Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers
Abstract
:1. Introduction
2. Asymmetric Electrophilic Fluorination
3. Asymmetric Elaboration of Fluorine-Containing Substrates
3.1. Allylic Alkylation Reactions
3.2. Hydrofunctionalization Reactions
3.3. Mannich Addition Reactions
3.4. Michael Addition Reactions
3.5. Aldol Addition Reactions
3.6. Miscellaneous Reactions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Entry | Abbreviation | Full name of compound |
1 | FDA | Food and Drug Administration. |
2 | PET | Positron emission tomography. |
3 | CADA | Catalytic asymmetric dearomatization. |
4 | Selectfluor | 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate). |
5 | NFSI | N-Fluorobenzenesulfonimide. |
6 | BINOL | 2,2’-Dihydroxy-1,1’-binaphthyl. |
7 | PS | Proton sponge. |
8 | Boc | t-Butyloxy carbonyl. |
9 | Cbz | Benzyloxycarbonyl. |
10 | Fmoc | 9-Fluorenylmethyloxycarbonyl. |
11 | TIP | Thiazoline iminopyridine. |
12 | pyr·9HF | Pyridine·9HF. |
13 | m-CPBA | meta-chloroperbenzoic acid. |
14 | (R,R)-BPE | (-)-1,2-Bis((2R,5R)-2,5-diphenylphospholano)ethane. |
15 | DBU | 1,8-Diazabicyclo[5.4.0]undec-7-ene. |
16 | Me-THQphos | (2R)-1-(11bR)-Dinaphtho[2,1-d:1’,2’-f][1–3]dioxaphosph epin-4-yl-1,2,3,4-tetrahydro-2-methylquinoline. |
17 | TBD | 1,5,7-Triazabicyclo[4.4.0]dec-5-ene. |
18 | THF | Tetrahydrofuran. |
19 | 2,5-DPBQ | 2,5-diphenylquinone. |
20 | (S)-t-Bu-PHOX | (S)-4-(tert-Butyl)-2-(2’-(diphenylphosphanyl)-[1,1’-biphenyl]-2-yl)-4,5-dihydrooxazole. |
21 | OligoEG | Oligo ethylene glycol. |
22 | N-Dpp | N-diphenylphosphinoyl. |
23 | TU1 | 3-Isopropyl-1,1-dimethylthiourea. |
24 | BTMG | 2-tert-Butyl-1,1,3,3-tetramethylguanidine. |
25 | TU2 | 1,1,3-Trimethylthiourea. |
26 | F-MTMs | Fluorinated monothiomalonates. |
27 | DIPEA | N,N-Diisopropylethylamine. |
28 | tBu | tert-Butyl. |
29 | iPr | Isopropyl. |
30 | chexyl | Cyclohexyl. |
31 | F-MAHTs | Fluoromalonic acid halfthioesters. |
32 | (S)-tol-BINAP | (S)-(–)-2,2’-Bis(di-p-tolylphosphino)-1,1’-binaphthyl. |
33 | DCM | Dichloromethane. |
34 | EtOH | Ethanol. |
35 | MeOH | Methanol. |
36 | ε | Dielectric constants. |
37 | (R)-iodo-BINOL | (R)-3,3’-Diiodo-[1,1’-binaphthalene]-2,2’-diol. |
38 | TBS | tert-Butyldimethylsilyl. |
39 | Bs | Benzenesulfonyl. |
40 | TIPS | Triisopropylsilyl. |
41 | LiHMDS | Lithium bis(trimethylsilyl)amide. |
42 | MTBE | Methyl tert-butyl ether. |
43 | TMS | Trimethylsilyl. |
44 | DMAP | 4-Dimethylaminopyridine. |
45 | TBDPS | t-Butyl-diphenylsilyl. |
References
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef]
- Hagmann, W.K. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359–4369. [Google Scholar] [CrossRef]
- O’Hagan, D. Fluorine in Health Care: Organofluorine Containing Blockbuster Drugs. J. Fluorine Chem. 2010, 131, 1071–1081. [Google Scholar] [CrossRef]
- Mei, H.; Han, J.; Fustero, S.; Medio-Sifmon, M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Fluorine-Containing Drugs Approved by the FDA in 2018. Chem. Eur. J. 2019, 25, 11797–11819. [Google Scholar] [CrossRef]
- Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 2020, 5, 10633–10640. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular Imaging with PET. Chem. Rev. 2008, 108, 1501–1516. [Google Scholar] [CrossRef]
- Lasne, M.-C.; Perrio, C.; Rouden, J.; Barré, L.; Roeda, D.; Dolle, F.; Crouzel, C. Chemistry of β+-Emitting Compounds Based on Fluorine-18. In Contrast Agents II. Topics in Current Chemistry; Krause, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 222, pp. 201–258. [Google Scholar] [CrossRef]
- Miller, P.W.; Long, N.J.; Vilar, R.; Gee, A.D. Synthesis of 11C, 18F, 15O, and 13N Radiolabels for Positron Emission Tomography. Angew. Chem. Int. Ed. 2008, 47, 8998–9033. [Google Scholar] [CrossRef]
- Littich, R.; Scott, P.J.H. Novel Strategies for Fluorine-18 Radiochemistry. Angew. Chem. Int. Ed. 2012, 51, 1106–1109. [Google Scholar] [CrossRef]
- Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. The Fluorous Effect in Biomolecular Applications. Chem. Soc. Rev. 2012, 41, 31–42. [Google Scholar] [CrossRef]
- Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Organic Fluorine Compounds: A Great Opportunity for Enhanced Materials Properties. Chem. Soc. Rev. 2011, 40, 3496–3508. [Google Scholar] [CrossRef]
- Li, Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption. Acc. Chem. Res. 2012, 45, 723–733. [Google Scholar] [CrossRef]
- Kirsch, P.; Hahn, A. Liquid Crystals Based on Hypervalent Sulfur Fluorides: Exploring the Steric Effects of ortho-Fluorine Substituents. Eur. J. Org. Chem. 2005, 2005, 3095–3100. [Google Scholar] [CrossRef]
- Leibler, I.N.-M.; Gandhi, S.S.; Tekle-Smith, M.A.; Doyle, A.G. Strategies for Nucleophilic C(sp3)–(Radio)Fluorination. J. Am. Chem. Soc. 2023, 145, 9928–9950. [Google Scholar] [CrossRef]
- Remete, A.M.; Nonn, M.; Escorihuela, J.; Fustero, S.; Kiss, L. Asymmetric Methods for Carbon–Fluorine Bond Formation. Eur. J. Org. Chem. 2021, 2021, 5946–5974. [Google Scholar] [CrossRef]
- Lectard, S.; Hamashima, Y.; Sodeoka, M. Recent Advances in Catalytic Enantioselective Fluorination Reactions. Adv. Synth. Catal. 2010, 352, 2708–2732. [Google Scholar] [CrossRef]
- Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Fluorine & Chirality: How to Create A Nonracemic Stereogenic Carbon-Fluorine Centre? Chem. Soc. Rev. 2010, 39, 558–568. [Google Scholar] [CrossRef]
- Bobbio, C.; Gouverneur, V. Catalytic Asymmetric Fluorinations. Org. Biomol. Chem. 2006, 4, 2065–2075. [Google Scholar] [CrossRef]
- Sun, D.; Yang, S.; Fang, X. Asymmetric Catalytic Construction of Fully Substituted Carbon Stereocenters using Acyclic α-Branched β-Ketocarbonyls: The “Methyl Rule” Widely Exists. Org. Chem. Front. 2020, 7, 3557–3577. [Google Scholar] [CrossRef]
- Chen, C.; Fu, L.; Chen, P.; Liu, G. Recent Advances and Perspectives of Transition Metal-Catalyzed Asymmetric Fluorination Reactions. Chin. J. Chem. 2017, 35, 1781–1788. [Google Scholar] [CrossRef]
- Auria-Luna, F.; Mohammadi, S.; Divar, M.; Gimeno, M.C.; Herrera, R.P. Asymmetric Fluorination Reactions Promoted by Chiral Hydrogen Bonding-Based Organocatalysts. Adv. Synth. Catal. 2020, 362, 5275–5300. [Google Scholar] [CrossRef]
- Hana, Z.-Z.; Zhang, C.-P. Fluorination and Fluoroalkylation Reactions Mediated by Hypervalent Iodine Reagents. Adv. Synth. Catal. 2020, 362, 4256–4292. [Google Scholar] [CrossRef]
- Dong, D.-Q.; Hao, S.-H.; Wang, Z.-L.; Chen, C. Hypervalent Iodine: A Powerful Electrophile for Asymmetric α-Functionalization of Carbonyl Compounds. Org. Biomol. Chem. 2014, 12, 4278–4289. [Google Scholar] [CrossRef]
- Rauniyar, V.; Lackner, A.D.; Hamilton, G.L.; Toste, F.D. Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst. Science 2011, 334, 1681–1684. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.A.; Coelho, J.A.S.; Toste, F.D. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem. Rev. 2018, 118, 3887–3964. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Mei, H.; Soloshonok, V.A.; Han, J. Detrifluoroacetylative in Situ Generated Cyclic Fluorinated Enolates for the Preparation of Compounds Featuring a C–F Stereogenic Center. ACS Omega 2019, 4, 19505–19512. [Google Scholar] [CrossRef]
- Granados, A.; Vallribera, A. Asymmetric Preparation of α-Quaternary Fluorinated β-keto Esters. Review. Molecules 2020, 25, 3264. [Google Scholar] [CrossRef]
- Butcher, T.W.; Amberg, W.M.; Hartwig, J.F. Transition-Metal-Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C-C Bond Formation. Angew. Chem. Int. Ed. 2022, 61, e202112251. [Google Scholar] [CrossRef]
- Nyffeler, P.T.; Gonzalez, S.; Burkart, M.D.; Vicent, S.P.; Wong, C.-H. Selectfluor: Mechanistic Insight and Applications. Angew. Chem. Int. Ed. 2005, 44, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Differding, E.; Ofner, H. N-Fluorobenzenesulfonimide: A Practical Reagent for Electrophilic Fluorinations. Synlett 1991, 1991, 187–189. [Google Scholar] [CrossRef]
- Wu, W.-T.; Zhang, L.; You, S.-L. Catalytic Asymmetric Dearomatization (CADA) Reactions of Phenol and Aniline Derivatives. Chem. Soc. Rev. 2016, 45, 1570–1580. [Google Scholar] [CrossRef]
- Sun, W.; Li, G.; Hong, L.; Wang, R. Asymmetric Dearomatization of Phenols. Org. Biomol. Chem. 2016, 14, 2164–2176. [Google Scholar] [CrossRef]
- Zheng, C.; You, S.-L. Catalytic Asymmetric Dearomatization by Transition-Metal Catalysis: A Method for Transformations of Aromatic Compounds. Chem 2016, 1, 830–857. [Google Scholar] [CrossRef]
- Liang, X.-W.; Zheng, C.; You, S.-L. Dearomatization Through Halofunctionalization Reactions. Chem. Eur. J. 2016, 22, 11918–11933. [Google Scholar] [CrossRef]
- Zhuo, C.-X.; Zheng, C.; You, S.-L. Transition-Metal-Catalyzed Asymmetric Allylic Dearomatization Reactions. Acc. Chem. Res. 2014, 47, 2558–2573. [Google Scholar] [CrossRef]
- Ding, Q.; Zhou, X.; Fan, R. Recent Advances in Dearomatization of Heteroaromatic Compounds. Org. Biomol. Chem. 2014, 12, 4807–4815. [Google Scholar] [CrossRef]
- Zhuo, C.-X.; Zhang, W.; You, S.-L. Catalytic Asymmetric Dearomatization Reactions. Angew. Chem. Int. Ed. 2012, 51, 12662–12686. [Google Scholar] [CrossRef]
- López Ortiz, F.; Iglesias, M.J.; Fernández, I.; Andújar Sánchez, C.M.; Ruiz Gómez, G. Nucleophilic Dearomatizing (DNAr) Reactions of Aromatic C, H-Systems. A Mature Paradigm in Organic Synthesis. Chem. Rev. 2007, 107, 1580–1691. [Google Scholar] [CrossRef]
- Lozano, O.; Blessley, G.; Martinez del Campo, T.; Thompson, A.L.; Giuffredi, G.T.; Bettati, M.; Gouverneur, V. Organocatalyzed Enantioselective Fluorocyclizations. Angew. Chem. Int. Ed. 2011, 50, 8105–8109. [Google Scholar] [CrossRef]
- Liang, X.-W.; Liu, C.; Zhang, W.; You, S.-L. Asymmetric Fluorinative Dearomatization of Tryptamine Derivatives. Chem. Commun. 2017, 53, 5531–5534. [Google Scholar] [CrossRef]
- Egami, H.; Hotta, R.; Otsubo, M.; Rouno, T.; Niwa, T.; Yamashita, K.; Hamashima, Y. Asymmetric Dearomatizing Fluoroamidation of Indole Derivatives with Dianionic Phase-Transfer Catalyst. Org. Lett. 2020, 22, 5656–5660. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wang, B.; Cui, L.; Zhu, G.; He, Y.; Qu, J.; Song, Y. An Organocatalytic Asymmetric Friedel–Crafts Addition/Fluorination Sequence: Construction of Oxindole–Pyrazolone Conjugates Bearing Vicinal Tetrasubstituted Stereocenters. Org. Lett. 2015, 17, 5168–5171. [Google Scholar] [CrossRef] [PubMed]
- Krištofíková, D.; Mečiarová, M.; Rakovský, E.; Šebesta, R. Mechanochemically Activated Asymmetric Organocatalytic Domino Mannich Reaction-Fluorination. ACS Sustain. Chem. Eng. 2020, 8, 14417–14424. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, B.; Lu, Z. Enantioselective Cobalt-Catalyzed Sequential Nazarov Cyclization/Electrophilic Fluorination: Access to Chiral α-Fluorocyclopentenones. Org. Lett. 2018, 20, 4028–4031. [Google Scholar] [CrossRef] [PubMed]
- Haj, M.K.; Banik, S.M.; Jacobsen, E.N. Catalytic, Enantioselective 1,2-Difluorination of Cinnamamides. Org. Lett. 2019, 21, 4919–4923. [Google Scholar] [CrossRef] [PubMed]
- Lanke, V.; Marek, I. Nucleophilic Substitution at Quaternary Carbon Stereocenters. J. Am. Chem. Soc. 2020, 142, 5543–5548. [Google Scholar] [CrossRef] [PubMed]
- Pamies, O.; Margalef, J.; James, J.; Judge, E.; Guiry, P.J.; Moberg, C.; Bäckvall, J.E.; Pfaltz, A.; Pericàs, M.A.; Diéguez, M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem. Rev. 2021, 121, 4373–4505. [Google Scholar] [CrossRef]
- Wang, P.S.; Gong, L.Z. Palladium-Catalyzed Asymmetric Allylic C–H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Acc. Chem. Res. 2020, 53, 2841–2854. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Oble, J.; Pradal, A.; Poli, G. Catalytic Domino Annulations through η3-Allylpalladium Chemistry: A Never-Ending Story. Eur. J. Inorg. Chem. 2020, 2020, 942–961. [Google Scholar] [CrossRef]
- Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019, 119, 1855–1969. [Google Scholar] [CrossRef]
- James, J.; Jackson, M.; Guiry, J.P. Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation: Development, Mechanistic Understanding and Recent Advances. Adv. Synth. Catal. 2019, 361, 3016–3049. [Google Scholar] [CrossRef]
- Trost, B.M.; Schultz, J.E. Palladium-Catalyzed Asymmetric Allylic Alkylation Strategies for the Synthesis of Acyclic Tetrasubstituted Stereocenters. Synthesis 2019, 51, 1–30. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Lu, L.-Q.; Xiao, W.-J. Non-Bonding Interactions Enable the Selective Formation of Branched Products in Palladium-Catalyzed Allylic Substitution Reactions. Chem. Asian J. 2018, 13, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Koschker, P.; Breit, B. Branching out: Rhodium-Catalyzed Allylation with Alkynes and Allenes. Acc. Chem. Res. 2016, 49, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Butt, N.A.; Zhang, W. Ransition Metal-Catalyzed Allylic Substitution Reactions with Unactivated Allylic Substrates. Chem. Soc. Rev. 2015, 44, 7929–7967. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Ma, S. Metal-Catalyzed Enantioselective Allylation in Asymmetric Synthesis. Angew. Chem. Int. Ed. 2008, 47, 258–297. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Machacek, M.R.; Aponick, A. Predicting the Stereochemistry of Diphenylphosphino Benzoic Acid (DPPBA)-Based Palladium-Catalyzed Asymmetric Allylic Alkylation Reactions: A Working Model. Acc. Chem. Res. 2006, 39, 747–760. [Google Scholar] [CrossRef]
- Trost, B.M.; Crawley, M.L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chem. Rev. 2003, 103, 2921–2944. [Google Scholar] [CrossRef] [PubMed]
- He, Z.-T.; Jiang, X.; Hartwig, J.F. Stereodivergent Construction of Tertiary Fluorides in Vicinal Stereogenic Pairs by Allylic Substitution with Iridium and Copper Catalysts. J. Am. Chem. Soc. 2019, 141, 13066–13073. [Google Scholar] [CrossRef]
- Tian, K.; Chang, X.; Xiao, L.; Dong, X.-Q.; Wang, C.-J. Stereodivergent Synthesis of α-Fluoro α-Azaaryl γ-Butyrolactones via Cooperative Copper and Iridium Catalysis. Fundam. Res. 2024, 4, 77–85. [Google Scholar] [CrossRef]
- Liu, X.-J.; Jin, S.; Zhang, W.-Y.; Liu, Q.-Q.; Zheng, C.; You, S.-L. Sequence-Dependent Stereodivergent Allylic Alkylation/Fluorination of Acyclic Ketones. Angew. Chem. Int. Ed. 2020, 59, 2039–2043. [Google Scholar] [CrossRef]
- Wei, J.-H.; Jin, Y.-X.; Wang, P.-S.; Gong, L.-Z. Access to Fluorinated Quaternary Stereogenic Centers via Palladium-Catalyzed Asymmetric Allylic C–H Alkylation. Synlett 2023, 34, 2411–2416. [Google Scholar] [CrossRef]
- Balaraman, K.; Wolf, C. Catalytic Enantioselective and Diastereoselective Allylic Alkylation with Fluoroenolates: Efficient Access to C3-Fluorinated and All-Carbon Quaternary Oxindoles. Angew. Chem. Int. Ed. 2017, 56, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Steber, S.E.; Pham, A.N.D.L.; Nelson, E.; Wolf, C. Enantioseparation and Racemization of α-aryl-α-fluoroacetonitriles. Chirality 2021, 33, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Purzycki, M.; Liu, W.; Hilmersson, G.; Fleming, F.F. Metalated nitriles: N- and C-Coordination Preferences of Li, Mg, and Cu Cations. Chem. Commun. 2013, 49, 4700–4702. [Google Scholar] [CrossRef]
- Lόpez, R.; Palomo, C. Cyanoalkylation: Alkylnitriles in Catalytic C–C Bond-Forming Reactions. Angew. Chem. Int. Ed. 2015, 54, 13170–13184. [Google Scholar] [CrossRef]
- Richard, J.P.; Williams, G.; Gao, J. Experimental and Computational Determination of the Effect of the Cyano Group on Carbon Acidity in Water. J. Am. Chem. Soc. 1999, 121, 715–726. [Google Scholar] [CrossRef]
- Bordwell, F.G. Equilibrium Acidities in Dimethyl Sulfoxide Solution. Acc. Chem. Res. 1988, 21, 456–463. [Google Scholar] [CrossRef]
- Sripada, A.; Wolf, C. Catalytic Asymmetric Allylic Alkylation with Arylfluoroacetonitriles. J. Org. Chem. 2022, 87, 11880–11887. [Google Scholar] [CrossRef]
- Adamson, N.J.; Malcolmson, S.J. Catalytic Enantio- and Regioselective Addition of Nucleophiles in the Intermolecular Hydrofunctionalization of 1,3-Dienes. ACS Catal. 2020, 10, 1060–1076. [Google Scholar] [CrossRef]
- Li, G.; Huo, X.; Jiang, X.; Zhang, W. Asymmetric Synthesis of Allylic Compounds via Hydrofunctionalisation and Difunctionalisation of Dienes, Allenes, and Alkynes. Chem. Soc. Rev. 2020, 49, 2060–2118. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-Y.; Yao, B.-Y.; Xuan, B.; Xiao, L.-J.; Zhou, Q.-L. Recent Advances in Nickel-Catalyzed Asymmetric Hydrofunctionalization of Alkenes. Chem. Catal. 2020, 2, 3140–3162. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Z. Asymmetric Hydrofunctionalization of Minimally Functionalized Alkenes via Earth Abundant Transition Metal Catalysis. Org. Chem. Front. 2018, 5, 260–272. [Google Scholar] [CrossRef]
- Guo, J.; Cheng, Z.; Chen, J.; Chen, X.; Lu, Z. Iron-and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes. Acc. Chem. Res. 2021, 54, 2701–2716. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ge, S. Recent Progress in Cobalt-Catalyzed Enantioselective Hydrogenation and Hydroboration Reactions of Alkenes. Curr. Opin. Green Sustain. Chem. 2021, 31, 100542. [Google Scholar] [CrossRef]
- Wen, H.; Liu, G.; Huang, Z. Recent Advances in Tridentate Iron and Cobalt Complexes for Alkene and Alkyne Hydrofunctionalizations. Coord. Chem. Rev. 2019, 386, 138–153. [Google Scholar] [CrossRef]
- Lu, H.; Li, B. Transition Metal Catalyzed Asymmetric Hydroboration of Internal Alkenes. Chin. J. Org. Chem. 2022, 42, 3167–3182. [Google Scholar] [CrossRef]
- Teng, S.; Zhou, J. Metal-Catalyzed Asymmetric Heteroarylation of Alkenes: Diverse Activation Mechanisms. Chem. Soc. Rev. 2022, 51, 1592–1607. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.I.; Liu, G.; Stahl, S.S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications. Chem. Rev. 2011, 111, 2981–3019. [Google Scholar] [CrossRef]
- Oxtoby, L.J.; Gurak, J.A., Jr.; Wisniewski, S.R.; Eastgate, M.D.; Engle, K.M. Palladium-Catalyzed Reductive Heck Coupling of Alkenes. Trends Chem. 2019, 1, 572–587. [Google Scholar] [CrossRef]
- Jensen, K.H.; Sigman, M.S. Mechanistic Approaches to Palladium-Catalyzed Alkene Difunctionalization Reactions. Org. Biomol. Chem. 2008, 6, 4083–4088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Transition-Metal-Catalyzed Three-Component Difunctionalizations of Alkenes. Chem. Asian J. 2018, 13, 2277–2291. [Google Scholar] [CrossRef]
- Yin, X.; Li, S.; Guo, K.; Song, L.; Wang, X. Palladium-Catalyzed Enantioselective Hydrofunctionalization of Alkenes: Recent Advances. Eur. J. Org. Chem. 2023, 26, e202300783. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Konno, T.; Ito, K.; Doi, T. Palladium(0)-Lithium Iodide Cocatalyzed Asymmetric Hydroalkylation of Conjugated Enynes with Pronucleophiles Leading to 1,3-Disubstituted Allenes. Org. Lett. 2019, 21, 6811–6814. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Wang, Y.-F.; Zhao, W.-C.; Lin, G.-Q.; He, Z.-T. Stereodivergent Synthesis of Tertiary Fluoride-Tethered Allenes via Copper and Palladium Dual Catalysis. J. Am. Chem. Soc. 2021, 143, 7285–7291. [Google Scholar] [CrossRef]
- Liao, Q.-Y.; Ma, C.; Wang, Y.-C.; Yang, S.-Q.; Ma, J.-S.; He, Z.-T. Enantioselective and Stereodivergent Hydromonofluoroalkylation of Conjugated and Remote Dienes. Chin. Chem. Lett. 2023, 34, 108371. [Google Scholar] [CrossRef]
- Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef] [PubMed]
- Meanwell, N.A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef]
- Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K.-W.; Lu, Y. Asymmetric Mannich Reaction of Fluorinated Ketoesters with a Tryptophan-Derived Bifunctional Thiourea Catalyst. Angew. Chem. Int. Ed. 2009, 48, 7604–7607. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, Y.; Ma, T.; Yang, Y.; Liu, H.; Jiang, Z.; Tan, C.-H. Enantioselective Synthesis of α-Fluorinated β-Amino Acid Derivatives by an Asymmetric Mannich Reaction and Selective Deacylation/Decarboxylation Reactions. Chem. Eur. J. 2010, 16, 779–782. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, Y.; Liu, H.; Yang, Y.; Jiang, Z.; Tan, C.-H. Fluorinated Aromatic Ketones as Nucleophiles in the Asymmetric Organocatalytic Formation of C-C and C-N Bonds: A Facile Route to the Construction of Fluorinated Quaternary Stereogenic Centers. Chem. Eur. J. 2011, 17, 3571–3574. [Google Scholar] [CrossRef] [PubMed]
- Cosimi, E.; Engl, O.D.; Saadi, J.; Ebert, M.-O.; Wennemers, H. Stereoselective Organocatalyzed Synthesis of α-Fluorinated β-Amino Thioesters and Their Application in Peptide Synthesis. Angew. Chem. Int. Ed. 2016, 55, 13127–13131. [Google Scholar] [CrossRef]
- Vaithiyanathan, V.; Kim, M.J.; Liu, Y.; Yan, H.L.; Song, C.E. Direct Access to Chiral β-Fluoroamines with Quaternary Stereogenic Center through Cooperative Cation-Binding Catalysis. Chem. Eur. J. 2017, 23, 1268–1272. [Google Scholar] [CrossRef]
- Paladhi, S.; Park, S.Y.; Yang, J.W.; Song, C.E. Asymmetric Synthesis of α-Fluoro-β-Amino-Oxindoles with Tetrasubstituted C–F Stereogenic Centers via Cooperative Cation-Binding Catalysis. Org. Lett. 2017, 19, 5336–5339. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-Y.; Du, D.-M. Chiral Squaramide-Catalyzed Asymmetric Mannich Reactions for Synthesis of Fluorinated 3,3′-Bisoxindoles. Adv. Synth. Catal. 2018, 360, 3164–3170. [Google Scholar] [CrossRef]
- Kang, Y.K.; Kim, D.Y. Catalytic Asymmetric Mannich-Type Reactions of Fluorinated Ketoesters with N-Boc Aldimines in the Presence of Chiral Palladium Complexes. Tetrahedron Lett. 2011, 52, 2356–2358. [Google Scholar] [CrossRef]
- Trost, B.M.; Saget, T.; Lerchen, A.; Hung, C.-I. Catalytic Asymmetric Mannich Reactions with Fluorinated Aromatic Ketones: Efficient Access to Chiral β-Fluoroamines. Angew. Chem. Int. Ed. 2016, 55, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Tracy, J.S.; Yusoontorn, T.; Hung, C.-I. Acyclic Branched α-Fluoro Ketones for the Direct Asymmetric Mannich Reaction Leading to the Synthesis of β-Tetrasubstituted β-Fluoro Amines. Angew. Chem. Int. Ed. 2019, 59, 2370–2374. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Zhao, L.; Ma, S.; Yang, D.; Yan, W.; Wang, R. Construction of Vicinal Tetrasubstituted Stereocenters with a C–F Bond through a Catalytic Enantioselective Detrifluoroacetylative Mannich Reaction. J. Org. Chem. 2015, 80, 12651–12658. [Google Scholar] [CrossRef]
- Balaji, P.V.; Brewitz, L.; Kumagai, N.; Shibasaki, M. Achiral Trisubstituted Thioureas as Secondary Ligands to CuI Catalysts: Direct Catalytic Asymmetric Addition of α-Fluoronitriles to Imines. Angew. Chem. Int. Ed. 2019, 58, 2644–2648. [Google Scholar] [CrossRef]
- Ding, R.; De los Santos, Z.A.; Wolf, C. Catalytic Asymmetric Mannich Reaction of α-Fluoronitriles with Ketimines: Enantioselective and Diastereodivergent Construction of Vicinal Tetrasubstituted Stereocenters. ACS Catal. 2019, 9, 2169–2176. [Google Scholar] [CrossRef]
- Kwiatkowski, J.; Lu, Y. Highly Enantioselective Michael Addition of 2-Fluoro-1,3-diketones to Nitroalkenes. Eur. J. Org. Chem. 2015, 2015, 320–324. [Google Scholar] [CrossRef]
- Kwiatkowski, J.; Lu, Y. Asymmetric Michael Addition of α-Fluoro-nitroalkanes to Nitroolefins: Facile Preparation of Fluorinated Amines and Tetrahydropyrimidines. Chem. Commun. 2014, 50, 9313–9316. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-S.; Liao, F.-M.; Gao, W.-M.; Liao, K.; Zuo, R.-L.; Zhou, J. Michael Addition Catalyzed by Chiral Secondary Amine Phosphoramide Using Fluorinated Silyl Enol Ethers: Formation of Quaternary Carbon Stereocenters. Angew. Chem. Int. Ed. 2015, 54, 7381–7385. [Google Scholar] [CrossRef] [PubMed]
- Cosimi, E.; Saadi, J.; Wennemers, H. Stereoselective Synthesis of α-Fluoro-γ-nitro Thioesters under Organocatalytic Conditions. Org. Lett. 2016, 18, 6014–6017. [Google Scholar] [CrossRef]
- Sung, H.J.; Mang, J.Y.; Kim, D.Y. Catalytic Asymmetric Conjugate Addition of α-Fluoro β-Ketophosphonates to Nitroalkenes in the Presence of Nickel Complexes. J. Fluor. Chem. 2015, 178, 40–46. [Google Scholar] [CrossRef]
- Das, A.; Joshi, H.; Singh, V.K. Asymmetric α-Functionalization of 2-Alkyl Azaarenes: Synthesis of Tertiary Fluorides Having Vicinal Stereogenic Centers. Org. Lett. 2021, 23, 9441–9445. [Google Scholar] [CrossRef]
- Kim, S.; Jeung, S.; Lee, S.Y. Stereodivergent Conjugate Addition between Iminium and α-Azaaryl α-Fluoroenolate Intermediates by Synergistic Amine and Lewis Acid Catalysis. ACS Catal. 2023, 13, 13838–13845. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Liao, F.-M.; Niu, Y.-F.; Zhao, X.-L.; Zhou, J. Highly Stereoselective Construction of Adjacent Tetrasubstituted Carbon Stereogenic Centres via an Organocatalytic Mukaiyama-Aldol Reaction of Monofluorinated Silyl Enol Ethers to Isatins. Org. Chem. Front. 2014, 1, 742–747. [Google Scholar] [CrossRef]
- Han, C.; Kim, E.H.; Colby, D.A. Cleavage of Carbon-Carbon Bonds through the Mild Release of Trifluoroacetate: Generation of α,α-Difluoroenolates for Aldol Reactions. J. Am. Chem. Soc. 2011, 133, 5802–5805. [Google Scholar] [CrossRef]
- John, J.P.; Colby, D.A. Synthesis of α-Halo-α,α-difluoromethyl Ketones by a Trifluoroacetate Release/Halogenation Protocol. J. Org. Chem. 2011, 76, 9163–9168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wolf, C. Catalytic Enantioselective Difluoroalkylation of Aldehydes. Angew. Chem. Int. Ed. 2013, 52, 7869–7873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wolf, C. Synthesis of Pentafluorinated β-Hydroxy Ketones. J. Org. Chem. 2012, 77, 8840–8844. [Google Scholar] [CrossRef] [PubMed]
- Saidalimu, I.; Fang, X.; He, X.-P.; Liang, J.; Yang, X.; Wu, F. Highly Enantioselective Construction of 3-Hydroxy Oxindoles through a Decarboxylative Aldol Addition of Trifluoromethyl α-Fluorinated gem-Diols to N-Benzyl Isatins. Angew. Chem. Int. Ed. 2013, 52, 5566–5570. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Wu, L.; Han, J.; Soloshonok, V.A.; Pan, Y. Assembly of Fluorinated Quaternary Stereogenic Centers through Catalytic Enantioselective Detrifluoroacetylative Aldol Reactions. Angew. Chem. Int. Ed. 2015, 54, 6019–6023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, C.; Dai, Y.; Mei, H.; Han, J.; Soloshonok, V.A.; Pan, Y. Catalytic Asymmetric Detrifluoroacetylative Dldol Reactions of Aliphatic Aldehydes for Construction of C-F Quaternary Stereogenic Centers. J. Fluor. Chem. 2016, 184, 28–35. [Google Scholar] [CrossRef]
- Sha, W.; Zhang, L.; Zhang, W.; Mei, H.; Soloshonok, V.A.; Han, J.L.; Pan, Y. Catalytic Cascade Aldol-Cyclization of Tertiary Ketone Enolates for Enantioselective Synthesis of Keto-Esters with a C-F Quaternary Stereogenic Center. Org. Biomol. Chem. 2016, 14, 7295–7303. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Mei, H.; Han, J.; Soloshonok, V.A.; Pan, Y. Catalytic Asymmetric Aldol Addition Reactions of 3-Fluoro- Indolinone Derived Enolates. Org. Biomol. Chem. 2017, 15, 311–315. [Google Scholar] [CrossRef]
- Saadi, J.; Wennemers, H. Enantioselective Aldol Reactions with Masked Fluoroacetates. Nat. Chem. 2016, 8, 276–280. [Google Scholar] [CrossRef]
- Balaji, P.V.; Li, Z.; Saito, A.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Addition of α-Fluoronitriles to Aldehydes. Chem. Eur. J. 2020, 26, 15524–15527. [Google Scholar] [CrossRef]
- Lu, M.; Xiong, Z.; Zhou, Y.; Wang, X.; Li, X.; Duan, J.; Yao, W.; Xia, Y.; Wang, Z. Assembly of Fluorinated Chromanones via Enantioselective Tandem Reaction. Chem. Commun. 2021, 57, 4722–4725. [Google Scholar] [CrossRef] [PubMed]
- Kalita, S.J.; Cheng, F.; Fan, Q.-H.; Shibata, N.; Huang, Y.-Y.J. Diastereodivergent Synthesis of Chiral 4-Fluoropyrrolidines (exo and exo’) Based on the Cu(II)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition. J. Org. Chem. 2021, 86, 8695–8705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sheng, X.; Deiana, L.; Grape, E.S.; Inge, A.K.; Himo, F.; Córdova, A. Solvent Dependency in Stereoselective δ-Lactam Formation of Chiral α-Fluoromalonate Derivatives: Stereodivergent Synthesis of Heterocycles with Fluorine Containing Stereocenters Adjacent to Tertiary Stereocenters. Adv. Synth. Catal. 2022, 364, 958–965. [Google Scholar] [CrossRef]
- Xu, S.; del Pozo, J.; Romiti, F.; Fu, Y.; Mai, B.K.; Morrison, R.J.; Lee, K.; Hu, S.; Koh, M.J.; Lee, J.; et al. Diastereo- and Enantioselective Synthesis of Compounds with a Trifluoromethyl- and Fluoro-Substituted Carbon Centre. Nat. Chem. 2022, 14, 1459–1469. [Google Scholar] [CrossRef]
- Wang, Q.; Eriksson, L.; Szabó, K.J. Catalytic Homologation-Allylboration Sequence for Diastereo- and Enantioselective Synthesis of Densely Functionalized β-Fluorohydrins with Tertiary Fluoride Stereocenters. Angew. Chem. Int. Ed. 2023, 62, e202301481. [Google Scholar] [CrossRef]
- Butcher, T.W.; Hartwig, J.F. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium-Catalyzed Allylic Fluoroalkylation. Angew. Chem. Int. Ed. 2018, 57, 13125–13129. [Google Scholar] [CrossRef]
- Butcher, T.W.; Yang, J.L.; Amberg, W.M.; Watkins, N.B.; Wilkinson, N.D.; Hartwig, J.F. Desymmetrization of Difluoromethylene Groups by C–F Bond Activation. Nature 2020, 583, 548–553. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Wang, X.; Song, L.; Zhang, J.; Wang, X. Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers. Molecules 2024, 29, 3677. https://doi.org/10.3390/molecules29153677
Yin X, Wang X, Song L, Zhang J, Wang X. Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers. Molecules. 2024; 29(15):3677. https://doi.org/10.3390/molecules29153677
Chicago/Turabian StyleYin, Xuemei, Xihong Wang, Lei Song, Junxiong Zhang, and Xiaoling Wang. 2024. "Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers" Molecules 29, no. 15: 3677. https://doi.org/10.3390/molecules29153677
APA StyleYin, X., Wang, X., Song, L., Zhang, J., & Wang, X. (2024). Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers. Molecules, 29(15), 3677. https://doi.org/10.3390/molecules29153677