatter, J. Phase II study of gemcitabine in patients with advanced pancreatic cancer. Br. J. Cancer 1996, 73, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Momose, H.; Kudo, S.; Yoshida, T.; Hasui, N.; Matsuki, R.; Kogure, M.; Sakamoto, Y. Trends in the treatment of advanced pancreatic cancer. Biosci. Trends. 2024, 18, 224–232. [Google Scholar] [CrossRef]
- Campbell, P.J.; Yachida, S.; Mudie, L.J.; Stephens, P.J.; Pleasance, E.D.; Stebbings, L.A.; Morsberger, L.A.; Latimer, C.; McLaren, S.; Lin, M.L.; et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010, 467, 1109–1113. [Google Scholar] [CrossRef]
- Bhat, A.A. An outlook of the structure activity relationship (SAR) of naphthalimide derivatives as anticancer agents. Anti-Cancer Agents Med. Chem. 2024, 24, 96–116. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, G.N.; Lee, M.P.; Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002, 417, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, F.; Greciano, O.; Gunaratnam, M.; Haider, S.; Munnur, D.; Nanjunda, R.; Wilson, W.D.; Neidle, S. Tri- and tetra-substituted naphthalene diimides as potent G-quadruplex ligands. Bioorg. Med. Chem. Lett. 2008, 18, 1668–1673. [Google Scholar] [CrossRef]
- Hampel, S.M.; Sidibe, A.; Gunaratnam, M.; Riou, J.-F.; Neidle, S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett. 2010, 20, 6459–6463. [Google Scholar] [CrossRef]
- Hampel, S.M.; Pepe, A.; Greulich-Bode, K.M.; Malhotra, S.V.; Reszka, A.P.; Veith, S.; Boukamp, P.; Neidle, S. Mechanism of the antiproliferative activity of some naphthalene diimide G-quadruplex ligands. Mol. Pharmacol. 2013, 83, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Gunaratnam, M.; de la Fuente, M.; Hampel, S.M.; Todd, A.K.; Reszka, A.P.; Schatzlein, A.; Neidle, S. Targeting pancreatic cancer with a G-quadruplex ligand. Bioorg. Med. Chem. 2011, 19, 7151–7157. [Google Scholar] [CrossRef]
- Micco, M.; Collie, G.W.; Dale, A.G.; Ohnmacht, S.A.; Pazitna, I.; Gunaratnam, M.; Reszka, A.P.; Neidle, S. Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J. Med. Chem. 2013, 56, 2959–2974. [Google Scholar] [CrossRef]
- Ohnmacht, S.A.; Marchetti, C.; Gunaratnam, M.; Besser, R.J.; Haider, S.M.; Di Vita, G.; Lowe, H.L.; Mellinas-Gomez, M.; Diocou, S.; Robson, M.; et al. A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer. Sci. Rep. 2015, 5, 11385. [Google Scholar] [CrossRef]
- Collie, G.W.; Promontorio, R.; Hampel, S.M.; Micco, M.; Neidle, S.; Parkinson, G.N. Structural basis for telomeric G-quadruplex naphthalene diimide ligand targeting. J. Am. Chem. Soc. 2012, 134, 2723–2731. [Google Scholar] [CrossRef]
- Vincent, F.; Nueda, A.; Lee, J.; Schenone, M.; Prunotto, M.; Mercola, M. Phenotypic drug discovery: Recent successes, lessons learned and new directions. Nat. Rev. Drug Discov. 2022, 21, 899–914. [Google Scholar] [CrossRef]
- Gopinathan, A.; Morton, J.P.; Jodrell, D.I.; Sansom, O.J. GEMMs as preclinical models for testing pancreatic cancer therapies. Dis. Model. Mech. 2015, 8, 1185–1200. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Chen, S.; Roman-Escorza, M.; Angell, R.; Oxenford, S.; McConville, M.; Barton, N.; Sunose, M.; Neidle, D.; Haider, S.; et al. Structure-activity relationships for the G-quadruplex-targeting experimental drug QN-302 and two analogues probed with comparative transcriptome profiling and molecular modeling. Sci. Rep. 2024, 14, 3447. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.; Marchetti, C.; Ohnmacht, S.A.; Neidle, S. A G-quadruplex-binding compound shows potent activity in human gemcitabine-resistant pancreatic cancer cells. Sci. Rep. 2020, 10, 12192. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Arshad, T.; Neidle, S. A comparison of the activity of the quadruplex-targeting experimental drugs QN-302 and CX-5461 (pidnarulex) in wild-type and gemcitabine-resistant pancreatic cancer cell lines. Cancer Res. 2023, 83, 390. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Greenhalf, W.; Palmer, D.H.; Williams, N.; Worthington, J.; Arshad, T.; Haider, S.; Alexandrou, E.; Guneri, D.; Waller ZA, E.; et al. The potent G-quadruplex-binding compound QN-302 downregulates S100P gene expression in cells and in an in vivo model of pancreatic cancer. Molecules 2023, 28, 2452. [Google Scholar] [CrossRef]
- Zimmer, J.; Tacconi EM, C.; Folio, C.; Badie, S.; Porru, M.; Klare, K.; Tumiati, M.; Markkanen, E.; Halder, S.; Ryan, A.; et al. Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol. Cell 2016, 61, 449–460. [Google Scholar] [CrossRef]
- Drygin, D.; Lin, A.; Bliesath, J.; Ho, C.B.; O’Brien, S.E.; Proffitt, C.; Omori, M.; Haddach, M.; Schwaebe, M.K.; Siddiqui-Jain, A.; et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 2011, 71, 1418–1430. [Google Scholar] [CrossRef]
- Bruno, P.M.; Lu, M.; Dennis, K.A.; Inam, H.; Moore, C.J.; Sheehe, J.; Elledge, S.J.; Hemann, M.T.; Pritchard, J.R. The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc. Natl. Acad. Sci. USA 2020, 117, 4053–4060. [Google Scholar] [CrossRef]
- Williams, N.; Worthington, J.; Arshad, T.; Neidle, S. The potent quadruplex-binding compound QN-302 shows potent anti-proliferative activity in a prostate cancer cell panel and anti-tumor activity in an in vivo model of metastatic prostate cancer. Cancer Res. 2022, 82, 4068. [Google Scholar] [CrossRef]
Gene | PDB ID | Method | Gene | PDB ID | Method |
---|---|---|---|---|---|
MYC | 1XAV | NMR | PARP1 | 6AC7 | NMR |
BCL2 | 2F8U | NMR | MYC | 6AU4 | X-ray |
c-KIT1 | 2KQG | NMR | WNT | 6L8M | NMR |
c-KIT2 | 2KYO | NMR | K-RAS | 6SUU | NMR |
hTERT | 2KZD, 2KZE | NMR | PDGFR | 6V0L | NMR |
MYC | 2LBR | NMR | K-RAS | 6WCK | X-ray |
VEGF | 2M27 | NMR | MYC | 6ZL2, 6ZL3 | NMR |
c-KIT1 | 3QXR | X-ray | BCL-2 | 6ZX6, 6ZX7 | NMR |
B-RAF | 4H29 | X-ray | MYC | 7KBV, 7KBW, 7KBX | NMR |
c-KIT1 | 4WO2, 4WO3 | X-ray | VEGFR | 7XFV | NMR |
K-RAS | 512V | NMR | RET | 7YS5 | NMR |
VEGF | 5ZEV | NMR | EGFR | 8JFQ | NMR |
Target G4 | Ligand | Method | PDB ID |
---|---|---|---|
Human telomeric G4 | BRACO-19 | X-ray | 3CE5 |
Human telomeric G4 | Telomestatin | NMR | 2MB3 |
Human telomeric G4 | Berberine derivative | X-ray | 72UR |
G4-duplex hybrid | Phen-DC3 | NMR | 8ABD |
RET promoter G4 | Trioxacarcin A, cov. bound | NMR | 8GP7 |
KRAS promoter G4 | Coptisine | NMR | 7X8O |
Human telomeric G4 | Phen-DC3 | NMR | 7Z9L |
G4-duplex hybrid | Pyridostatin | NMR | 7X2Z, 7X3A |
G4-duplex hybrid | SYUIQ-5 | NMR | 7PNG |
MYC promoter G4 | Berberine | NMR | 7N7E |
PDGFR promoter G4 | Berberine | NMR | 7MSV |
MYC promoter G4 | NSC85697 | NMR | 7KBX |
VEGF promoter G4 | Platinum complex | NMR | 6LNZ |
MYC promoter G4 | DC-34 | NMR | 5W77 |
MYC promoter G4 | DAOTA-M2 | NMR | 5LIG |
Human telomeric G4 | MM41 | X-ray | 4DA3, 3UYH |
Human telomeric G4 | BMSG-SH-3 | X-ray | 4DAQ |
Cell Line | IC50 |
---|---|
A549 | <0.010 ± 0.005 |
RCC4 | 0.56 ± 0.05 |
MIA-PaCa2 | 0.01 ± 0.01 |
786-0 | 0.32 ± 0.01 |
MCF-7 | 0.070 ± 0.007 |
WI-38 | 0.23 ± 0.01 |
Cell Line | CM03 | SOP1247 | QN-302 |
---|---|---|---|
MIA-PaCa2 | 9.0 | 13.8 | 1.3 |
PANC-1 | 15.6 | 15.7 | 1.4 |
CAPAN-1 | 26.5 | 38.8 | 5.9 |
Bx-PC3 | 15.5 | 20.5 | 2.6 |
Compound | MIA-PaCa2 Parental | MIA-PaCa2 GemResist | PANC-1 Parental | PANC-1 GemResist |
---|---|---|---|---|
Gemcitabine | 6.5 ± 0.7 | 11,055.7 ± 540.0 | 23.3 ± 8.4 | 28,750.9 ± 6121.3 |
CM03 | 13.0 ± 8.4 | 14.9 ± 8.3 | 10.4 ± 1.2 | 15.5 ± 1.8 |
CX-5461 | 90.3 ± 30.7 | 88.7 ± 22.0 | 32.9 ± 7.6 | 58.8 ± 13.8 |
QN-302 | 2.6 ± 1.0 | 3.8 ± 1.2 | 2.3 ± 0.4 | 3.3 ± 0.7 |
Gene | Log2FC | FC | P | High/ Low | Pprotein | PQS | PPQS | ACT | VACT |
---|---|---|---|---|---|---|---|---|---|
S100P | −3.23 | 9.4 | 0.08 | 124/52 | 0.0002 | 60 | 8 | Y | Y |
CX3CL1 | −2.91 | 7.5 | 0.04 | 62/114 | 0.026 | 5 | 2 | Y | Y |
CLIC3 | −2.77 | 6.8 | 0.07 | 140/36 | 0.008 | 6 | 3 | ? | Y |
NTN4 | −2.46 | 5.5 | 0.015 | 129/41 | 0.0001 | 13 | 4 | N | Y |
SLC19A1 | −2.27 | 4.8 | <<0.0001 | 138/38 | 0.29 | 38 | 4 | ? | ? |
KRT16 | −1.98 | 3.9 | 0.0016 | 140/36 | 0.00001 | 2 | 1 | N | Y |
PRDM16 | −1.91 | 3.8 | <<0.0001 | 140/36 | 0.052 | 260 | 5 | ? | ? |
RTN4R | −1.87 | 3.7 | <<0.0001 | 43/123 | 0.012 | 28 | 3 | N | Y |
GLI1 | −1.84 | 3.6 | 0.011 | 53/133 | 0.085 | 15 | 4 | Y | Y |
MAPK11 | −1.72 | 3.3 | <<0.0001 | 85/91 | 0.005 | 18 | 6 | Y | Y |
HSPA1A | −1.15 | 2.2 | 0.0001 | 65/111 | 0.008 | 3 | 1 | Y | Y |
GPRC5B | −1.14 | 2.1 | 0.0025 | 125/51 | 0.028 | 4 | 1 | N | N |
Prostate Cancer Lines | CM03 | QN-302 | Abiraterone | Enzalutamide |
---|---|---|---|---|
PC-3 | 94 | 3 | 4820 | 5350 |
DU145 | 113 | 32 | N/A | N/A |
LNCaP | 394 | 247 | 3860 | 4820 |
VCaP | 135 | 68 | N/A | N/A |
22RV1 | 90 | 90 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neidle, S. A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs. Molecules 2024, 29, 3653. https://doi.org/10.3390/molecules29153653
Neidle S. A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs. Molecules. 2024; 29(15):3653. https://doi.org/10.3390/molecules29153653
Chicago/Turabian StyleNeidle, Stephen. 2024. "A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs" Molecules 29, no. 15: 3653. https://doi.org/10.3390/molecules29153653
APA StyleNeidle, S. (2024). A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs. Molecules, 29(15), 3653. https://doi.org/10.3390/molecules29153653