Green Approaches for the Extraction of Banana Peel Phenolics Using Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of MAE
2.2. Optimization of UAE
2.3. Phenolic Profile of Banana Peel Extracts Obtained at Optimal Conditions
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Preparation
3.3. Deep Eutectic Solvent Preparation
3.4. Extraction
3.4.1. MAE
3.4.2. UAE
3.5. Spectrophotometric Determination of Total Flavonoids and Hydroxycinnamic Acids
3.5.1. Total Flavonoids
3.5.2. HCA
3.6. Antioxidant Activity Assays
3.6.1. Ferric Reducing Antioxidant Power Assay (FRAP)
3.6.2. 2,2-Azinobis(3-Ethylbenzothiazoline-6-Sulfonic Acid) Assay (ABTS)
3.7. Determination of the Extracts’ Phenolic Profile
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Investigation of the Polyphenol Recovery of Overripe Banana Peel Extract Utilizing Cloud Point Extraction. Eng 2023, 4, 3026–3038. [Google Scholar] [CrossRef]
- knoema.com. Available online: https://knoema.com/atlas/World/topics/Agriculture/Crops-Production-Quantity-tonnes/Bananas-production (accessed on 25 June 2024).
- Mohd Zaini, H.; Roslan, J.; Saallah, S.; Munsu, E.; Sulaiman, N.S.; Pindi, W. Banana Peels as a Bioactive Ingredient and Its Potential Application in the Food Industry. J. Funct. Foods 2022, 92, 105054. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic Compounds within Banana Peel and Their Potential Uses: A Review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Chaudhry, F.; Ahmad, M.L.; Hayat, Z.; Ranjha, M.M.A.N.; Chaudhry, K.; Elboughdiri, N.; Asmari, M.; Uddin, J. Extraction and Evaluation of the Antimicrobial Activity of Polyphenols from Banana Peels Employing Different Extraction Techniques. Separations 2022, 9, 165. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Maximising Recovery of Phenolic Compounds and Antioxidant Properties from Banana Peel Using Microwave Assisted Extraction and Water. J. Food Sci. Technol. 2019, 56, 1360–1370. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, H.; Row, K.H. Application of Deep Eutectic Solvents in the Extraction and Separation of Target Compounds from Various Samples. J. Sep. Sci. 2015, 38, 1053–1064. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction Techniques with Deep Eutectic Solvents. Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Dabetić, N.; Todorović, V.; Panić, M.; Radojčić Redovniković, I.; Šobajić, S. Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin. Appl. Sci. 2020, 10, 4830. [Google Scholar] [CrossRef]
- Alam, M.d.A.; Muhammad, G.; Khan, M.N.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline Chloride-Based Deep Eutectic Solvents as Green Extractants for the Isolation of Phenolic Compounds from Biomass. J. Clean. Prod. 2021, 309, 127445. [Google Scholar] [CrossRef]
- Islam, M.d.R.; Kamal, M.d.M.; Kabir, M.d.R.; Hasan, M.d.M.; Haque, A.R.; Hasan, S.M.K. Phenolic Compounds and Antioxidants Activity of Banana Peel Extracts: Testing and Optimization of Enzyme-Assisted Conditions. Meas. Food 2023, 10, 100085. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Supriatno; Ooi, K.L. Correlation between Total Phenolic and Mineral Contents with Antioxidant Activity of Eight Malaysian Bananas (Musa Sp.). J. Food Compos. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- González-Montelongo, R.; Gloria Lobo, M.; González, M. Antioxidant Activity in Banana Peel Extracts: Testing Extraction Conditions and Related Bioactive Compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; He, Y.; Xu, Y.; Li, L.; Luo, Z. UPLC-Triple-TOF/MS Characterization of Phenolic Constituents and the Influence of Natural Deep Eutectic Solvents on Extraction of Carya Cathayensis Sarg. Peels: Composition, Extraction Mechanism and in Vitro Biological Activities. Food Chem. 2022, 370, 131042. [Google Scholar] [CrossRef]
- Ferreira, C.; Sarraguça, M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals 2024, 17, 124. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Hamid Nour, A.; Ruth Oluwaseun, A.; Hamid Nour, A.; Suliman Omer, M.; Ahmed, N. Microwave-Assisted Extraction of Bioactive Compounds (Review). In Microwave Heating—Electromagnetic Fields Causing Thermal and Non-Thermal Effects; IntechOpen: London, UK, 2021. [Google Scholar]
- Rezaei, S.; Rezaei, K.; Haghighi, M.; Labbafi, M. Solvent and Solvent to Sample Ratio as Main Parameters in the Microwave-Assisted Extraction of Polyphenolic Compounds from Apple Pomace. Food Sci. Biotechnol. 2013, 22, 1269–1274. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Zhao, Y.; Wang, J.; Yu, Z. Insights into the Hydrogen Bond Interactions in Deep Eutectic Solvents Composed of Choline Chloride and Polyols. ACS Sustain. Chem. Eng. 2019, 7, 7760–7767. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Deep Eutectic Solvent-based Extraction of Polyphenolic Antioxidants from Onion (Allium cepa L.) Peel. J. Sci. Food Agric. 2019, 99, 1969–1979. [Google Scholar] [CrossRef]
- Lin, D.; Ma, Q.; Zhang, Y.; Peng, Z. Phenolic Compounds with Antioxidant Activity from Strawberry Leaves: A Study on Microwave-Assisted Extraction Optimization. Prep. Biochem. Biotechnol. 2020, 50, 874–882. [Google Scholar] [CrossRef]
- Djemaa-Landri, K.; Hamri-Zeghichi, S.; Valls, J.; Cluzet, S.; Tristan, R.; Boulahbal, N.; Kadri, N.; Madani, K. Phenolic Content and Antioxidant Activities of Vitis vinifera L. Leaf Extracts Obtained by Conventional Solvent and Microwave-Assisted Extractions. J. Food Meas. Charact. 2020, 14, 3551–3564. [Google Scholar] [CrossRef]
- Tatke, P.; Jaiswal, Y. An Overview of Microwave Assisted Extraction and Its Applications in Herbal Drug Research. Res. J. Med. Plant 2011, 5, 21–31. [Google Scholar] [CrossRef]
- Molnar, M.; Gašo-Sokač, D.; Komar, M.; Jakovljević Kovač, M.; Bušić, V. Potential of Deep Eutectic Solvents in the Extraction of Organic Compounds from Food Industry By-Products and Agro-Industrial Waste. Separations 2024, 11, 35. [Google Scholar] [CrossRef]
- Llompart, M.; Garcia-Jares, C.; Celeiro, M.; Dagnac, T. Microwave-Assisted Extraction, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Wang, Y.; Ma, C.; Liu, C.; Lu, X.; Feng, X.; Ji, X. Thermodynamic Study of Choline Chloride-Based Deep Eutectic Solvents with Water and Methanol. J. Chem. Eng. Data 2020, 65, 2446–2457. [Google Scholar] [CrossRef]
- Lu, J.; Boughner, E.C.; Liotta, C.L.; Eckert, C.A. Nearcritical and Supercritical Ethanol as a Benign Solvent: Polarity and Hydrogen-Bonding. Fluid. Phase Equilib. 2002, 198, 37–49. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Luo, M.; Hu, J.-Y.; Song, Z.-Y.; Jiao, J.; Mu, F.-S.; Ruan, X.; Gai, Q.-Y.; Qiao, Q.; Zu, Y.-G.; Fu, Y.-J. Optimization of Ultrasound-Assisted Extraction (UAE) of Phenolic Compounds from Crataegus Pinnatifida Leaves and Evaluation of Antioxidant Activities of Extracts. RSC Adv. 2015, 5, 67532–67540. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem 2021, 70, 105325. [Google Scholar] [CrossRef]
- Vural, N.; Algan Cavuldak, Ö.; Anlı, R.E. Multi Response Optimisation of Polyphenol Extraction Conditions from Grape Seeds by Using Ultrasound Assisted Extraction (UAE). Sep. Sci. Technol. 2018, 53, 1540–1551. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem 2023, 101, 106646. [Google Scholar] [CrossRef]
- Gómez-López, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta Var. Dilenii’s Fruits: Optimization and Biological Activities. Antioxidants 2021, 10, 1786. [Google Scholar] [CrossRef]
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna Saldívar, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Aduloju, E.I.; Yahaya, N.; Mohammad Zain, N.; Anuar Kamaruddin, M.; Ariffuddin Abd Hamid, M. An Overview on the Use of DEEP Eutectic Solvents for Green Extraction of Some Selected Bioactive Compounds from Natural Matrices. Adv. J. Chem. Sect. A 2023, 6, 253–300. [Google Scholar]
- Liu, X.-Y.; Ou, H.; Gregersen, H.; Zuo, J. Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Polyphenols from Cosmos Sulphureus. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100444. [Google Scholar] [CrossRef]
- Fu, X.; Wang, D.; Belwal, T.; Xu, Y.; Li, L.; Luo, Z. Sonication-Synergistic Natural Deep Eutectic Solvent as a Green and Efficient Approach for Extraction of Phenolic Compounds from Peels of Carya cathayensis Sarg. Food Chem. 2021, 355, 129577. [Google Scholar] [CrossRef]
- Soukaina, K.; Safa, Z.; Soukaina, H.; Hicham, C.; Bouchra, C. Choline Chloride-Based Deep Eutectic Solvents (NADES): Potential Use as Green Extraction Media for Polyphenols from Mentha pulegium, Antioxidant Activity, and Antifungal Activity. Microchem. J. 2024, 199, 110174. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of Ultrasonic Amplitude, Temperature, Time and Solvent Concentration on Bioactive Compounds Extraction from Propolis. Ultrason. Sonochem 2020, 64, 105021. [Google Scholar] [CrossRef]
- Malin, V.; Elez Garofulić, I.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic Characterization and Bioactivity of Fennel Seed (Foeniculum vulgare Mill.) Extracts Isolated by Microwave-Assisted and Conventional Extraction. Processes 2022, 10, 510. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, J.H.; Wang, G.H.; Wang, C.C.; Huang, R.Q. Extraction and Characterization of Phenolic Compounds and Dietary Fibres from Banana Peel. Acta Aliment. 2019, 48, 525–537. [Google Scholar] [CrossRef]
- Behiry, S.I.; Okla, M.K.; Alamri, S.A.; EL-Hefny, M.; Salem, M.Z.M.; Alaraidh, I.A.; Ali, H.M.; Al-Ghtani, S.M.; Monroy, J.C.; Salem, A.Z.M. Antifungal and Antibacterial Activities of Musa paradisiaca L. Peel Extract: HPLC Analysis of Phenolic and Flavonoid Contents. Processes 2019, 7, 215. [Google Scholar] [CrossRef]
- Anwar, S.; Javid, S.; Syed, Q.A.; Hussain, M.I.; Arshad, M.; Arshad, M.K.; Tanveer, A.; Sarwar, M.S.; Ali, A. Screening and Quantification of Non-Thermally Extracted Antioxidants and Phytochemicals from Banana Peels via LC-ESI-QTOF-MS/MS and Their Functionality in Spoonable Plain-Yogurt. J. Food Meas. Charact. 2024, 18, 1133–1143. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.H.F.; Visentainer, J.V. Antioxidant Activity, Phenolics and UPLC-ESI(-)-MS of Extracts from Different Tropical Fruits Parts and Processed Peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Peršurić, Ž.; Saftić Martinović, L.; Malenica, M.; Gobin, I.; Pedisić, S.; Dragović-Uzelac, V.; Kraljević Pavelić, S. Assessment of the Biological Activity and Phenolic Composition of Ethanol Extracts of Pomegranate (Punica granatum L.) Peels. Molecules 2020, 25, 5916. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, M.; Saad, A.; Ahmed, W.; Refahy, L.; Nasr, S. HPLC-DAD-ESI-MS/MS Characterization of Bioactive Secondary Metabolites from Strelitzia nicolai Leaf Extracts and Their Antioxidant and Anticancer Activities In Vitro. Pharmacogn. Res. 2018, 10, 368–378. [Google Scholar] [CrossRef]
- Safe, S.; Jayaraman, A.; Chapkin, R.S.; Howard, M.; Mohankumar, K.; Shrestha, R. Flavonoids: Structure–Function and Mechanisms of Action and Opportunities for Drug Development. Toxicol. Res. 2021, 37, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Deng, G.; Guo, R.; Chen, D.F.; Wu, L.M. A DFT-Based Study of the Hydrogen-Bonding Interactions between Myricetin and Ethanol/Water. J. Mol. Model. 2019, 25, 67. [Google Scholar] [CrossRef]
- Cao, D.; Liu, Q.; Jing, W.; Tian, H.; Yan, H.; Bi, W.; Jiang, Y.; Chen, D.D.Y. Insight into the Deep Eutectic Solvent Extraction Mechanism of Flavonoids from Natural Plant. ACS Sustain. Chem. Eng. 2020, 8, 19169–19177. [Google Scholar] [CrossRef]
- Alcázar Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic Acids: Chemistry, Biosynthesis, Occurrence, Analytical Challenges, and Bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef] [PubMed]
- Ali Redha, A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. J. Agric. Food Chem. 2021, 69, 878–912. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J.; Sun, J.; Qiu, S.; Chu, B.; Fang, R.; Li, L.; Gong, J.; Zheng, F. Degradation Kinetics and Isomerization of 5-O-Caffeoylquinic Acid under Ultrasound: Influence of Epigallocatechin Gallate and Vitamin C. Food Chem. X 2021, 12, 100147. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Yung An, C.; Rao, P.V.; Hawlader, M.N.I.; Azlan, S.A.B.M.; Sulaiman, S.A.; Gan, S.H. Identification of Phenolic Acids and Flavonoids in Monofloral Honey from Bangladesh by High Performance Liquid Chromatography: Determination of Antioxidant Capacity. Biomed. Res. Int. 2014, 2014, 737490. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Dragović-Uzelac, V.; Garofulić, I.E.; Jukić, M.; Penić, M.; Dent, M. The Influence of Microwave-Assisted Extraction on the Isolation of Sage (Salvia officinalis L.) Polyphenols. Food Technol. Biotechnol. 2012, 50, 377–383. [Google Scholar]
- Withouck, H.; Paelinck, A.; Foubert, I.; Fraeye, I. Ultrasound-Assisted Extraction of Applewood Polyphenols at Lab and Pilot Scales. Foods 2023, 12, 3142. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.A. Cinnamates and Hydroxybenzoates in the Diet: Antioxidant Activity Assessed Using the ABTS•+ Radical Cation. Br. Food J. 1997, 99, 57–62. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
Variation | HCA (mg/100 g) | Flavonoids (mg/100 g) | FRAP (mmol/100 g) | ABTS (mmol/100 g) | ||||
---|---|---|---|---|---|---|---|---|
DES | 30% EtOH | DES | 30% EtOH | DES | 30% EtOH | DES | 30% EtOH | |
SSR (g/mL) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
1:40 | 274.82 ± 12.91 a | 84.87 ± 3.26 a | 136.27 ± 5.38 a | 27.19 ± 1.44 a | 39.19 ± 1.49 c | 4.98 ± 0.45 a | 14.02 ± 0.85 a | 4.82 ± 0.20 a |
1:50 | 313.52 ± 12.68 b | 116.10 ± 5.42 b | 145.50 ± 5.52 b | 36.41 ± 2.93 b | 32.58 ± 1.32 b | 5.91 ± 0.50 b | 15.55 ± 0.86 b | 6.30 ± 0.26 b |
1:60 | 324.90 ± 10.33 b | 127.60 ± 6.45 c | 154.66 ± 4.75 b | 43.30 ± 2.84 c | 29.18 ± 2.74 a | 8.77 ± 0.87 c | 18.64 ± 1.35 c | 6.84 ± 0.44 c |
Time (min) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
5 | 286.78 ± 12.80 a | 103.21 ± 6.81 a | 134.27 ± 6.30 a | 33.93 ± 2.94 a | 31.94 ± 1.63 a | 6.05 ± 0.86 a | 15.62 ± 1.15 a | 5.54 ± 0.40 a |
10 | 313.02 ± 13.13 b | 101.10 ± 4.64 a | 152.42 ± 3.77 b | 33.15 ± 1.87 a | 34.70 ± 2.74 b | 6.72 ± 0.65 b | 15.67 ± 1.13 a | 6.08 ± 0.36 b |
15 | 313.45 ± 12.32 b | 124.26 ± 7.20 b | 149.74 ± 5.18 b | 39.82 ± 3.56 b | 34.32 ± 2.03 b | 6.89 ± 0.70 c | 16.92 ± 0.12 b | 6.33 ± 0.36 c |
Temperature (°C) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
40 | 320.17 ± 7.69 b | 108.52 ± 4.28 b | 137.30 ± 3.38 a | 34.36 ± 1.04 b | 30.50 ± 2.74 a | 4.96 ± 0.16 a | 12.63 ± 0.30 a | 5.23 ± 0.16 a |
60 | 341.01 ± 8.61 c | 102.28 ± 6.76 a | 161.75 ± 4.42 b | 31.72 ± 3.59 a | 32.86 ± 1.72 b | 6.22 ± 0.78 b | 13.90 ± 0.56 b | 5.45 ± 0.34 b |
80 | 252.05 ± 11.29 a | 117.78 ± 8.24 c | 137.38 ± 6.13 a | 40.82 ± 3.14 c | 36.60 ± 2.58 b | 8.48 ± 0.81 c | 21.68 ± 0.83 c | 7.27 ± 0.38 c |
mean | 304.41 | 109.52 | 145.48 | 35.63 | 33.65 | 6.55 | 16.07 | 5.98 |
Variation | HCA (mg/100 g) | Flavonoids (mg/100 g) | FRAP (mmol/100 g) | ABTS (mmol/100 g) | ||||
---|---|---|---|---|---|---|---|---|
DES | 30% EtOH | DES | 30% EtOH | DES | 30% EtOH | DES | 30% EtOH | |
SSR (g/mL) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
1:40 | 322.29 ± 19.84 a | 113.11 ± 4.28 a | 206.59 ± 16.33 a | 49.19 ± 2.29 a | 27.79 ± 2.21 a | 4.08 ± 0.27 a | 19.49 ± 0.91 a | 3.84 ± 0.37 a |
1:50 | 483.04 ± 28.10 b | 139.44 ± 3.79 b | 332.21 ± 17.67 b | 51.84 ± 2.13 b | 30.04 ± 2.38 b | 5.27 ± 0.19 b | 21.99 ± 1.51 b | 6.03 ± 0.18 b |
1:60 | 540.76 ± 11.51 c | 167.52 ± 9.09 c | 410.33 ± 19.55 c | 74.03 ± 6.96 c | 37.15 ± 3.44 c | 5.93 ± 0.34 c | 22.59 ± 1.38 c | 6.46 ± 0.25 c |
Time (min) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
5 | 461.75 ± 20.19 b | 129.52 ± 5.47 a | 299.38 ± 26.40 a | 50.59 ± 2.81 a | 33.23 ± 2.67 b | 4.94 ± 0.28 a | 23.35 ± 1.42 c | 4.80 ± 0.53 a |
10 | 425.45 ± 29.27 a | 137.88 ± 5.50 b | 342.45 ± 25.31 b | 55.50 ± 2.29 b | 30.10 ± 1.92 a | 5.00 ± 0.24 a | 21.21 ± 1.19 b | 5.78 ± 0.21 b |
15 | 458.90 ± 38.88 b | 152.67 ± 11.23 c | 307.30 ± 28.37 a | 68.97 ± 7.51 c | 31.65 ± 4.29 ab | 5.35 ± 0.43 b | 19.51 ± 1.21 a | 5.74 ± 0.33 b |
Amplitude (%) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
50 | 413.99 ± 26.81 a | 131.66 ± 4.64 a | 368.03 ± 19.23 c | 52.40 ± 2.18 a | 26.95 ± 2.19 a | 4.04 ± 0.26 a | 17.69 ± 0.94 a | 5.04 ± 0.24 a |
75 | 495.13 ± 36.93 c | 141.71 ± 5.57 b | 318.34 ± 36.31 b | 57.43 ± 3.60 b | 34.27 ± 3.35 b | 5.49 ± 0.24 b | 21.51 ± 1.05 b | 5.78 ± 0.43 c |
100 | 436.97 ± 23.14 b | 146.70 ± 11.95 c | 262.77 ± 13.80 a | 65.23 ± 7.58 c | 33.75 ± 2.68 b | 5.75 ± 0.33 c | 24.88 ± 1.35 b | 5.51 ± 0.45 b |
mean | 448.70 | 140.02 | 316.38 | 58.35 | 31.66 | 5.09 | 21.36 | 5.44 |
Compound Number | Retention Time (min) | Precursor Ion (m/z) | Fragment Ion (m/z) | Tentative Identification | Concentration mg/100 g Banana Peel | |||
---|---|---|---|---|---|---|---|---|
MAE | UAE | |||||||
DES | 30% EtOH | DES | 30% EtOH | |||||
Flavonols | ||||||||
8 | 6.298 | 319 | 273 | Myricetin * | 2.32 ± 0.07 aA | 17.06 ± 0.48 bB | 6.25 ± 0.18 aB | 11.80 ± 0.33 bA |
10 | 7.469 | 465 | 303 | Quercetin-3-glucoside * | 1.46 ± 0.04 bB | 0.63 ± 0.02 aB | 1.34 ± 0.04 bA | 0.35 ± 0.01 aA |
11 | 7.474 | 479 | 303 | Quercetin-3-glucuronide | 0.37 ± 0.01 aA | 0.63 ± 0.02 bB | 0.35 ± 0.01 bA | 0.10 ± 0.00 aA |
12 | 7.477 | 449 | 287 | Kaempferol-3-glucoside * | 0.70 ± 0.02 bB | 0.39 ± 0.01 aB | 0.64 ± 0.02 bA | 0.24 ± 0.01 aA |
14 | 9.456 | 611 | 465/303 | Rutin * | 7.40 ± 0.21 aA | 7.01 ± 0.20 aB | 7.03 ± 0.20 bA | 0.86 ± 0.02 aA |
15 | 11.389 | 463 | 287 | Kaempferol-3-glucuronide | 0.16 ± 0.00 aA | 0.18 ± 0.00 aA | 0.28 ± 0.01 aB | 0.26 ± 0.01 aB |
19 | 12.211 | 465 | 303 | Quercetin-3-galactoside * | 1.58 ± 0.04 bA | 0.92 ± 0.03 aA | 1.62 ± 0.05 bA | 1.38 ± 0.04 aB |
Total flavonols | 13.99 ± 0.40 aA | 26.82 ± 0.76 bB | 17.52 ± 0.50 bB | 15.00 ± 0.42 aA | ||||
Flavan-3-ols | ||||||||
3 | 3.825 | 291 | 165/139 | Catechin * | 16.29 ± 0.46 bA | 4.63 ± 0.13 aB | 18.99 ± 0.54 bB | 3.24 ± 0.09 aA |
7 | 6.235 | 442.9 | 273 | Epicatechin gallate * | 4.99 ± 0.14 aB | 7.78 ± 0.22 bB | 3.39 ± 0.10 aA | 3.03 ± 0.09 aA |
9 | 6.529 | 291 | 139/123 | Epicatechin | 11.61 ± 0.33 bA | 5.48 ± 0.16 aA | 19.02 ± 0.54 bB | 8.01 ± 0.23 aB |
Total flavan-3-ols | 32.89 ± 0.93 bA | 17.89 ± 0.51 aB | 41.44 ± 1.17 bB | 14.29 ± 0.93 aA | ||||
Phenolic acids | ||||||||
1 | 1.895 | 353 | 191/173 | Neochlorogenic acid * | 7.70 ± 0.22 bB | 0.92 ± 0.03 aB | 5.31 ± 0.15 bA | 0.76 ± 0.02 aA |
2 | 3.713 | 137 | 109 | 3,4-dihydrobenzoic acid hexoside | 0.06 ± 0.00 aB | 0.13 ± 0.00 bB | 0.04 ± 0.00 aA | 0.07 ± 0.00 bA |
4 | 4.893 | 179 | 135 | Caffeic acid * | 2.47 ± 0.07 aB | 5.36 ± 0.15 bB | 0.29 ± 0.01 aA | 3.86 ± 0.11 bA |
5 | 5.492 | 163 | 119 | p-coumaric acid * | 0.30 ± 0.01 aB | 1.35 ± 0.04 bB | 0.24 ± 0.01 aA | 0.84 ± 0.02 bA |
6 | 5.561 | 353 | 191 | Chlorogenic acid * | 8.73 ± 0.25 bB | 0.68 ± 0.02 aB | 6.05 ± 0.17 bA | 0.40 ± 0.01 aA |
13 | 9.299 | 300.9 | 255.3/145 | Ellagic acid | 0.28 ± 0.01 aA | 0.28 ± 0.01 aA | 0.43 ± 0.01 bB | 0.27 ± 0.01 aA |
16 | 11.408 | 169 | 125 | Gallic acid * | 1.33 ± 0.04 bA | 0.48 ± 0.01 aA | 1.45 ± 0.04 bB | 0.53 ± 0.01 aB |
17 | 11.728 | 137 | 93 | p-hydroxybenzoic acid | 0.80 ± 0.02 bA | 0.67 ± 0.02 aB | 0.83 ± 0.02 bA | 0.61 ± 0.02 aA |
18 | 11.991 | 311.1 | 179/149 | Caftaric acid | 0.06 ± 0.00 bA | 0.04 ± 0.00 aA | 0.06 ± 0.00 bA | 0.05 ± 0.00 aB |
Total phenolic acids | 21.74 ± 0.61 bB | 9.92 ± 0.28 aB | 14.71 ± 0.42 bA | 7.39 ± 0.21 aA | ||||
Hydroxycinnamic acids | 19.54 ± 0.55 bB | 8.64 ± 0.24 aB | 12.39 ± 0.35 bA | 6.18 ± 0.17 aA | ||||
Total polyphenols | 68.62 ± 1.94 bA | 54.64 ± 1.55 aB | 73.64 ± 2.08 bB | 36.67 ± 1.08 aA | ||||
Flavonols (%) | 20.39 aA | 49.09 bB | 23.79 aB | 40.90 bA | ||||
Flavan-3-ols (%) | 47.93 bA | 32.75 aA | 56.23 bB | 38.95 aB | ||||
Phenolic acids (%) | 31.68 bB | 18.16 aA | 19.98 aA | 20.15 aB |
Sample:Solvent (g/mL) | Time (min) | Temperature (°C) a | Amplitude (%) b |
---|---|---|---|
1:40 | 5 | 40 | 50 |
60 | 75 | ||
80 | 100 | ||
10 | 40 | 50 | |
60 | 75 | ||
80 | 100 | ||
15 | 40 | 50 | |
60 | 75 | ||
80 | 100 | ||
1:50 | 5 | 40 | 50 |
60 | 75 | ||
80 | 100 | ||
10 | 40 | 50 | |
60 | 75 | ||
80 | 100 | ||
15 | 40 | 50 | |
60 | 75 | ||
80 | 100 | ||
1:60 | 5 | 40 | 50 |
60 | 75 | ||
80 | 100 | ||
10 | 40 | 50 | |
60 | 75 | ||
80 | 100 | ||
15 | 40 | 50 | |
60 | 75 | ||
80 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cegledi, E.; Dobroslavić, E.; Pedisić, S.; Magnabosca, I.; Zorić, M.; Pavić, R.; Šuto, M.; Štargl, O.; Repajić, M.; Elez Garofulić, I. Green Approaches for the Extraction of Banana Peel Phenolics Using Deep Eutectic Solvents. Molecules 2024, 29, 3672. https://doi.org/10.3390/molecules29153672
Cegledi E, Dobroslavić E, Pedisić S, Magnabosca I, Zorić M, Pavić R, Šuto M, Štargl O, Repajić M, Elez Garofulić I. Green Approaches for the Extraction of Banana Peel Phenolics Using Deep Eutectic Solvents. Molecules. 2024; 29(15):3672. https://doi.org/10.3390/molecules29153672
Chicago/Turabian StyleCegledi, Ena, Erika Dobroslavić, Sandra Pedisić, Ivan Magnabosca, Marija Zorić, Rina Pavić, Marija Šuto, Otilija Štargl, Maja Repajić, and Ivona Elez Garofulić. 2024. "Green Approaches for the Extraction of Banana Peel Phenolics Using Deep Eutectic Solvents" Molecules 29, no. 15: 3672. https://doi.org/10.3390/molecules29153672
APA StyleCegledi, E., Dobroslavić, E., Pedisić, S., Magnabosca, I., Zorić, M., Pavić, R., Šuto, M., Štargl, O., Repajić, M., & Elez Garofulić, I. (2024). Green Approaches for the Extraction of Banana Peel Phenolics Using Deep Eutectic Solvents. Molecules, 29(15), 3672. https://doi.org/10.3390/molecules29153672